| /* |
| * x86 SVM helpers |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "cpu.h" |
| #include "exec/cpu-all.h" |
| #include "helper.h" |
| |
| #if !defined(CONFIG_USER_ONLY) |
| #include "exec/softmmu_exec.h" |
| #endif /* !defined(CONFIG_USER_ONLY) */ |
| |
| /* Secure Virtual Machine helpers */ |
| |
| #if defined(CONFIG_USER_ONLY) |
| |
| void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend) |
| { |
| } |
| |
| void helper_vmmcall(CPUX86State *env) |
| { |
| } |
| |
| void helper_vmload(CPUX86State *env, int aflag) |
| { |
| } |
| |
| void helper_vmsave(CPUX86State *env, int aflag) |
| { |
| } |
| |
| void helper_stgi(CPUX86State *env) |
| { |
| } |
| |
| void helper_clgi(CPUX86State *env) |
| { |
| } |
| |
| void helper_skinit(CPUX86State *env) |
| { |
| } |
| |
| void helper_invlpga(CPUX86State *env, int aflag) |
| { |
| } |
| |
| void helper_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1) |
| { |
| } |
| |
| void cpu_vmexit(CPUX86State *nenv, uint32_t exit_code, uint64_t exit_info_1) |
| { |
| } |
| |
| void helper_svm_check_intercept_param(CPUX86State *env, uint32_t type, |
| uint64_t param) |
| { |
| } |
| |
| void cpu_svm_check_intercept_param(CPUX86State *env, uint32_t type, |
| uint64_t param) |
| { |
| } |
| |
| void helper_svm_check_io(CPUX86State *env, uint32_t port, uint32_t param, |
| uint32_t next_eip_addend) |
| { |
| } |
| #else |
| |
| static inline void svm_save_seg(CPUX86State *env, hwaddr addr, |
| const SegmentCache *sc) |
| { |
| CPUState *cs = CPU(x86_env_get_cpu(env)); |
| |
| stw_phys(cs->as, addr + offsetof(struct vmcb_seg, selector), |
| sc->selector); |
| stq_phys(cs->as, addr + offsetof(struct vmcb_seg, base), |
| sc->base); |
| stl_phys(cs->as, addr + offsetof(struct vmcb_seg, limit), |
| sc->limit); |
| stw_phys(cs->as, addr + offsetof(struct vmcb_seg, attrib), |
| ((sc->flags >> 8) & 0xff) | ((sc->flags >> 12) & 0x0f00)); |
| } |
| |
| static inline void svm_load_seg(CPUX86State *env, hwaddr addr, |
| SegmentCache *sc) |
| { |
| CPUState *cs = CPU(x86_env_get_cpu(env)); |
| unsigned int flags; |
| |
| sc->selector = lduw_phys(cs->as, |
| addr + offsetof(struct vmcb_seg, selector)); |
| sc->base = ldq_phys(cs->as, addr + offsetof(struct vmcb_seg, base)); |
| sc->limit = ldl_phys(cs->as, addr + offsetof(struct vmcb_seg, limit)); |
| flags = lduw_phys(cs->as, addr + offsetof(struct vmcb_seg, attrib)); |
| sc->flags = ((flags & 0xff) << 8) | ((flags & 0x0f00) << 12); |
| } |
| |
| static inline void svm_load_seg_cache(CPUX86State *env, hwaddr addr, |
| int seg_reg) |
| { |
| SegmentCache sc1, *sc = &sc1; |
| |
| svm_load_seg(env, addr, sc); |
| cpu_x86_load_seg_cache(env, seg_reg, sc->selector, |
| sc->base, sc->limit, sc->flags); |
| } |
| |
| void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend) |
| { |
| CPUState *cs = CPU(x86_env_get_cpu(env)); |
| target_ulong addr; |
| uint32_t event_inj; |
| uint32_t int_ctl; |
| |
| cpu_svm_check_intercept_param(env, SVM_EXIT_VMRUN, 0); |
| |
| if (aflag == 2) { |
| addr = env->regs[R_EAX]; |
| } else { |
| addr = (uint32_t)env->regs[R_EAX]; |
| } |
| |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr); |
| |
| env->vm_vmcb = addr; |
| |
| /* save the current CPU state in the hsave page */ |
| stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.gdtr.base), |
| env->gdt.base); |
| stl_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit), |
| env->gdt.limit); |
| |
| stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.idtr.base), |
| env->idt.base); |
| stl_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.idtr.limit), |
| env->idt.limit); |
| |
| stq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]); |
| stq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]); |
| stq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]); |
| stq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]); |
| stq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]); |
| stq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]); |
| |
| stq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer); |
| stq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, save.rflags), |
