| /* |
| * x86 gdb server stub |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * Copyright (c) 2013 SUSE LINUX Products GmbH |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "include/gdbstub/helpers.h" |
| |
| #ifdef TARGET_X86_64 |
| static const int gpr_map[16] = { |
| R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP, |
| 8, 9, 10, 11, 12, 13, 14, 15 |
| }; |
| #else |
| #define gpr_map gpr_map32 |
| #endif |
| static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; |
| |
| /* |
| * Keep these in sync with assignment to |
| * gdb_num_core_regs in target/i386/cpu.c |
| * and with the machine description |
| */ |
| |
| /* |
| * SEG: 6 segments, plus fs_base, gs_base, kernel_gs_base |
| */ |
| |
| /* |
| * general regs -----> 8 or 16 |
| */ |
| #define IDX_NB_IP 1 |
| #define IDX_NB_FLAGS 1 |
| #define IDX_NB_SEG (6 + 3) |
| #define IDX_NB_CTL 6 |
| #define IDX_NB_FP 16 |
| /* |
| * fpu regs ----------> 8 or 16 |
| */ |
| #define IDX_NB_MXCSR 1 |
| /* |
| * total ----> 8+1+1+9+6+16+8+1=50 or 16+1+1+9+6+16+16+1=66 |
| */ |
| |
| #define IDX_IP_REG CPU_NB_REGS |
| #define IDX_FLAGS_REG (IDX_IP_REG + IDX_NB_IP) |
| #define IDX_SEG_REGS (IDX_FLAGS_REG + IDX_NB_FLAGS) |
| #define IDX_CTL_REGS (IDX_SEG_REGS + IDX_NB_SEG) |
| #define IDX_FP_REGS (IDX_CTL_REGS + IDX_NB_CTL) |
| #define IDX_XMM_REGS (IDX_FP_REGS + IDX_NB_FP) |
| #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS) |
| |
| #define IDX_CTL_CR0_REG (IDX_CTL_REGS + 0) |
| #define IDX_CTL_CR2_REG (IDX_CTL_REGS + 1) |
| #define IDX_CTL_CR3_REG (IDX_CTL_REGS + 2) |
| #define IDX_CTL_CR4_REG (IDX_CTL_REGS + 3) |
| #define IDX_CTL_CR8_REG (IDX_CTL_REGS + 4) |
| #define IDX_CTL_EFER_REG (IDX_CTL_REGS + 5) |
| |
| #ifdef TARGET_X86_64 |
| #define GDB_FORCE_64 1 |
| #else |
| #define GDB_FORCE_64 0 |
| #endif |
| |
| static int gdb_read_reg_cs64(uint32_t hflags, GByteArray *buf, target_ulong val) |
| { |
| if ((hflags & HF_CS64_MASK) || GDB_FORCE_64) { |
| return gdb_get_reg64(buf, val); |
| } |
| return gdb_get_reg32(buf, val); |
| } |
| |
| static int gdb_write_reg_cs64(uint32_t hflags, uint8_t *buf, target_ulong *val) |
| { |
| if (hflags & HF_CS64_MASK) { |
| *val = ldq_p(buf); |
| return 8; |
| } |
| *val = ldl_p(buf); |
| return 4; |
| } |
| |
| int x86_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| |
| uint64_t tpr; |
| |
| /* N.B. GDB can't deal with changes in registers or sizes in the middle |
| of a session. So if we're in 32-bit mode on a 64-bit cpu, still act |
| as if we're on a 64-bit cpu. */ |
| |
| if (n < CPU_NB_REGS) { |
| if (TARGET_LONG_BITS == 64) { |
| if (env->hflags & HF_CS64_MASK) { |
| return gdb_get_reg64(mem_buf, env->regs[gpr_map[n]]); |
| } else if (n < CPU_NB_REGS32) { |
| return gdb_get_reg64(mem_buf, |
| env->regs[gpr_map[n]] & 0xffffffffUL); |
| } else { |
| return gdb_get_regl(mem_buf, 0); |
| } |
| } else { |
| return gdb_get_reg32(mem_buf, env->regs[gpr_map32[n]]); |
| } |
| } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { |
| int st_index = n - IDX_FP_REGS; |
| int r_index = (st_index + env->fpstt) % 8; |
| floatx80 *fp = &env->fpregs[r_index].d; |
| int len = gdb_get_reg64(mem_buf, cpu_to_le64(fp->low)); |
| len += gdb_get_reg16(mem_buf, cpu_to_le16(fp->high)); |
| return len; |
| } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { |
| n -= IDX_XMM_REGS; |
| if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) { |
| return gdb_get_reg128(mem_buf, |
| env->xmm_regs[n].ZMM_Q(1), |
| env->xmm_regs[n].ZMM_Q(0)); |
| } |
| } else { |
| switch (n) { |
| case IDX_IP_REG: |