| cpu_compute_eflags(env)); |
| |
| svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.es), |
| &env->segs[R_ES]); |
| svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.cs), |
| &env->segs[R_CS]); |
| svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.ss), |
| &env->segs[R_SS]); |
| svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.ds), |
| &env->segs[R_DS]); |
| |
| stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.rip), |
| env->eip + next_eip_addend); |
| stq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]); |
| stq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, save.rax), env->regs[R_EAX]); |
| |
| /* load the interception bitmaps so we do not need to access the |
| vmcb in svm mode */ |
| env->intercept = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, |
| control.intercept)); |
| env->intercept_cr_read = lduw_phys(cs->as, env->vm_vmcb + |
| offsetof(struct vmcb, |
| control.intercept_cr_read)); |
| env->intercept_cr_write = lduw_phys(cs->as, env->vm_vmcb + |
| offsetof(struct vmcb, |
| control.intercept_cr_write)); |
| env->intercept_dr_read = lduw_phys(cs->as, env->vm_vmcb + |
| offsetof(struct vmcb, |
| control.intercept_dr_read)); |
| env->intercept_dr_write = lduw_phys(cs->as, env->vm_vmcb + |
| offsetof(struct vmcb, |
| control.intercept_dr_write)); |
| env->intercept_exceptions = ldl_phys(cs->as, env->vm_vmcb + |
| offsetof(struct vmcb, |
| control.intercept_exceptions |
| )); |
| |
| /* enable intercepts */ |
| env->hflags |= HF_SVMI_MASK; |
| |
| env->tsc_offset = ldq_phys(cs->as, env->vm_vmcb + |
| offsetof(struct vmcb, control.tsc_offset)); |
| |
| env->gdt.base = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, |
| save.gdtr.base)); |
| env->gdt.limit = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, |
| save.gdtr.limit)); |
| |
| env->idt.base = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, |
| save.idtr.base)); |
| env->idt.limit = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, |
| save.idtr.limit)); |
| |
| /* clear exit_info_2 so we behave like the real hardware */ |
| stq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0); |
| |
| cpu_x86_update_cr0(env, ldq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, |
| save.cr0))); |
| cpu_x86_update_cr4(env, ldq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, |
| save.cr4))); |
| cpu_x86_update_cr3(env, ldq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, |
| save.cr3))); |
| env->cr[2] = ldq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.cr2)); |
| int_ctl = ldl_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)); |
| env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK); |
| if (int_ctl & V_INTR_MASKING_MASK) { |
| env->v_tpr = int_ctl & V_TPR_MASK; |
| env->hflags2 |= HF2_VINTR_MASK; |
| if (env->eflags & IF_MASK) { |
| env->hflags2 |= HF2_HIF_MASK; |
| } |
| } |
| |
| cpu_load_efer(env, |
| ldq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.efer))); |
| env->eflags = 0; |
| cpu_load_eflags(env, ldq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, |
| save.rflags)), |
| ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK)); |
| CC_OP = CC_OP_EFLAGS; |
| |
| svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.es), |
| R_ES); |
| svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.cs), |
| R_CS); |
| svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.ss), |
| R_SS); |
| svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.ds), |
| R_DS); |
| |
| env->eip = ldq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.rip)); |
| |
| env->regs[R_ESP] = ldq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.rsp)); |
| env->regs[R_EAX] = ldq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.rax)); |
| env->dr[7] = ldq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.dr7)); |
| env->dr[6] = ldq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.dr6)); |
| cpu_x86_set_cpl(env, ldub_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, |
| save.cpl))); |
| |
| /* FIXME: guest state consistency checks */ |
| |
| switch (ldub_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) { |
| case TLB_CONTROL_DO_NOTHING: |
| break; |
| case TLB_CONTROL_FLUSH_ALL_ASID: |
| /* FIXME: this is not 100% correct but should work for now */ |
| tlb_flush(env, 1); |
| break; |
| } |
| |
| env->hflags2 |= HF2_GIF_MASK; |
| |
| if (int_ctl & V_IRQ_MASK) { |
| CPUState *cs = CPU(x86_env_get_cpu(env)); |
| |
| cs->interrupt_request |= CPU_INTERRUPT_VIRQ; |
| } |
| |
| /* maybe we need to inject an event */ |
| event_inj = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, |
| control.event_inj)); |
| if (event_inj & SVM_EVTINJ_VALID) { |
| uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK; |
| uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR; |
| uint32_t event_inj_err = ldl_phys(cs->as, env->vm_vmcb + |
| offsetof(struct vmcb, |
| control.event_inj_err)); |
| |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err); |
| /* FIXME: need to implement valid_err */ |
| switch (event_inj & SVM_EVTINJ_TYPE_MASK) { |
| case SVM_EVTINJ_TYPE_INTR: |
| cs->exception_index = vector; |
| env->error_code = event_inj_err; |
| env->exception_is_int = 0; |
| env->exception_next_eip = -1; |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "INTR"); |
| /* XXX: is it always correct? */ |
| do_interrupt_x86_hardirq(env, vector, 1); |
| break; |
| case SVM_EVTINJ_TYPE_NMI: |
| cs->exception_index = EXCP02_NMI; |
| env->error_code = event_inj_err; |
| env->exception_is_int = 0; |
| env->exception_next_eip = env->eip; |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "NMI"); |
| cpu_loop_exit(cs); |
| break; |
| case SVM_EVTINJ_TYPE_EXEPT: |
| cs->exception_index = vector; |
| env->error_code = event_inj_err; |
| env->exception_is_int = 0; |
| env->exception_next_eip = -1; |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "EXEPT"); |
| cpu_loop_exit(cs); |
| break; |
| case SVM_EVTINJ_TYPE_SOFT: |
| cs->exception_index = vector; |
| env->error_code = event_inj_err; |
| env->exception_is_int = 1; |
| env->exception_next_eip = env->eip; |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "SOFT"); |
| cpu_loop_exit(cs); |
| break; |
| } |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, " %#x %#x\n", cs->exception_index, |
| env->error_code); |
| } |
| } |
| |
| void helper_vmmcall(CPUX86State *env) |
| { |
| cpu_svm_check_intercept_param(env, SVM_EXIT_VMMCALL, 0); |
| raise_exception(env, EXCP06_ILLOP); |
| } |
| |
| void helper_vmload(CPUX86State *env, int aflag) |
| { |
| CPUState *cs = CPU(x86_env_get_cpu(env)); |
| target_ulong addr; |
| |
| cpu_svm_check_intercept_param(env, SVM_EXIT_VMLOAD, 0); |
| |
| if (aflag == 2) { |
| addr = env->regs[R_EAX]; |
| } else { |
| addr = (uint32_t)env->regs[R_EAX]; |
| } |
| |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmload! " TARGET_FMT_lx |
| "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n", |
| addr, ldq_phys(cs->as, addr + offsetof(struct vmcb, |
| save.fs.base)), |
| env->segs[R_FS].base); |
| |
| svm_load_seg_cache(env, addr + offsetof(struct vmcb, save.fs), R_FS); |
| svm_load_seg_cache(env, addr + offsetof(struct vmcb, save.gs), R_GS); |
| svm_load_seg(env, addr + offsetof(struct vmcb, save.tr), &env->tr); |
| svm_load_seg(env, addr + offsetof(struct vmcb, save.ldtr), &env->ldt); |
| |
| #ifdef TARGET_X86_64 |
| env->kernelgsbase = ldq_phys(cs->as, addr + offsetof(struct vmcb, |
| save.kernel_gs_base)); |
| env->lstar = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.lstar)); |
| env->cstar = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.cstar)); |
| env->fmask = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.sfmask)); |
| #endif |
| env->star = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.star)); |
| env->sysenter_cs = ldq_phys(cs->as, |
| addr + offsetof(struct vmcb, save.sysenter_cs)); |
| env->sysenter_esp = ldq_phys(cs->as, addr + offsetof(struct vmcb, |
| save.sysenter_esp)); |
| env->sysenter_eip = ldq_phys(cs->as, addr + offsetof(struct vmcb, |
| save.sysenter_eip)); |
| } |
| |
| void helper_vmsave(CPUX86State *env, int aflag) |
| { |
| CPUState *cs = CPU(x86_env_get_cpu(env)); |
| target_ulong addr; |
| |
| cpu_svm_check_intercept_param(env, SVM_EXIT_VMSAVE, 0); |
| |
| if (aflag == 2) { |
| addr = env->regs[R_EAX]; |
| } else { |
| addr = (uint32_t)env->regs[R_EAX]; |
| } |
| |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmsave! " TARGET_FMT_lx |
| "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n", |
| addr, ldq_phys(cs->as, |
| addr + offsetof(struct vmcb, save.fs.base)), |
| env->segs[R_FS].base); |
| |
| svm_save_seg(env, addr + offsetof(struct vmcb, save.fs), |
| &env->segs[R_FS]); |
| svm_save_seg(env, addr + offsetof(struct vmcb, save.gs), |
| &env->segs[R_GS]); |
| svm_save_seg(env, addr + offsetof(struct vmcb, save.tr), |
| &env->tr); |
| svm_save_seg(env, addr + offsetof(struct vmcb, save.ldtr), |
| &env->ldt); |
| |
| #ifdef TARGET_X86_64 |
| stq_phys(cs->as, addr + offsetof(struct vmcb, save.kernel_gs_base), |
| env->kernelgsbase); |
| stq_phys(cs->as, addr + offsetof(struct vmcb, save.lstar), env->lstar); |
| stq_phys(cs->as, addr + offsetof(struct vmcb, save.cstar), env->cstar); |
| stq_phys(cs->as, addr + offsetof(struct vmcb, save.sfmask), env->fmask); |
| #endif |
| stq_phys(cs->as, addr + offsetof(struct vmcb, save.star), env->star); |
| stq_phys(cs->as, |
| addr + offsetof(struct vmcb, save.sysenter_cs), env->sysenter_cs); |
| stq_phys(cs->as, addr + offsetof(struct vmcb, save.sysenter_esp), |
| env->sysenter_esp); |
| stq_phys(cs->as, addr + offsetof(struct vmcb, save.sysenter_eip), |
| env->sysenter_eip); |
| } |
| |
| void helper_stgi(CPUX86State *env) |
| { |
| cpu_svm_check_intercept_param(env, SVM_EXIT_STGI, 0); |
| env->hflags2 |= HF2_GIF_MASK; |
| } |
| |
| void helper_clgi(CPUX86State *env) |
| { |
| cpu_svm_check_intercept_param(env, SVM_EXIT_CLGI, 0); |
| env->hflags2 &= ~HF2_GIF_MASK; |
| } |
| |
| void helper_skinit(CPUX86State *env) |
| { |
| cpu_svm_check_intercept_param(env, SVM_EXIT_SKINIT, 0); |
| /* XXX: not implemented */ |
| raise_exception(env, EXCP06_ILLOP); |
| } |
| |
| void helper_invlpga(CPUX86State *env, int aflag) |
| { |
| target_ulong addr; |
| |
| cpu_svm_check_intercept_param(env, SVM_EXIT_INVLPGA, 0); |
| |
| if (aflag == 2) { |
| addr = env->regs[R_EAX]; |
| } else { |
| addr = (uint32_t)env->regs[R_EAX]; |
| } |
| |
| /* XXX: could use the ASID to see if it is needed to do the |
| flush */ |
| tlb_flush_page(env, addr); |
| } |
| |
| void helper_svm_check_intercept_param(CPUX86State *env, uint32_t type, |
| uint64_t param) |
| { |
| CPUState *cs = CPU(x86_env_get_cpu(env)); |
| |
| if (likely(!(env->hflags & HF_SVMI_MASK))) { |
| return; |
| } |
| switch (type) { |
| case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR0 + 8: |
| if (env->intercept_cr_read & (1 << (type - SVM_EXIT_READ_CR0))) { |
| helper_vmexit(env, type, param); |
| } |
| break; |
| case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR0 + 8: |
| if (env->intercept_cr_write & (1 << (type - SVM_EXIT_WRITE_CR0))) { |
| helper_vmexit(env, type, param); |
| } |
| break; |
| case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR0 + 7: |
| if (env->intercept_dr_read & (1 << (type - SVM_EXIT_READ_DR0))) { |
| helper_vmexit(env, type, param); |
| } |
| break; |
| case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR0 + 7: |
| if (env->intercept_dr_write & (1 << (type - SVM_EXIT_WRITE_DR0))) { |
| helper_vmexit(env, type, param); |
| } |
| break; |
| case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 31: |
| if (env->intercept_exceptions & (1 << (type - SVM_EXIT_EXCP_BASE))) { |
| helper_vmexit(env, type, param); |
| } |
| break; |
| case SVM_EXIT_MSR: |
| if (env->intercept & (1ULL << (SVM_EXIT_MSR - SVM_EXIT_INTR))) { |
| /* FIXME: this should be read in at vmrun (faster this way?) */ |
| uint64_t addr = ldq_phys(cs->as, env->vm_vmcb + |
| offsetof(struct vmcb, |
| control.msrpm_base_pa)); |
| uint32_t t0, t1; |
| |
| switch ((uint32_t)env->regs[R_ECX]) { |
| case 0 ... 0x1fff: |
| t0 = (env->regs[R_ECX] * 2) % 8; |
| t1 = (env->regs[R_ECX] * 2) / 8; |
| break; |
| case 0xc0000000 ... 0xc0001fff: |
| t0 = (8192 + env->regs[R_ECX] - 0xc0000000) * 2; |
| t1 = (t0 / 8); |
| t0 %= 8; |
| break; |
| case 0xc0010000 ... 0xc0011fff: |
| t0 = (16384 + env->regs[R_ECX] - 0xc0010000) * 2; |
| t1 = (t0 / 8); |
| t0 %= 8; |
| break; |
| default: |
| helper_vmexit(env, type, param); |
| t0 = 0; |
| t1 = 0; |
| break; |
| } |
| if (ldub_phys(cs->as, addr + t1) & ((1 << param) << t0)) { |
| helper_vmexit(env, type, param); |
| } |
| } |
| break; |
| default: |
| if (env->intercept & (1ULL << (type - SVM_EXIT_INTR))) { |
| helper_vmexit(env, type, param); |
| } |
| break; |
| } |
| } |
| |
| void cpu_svm_check_intercept_param(CPUX86State *env, uint32_t type, |
| uint64_t param) |
| { |
| helper_svm_check_intercept_param(env, type, param); |
| } |
| |
| void helper_svm_check_io(CPUX86State *env, uint32_t port, uint32_t param, |
| uint32_t next_eip_addend) |
| { |
| CPUState *cs = CPU(x86_env_get_cpu(env)); |
| |
| if (env->intercept & (1ULL << (SVM_EXIT_IOIO - SVM_EXIT_INTR))) { |
| /* FIXME: this should be read in at vmrun (faster this way?) */ |
| uint64_t addr = ldq_phys(cs->as, env->vm_vmcb + |
| offsetof(struct vmcb, control.iopm_base_pa)); |
| uint16_t mask = (1 << ((param >> 4) & 7)) - 1; |
| |
| if (lduw_phys(cs->as, addr + port / 8) & (mask << (port & 7))) { |
| /* next env->eip */ |
| stq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), |
| env->eip + next_eip_addend); |
| helper_vmexit(env, SVM_EXIT_IOIO, param | (port << 16)); |
| } |
| } |
| } |
| |
| /* Note: currently only 32 bits of exit_code are used */ |
| void helper_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1) |
| { |
| CPUState *cs = CPU(x86_env_get_cpu(env)); |
| uint32_t int_ctl; |
| |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmexit(%08x, %016" PRIx64 ", %016" |
| PRIx64 ", " TARGET_FMT_lx ")!\n", |
| exit_code, exit_info_1, |
| ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, |
| control.exit_info_2)), |
| env->eip); |
| |
| if (env->hflags & HF_INHIBIT_IRQ_MASK) { |
| stl_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, control.int_state), |
| SVM_INTERRUPT_SHADOW_MASK); |
| env->hflags &= ~HF_INHIBIT_IRQ_MASK; |
| } else { |
| stl_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, control.int_state), 0); |
| } |
| |
| /* Save the VM state in the vmcb */ |
| svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.es), |
| &env->segs[R_ES]); |
| svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.cs), |
| &env->segs[R_CS]); |
| svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.ss), |
| &env->segs[R_SS]); |
| svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.ds), |
| &env->segs[R_DS]); |
| |
| stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base), |
| env->gdt.base); |
| stl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit), |
| env->gdt.limit); |
| |
| stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.idtr.base), |
| env->idt.base); |
| stl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit), |
| env->idt.limit); |
| |
| stq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.efer), env->efer); |
| stq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.cr0), env->cr[0]); |
| stq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.cr2), env->cr[2]); |
| stq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.cr3), env->cr[3]); |
| stq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.cr4), env->cr[4]); |
| |
| int_ctl = ldl_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)); |
| int_ctl &= ~(V_TPR_MASK | V_IRQ_MASK); |
| int_ctl |= env->v_tpr & V_TPR_MASK; |
| if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { |
| int_ctl |= V_IRQ_MASK; |
| } |
| stl_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, control.int_ctl), int_ctl); |
| |
| stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rflags), |
| cpu_compute_eflags(env)); |
| stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rip), |
| env->eip); |
| stq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]); |
| stq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.rax), env->regs[R_EAX]); |
| stq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.dr7), env->dr[7]); |
| stq_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, save.dr6), env->dr[6]); |
| stb_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cpl), |
| env->hflags & HF_CPL_MASK); |
| |
| /* Reload the host state from vm_hsave */ |
| env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK); |
| env->hflags &= ~HF_SVMI_MASK; |
| env->intercept = 0; |
| env->intercept_exceptions = 0; |
| cs->interrupt_request &= ~CPU_INTERRUPT_VIRQ; |
| env->tsc_offset = 0; |
| |
| env->gdt.base = ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, |
| save.gdtr.base)); |
| env->gdt.limit = ldl_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, |
| save.gdtr.limit)); |
| |
| env->idt.base = ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, |
| save.idtr.base)); |
| env->idt.limit = ldl_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, |
| save.idtr.limit)); |
| |
| cpu_x86_update_cr0(env, ldq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, |
| save.cr0)) | |
| CR0_PE_MASK); |
| cpu_x86_update_cr4(env, ldq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, |
| save.cr4))); |
| cpu_x86_update_cr3(env, ldq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, |
| save.cr3))); |
| /* we need to set the efer after the crs so the hidden flags get |
| set properly */ |
| cpu_load_efer(env, ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, |
| save.efer))); |
| env->eflags = 0; |
| cpu_load_eflags(env, ldq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, |
| save.rflags)), |
| ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK)); |
| CC_OP = CC_OP_EFLAGS; |
| |
| svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.es), |
| R_ES); |
| svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.cs), |
| R_CS); |
| svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.ss), |
| R_SS); |
| svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.ds), |
| R_DS); |
| |
| env->eip = ldq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, save.rip)); |
| env->regs[R_ESP] = ldq_phys(cs->as, env->vm_hsave + |
| offsetof(struct vmcb, save.rsp)); |
| env->regs[R_EAX] = ldq_phys(cs->as, env->vm_hsave + |
| offsetof(struct vmcb, save.rax)); |
| |
| env->dr[6] = ldq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, save.dr6)); |
| env->dr[7] = ldq_phys(cs->as, |
| env->vm_hsave + offsetof(struct vmcb, save.dr7)); |
| |
| /* other setups */ |
| cpu_x86_set_cpl(env, 0); |
| stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.exit_code), |
| exit_code); |
| stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_1), |
| exit_info_1); |
| |
| stl_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info), |
| ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, |
| control.event_inj))); |
| stl_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info_err), |
| ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, |
| control.event_inj_err))); |
| stl_phys(cs->as, |
| env->vm_vmcb + offsetof(struct vmcb, control.event_inj), 0); |
| |
| env->hflags2 &= ~HF2_GIF_MASK; |
| /* FIXME: Resets the current ASID register to zero (host ASID). */ |
| |
| /* Clears the V_IRQ and V_INTR_MASKING bits inside the processor. */ |
| |
| /* Clears the TSC_OFFSET inside the processor. */ |
| |
| /* If the host is in PAE mode, the processor reloads the host's PDPEs |
| from the page table indicated the host's CR3. If the PDPEs contain |
| illegal state, the processor causes a shutdown. */ |
| |
| /* Forces CR0.PE = 1, RFLAGS.VM = 0. */ |
| env->cr[0] |= CR0_PE_MASK; |
| env->eflags &= ~VM_MASK; |
| |
| /* Disables all breakpoints in the host DR7 register. */ |
| |
| /* Checks the reloaded host state for consistency. */ |
| |
| /* If the host's rIP reloaded by #VMEXIT is outside the limit of the |
| host's code segment or non-canonical (in the case of long mode), a |
| #GP fault is delivered inside the host. */ |
| |
| /* remove any pending exception */ |
| cs->exception_index = -1; |
| env->error_code = 0; |
| env->old_exception = -1; |
| |
| cpu_loop_exit(cs); |
| } |
| |
| void cpu_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1) |
| { |
| helper_vmexit(env, exit_code, exit_info_1); |
| } |
| |
| #endif |