| if (TARGET_LONG_BITS == 64) { |
| if (env->hflags & HF_CS64_MASK) { |
| return gdb_get_reg64(mem_buf, env->eip); |
| } else { |
| return gdb_get_reg64(mem_buf, env->eip & 0xffffffffUL); |
| } |
| } else { |
| return gdb_get_reg32(mem_buf, env->eip); |
| } |
| case IDX_FLAGS_REG: |
| return gdb_get_reg32(mem_buf, env->eflags); |
| |
| case IDX_SEG_REGS: |
| return gdb_get_reg32(mem_buf, env->segs[R_CS].selector); |
| case IDX_SEG_REGS + 1: |
| return gdb_get_reg32(mem_buf, env->segs[R_SS].selector); |
| case IDX_SEG_REGS + 2: |
| return gdb_get_reg32(mem_buf, env->segs[R_DS].selector); |
| case IDX_SEG_REGS + 3: |
| return gdb_get_reg32(mem_buf, env->segs[R_ES].selector); |
| case IDX_SEG_REGS + 4: |
| return gdb_get_reg32(mem_buf, env->segs[R_FS].selector); |
| case IDX_SEG_REGS + 5: |
| return gdb_get_reg32(mem_buf, env->segs[R_GS].selector); |
| case IDX_SEG_REGS + 6: |
| return gdb_read_reg_cs64(env->hflags, mem_buf, env->segs[R_FS].base); |
| case IDX_SEG_REGS + 7: |
| return gdb_read_reg_cs64(env->hflags, mem_buf, env->segs[R_GS].base); |
| |
| case IDX_SEG_REGS + 8: |
| #ifdef TARGET_X86_64 |
| return gdb_read_reg_cs64(env->hflags, mem_buf, env->kernelgsbase); |
| #else |
| return gdb_get_reg32(mem_buf, 0); |
| #endif |
| |
| case IDX_FP_REGS + 8: |
| return gdb_get_reg32(mem_buf, env->fpuc); |
| case IDX_FP_REGS + 9: |
| return gdb_get_reg32(mem_buf, (env->fpus & ~0x3800) | |
| (env->fpstt & 0x7) << 11); |
| case IDX_FP_REGS + 10: |
| return gdb_get_reg32(mem_buf, 0); /* ftag */ |
| case IDX_FP_REGS + 11: |
| return gdb_get_reg32(mem_buf, 0); /* fiseg */ |
| case IDX_FP_REGS + 12: |
| return gdb_get_reg32(mem_buf, 0); /* fioff */ |
| case IDX_FP_REGS + 13: |
| return gdb_get_reg32(mem_buf, 0); /* foseg */ |
| case IDX_FP_REGS + 14: |
| return gdb_get_reg32(mem_buf, 0); /* fooff */ |
| case IDX_FP_REGS + 15: |
| return gdb_get_reg32(mem_buf, 0); /* fop */ |
| |
| case IDX_MXCSR_REG: |
| update_mxcsr_from_sse_status(env); |
| return gdb_get_reg32(mem_buf, env->mxcsr); |
| |
| case IDX_CTL_CR0_REG: |
| return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[0]); |
| case IDX_CTL_CR2_REG: |
| return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[2]); |
| case IDX_CTL_CR3_REG: |
| return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[3]); |
| case IDX_CTL_CR4_REG: |
| return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[4]); |
| case IDX_CTL_CR8_REG: |
| #ifndef CONFIG_USER_ONLY |
| tpr = cpu_get_apic_tpr(cpu->apic_state); |
| #else |
| tpr = 0; |
| #endif |
| return gdb_read_reg_cs64(env->hflags, mem_buf, tpr); |
| |
| case IDX_CTL_EFER_REG: |
| return gdb_read_reg_cs64(env->hflags, mem_buf, env->efer); |
| } |
| } |
| return 0; |
| } |
| |
| static int x86_cpu_gdb_load_seg(X86CPU *cpu, X86Seg sreg, uint8_t *mem_buf) |
| { |
| CPUX86State *env = &cpu->env; |
| uint16_t selector = ldl_p(mem_buf); |
| |
| if (selector != env->segs[sreg].selector) { |
| #if defined(CONFIG_USER_ONLY) |
| cpu_x86_load_seg(env, sreg, selector); |
| #else |
| unsigned int limit, flags; |
| target_ulong base; |
| |
| if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { |
| int dpl = (env->eflags & VM_MASK) ? 3 : 0; |
| base = selector << 4; |
| limit = 0xffff; |
| flags = DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | |
| DESC_A_MASK | (dpl << DESC_DPL_SHIFT); |
| } else { |
| if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, |
| &flags)) { |
| return 4; |
| } |
| } |
| cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags); |
| #endif |
| } |
| return 4; |
| } |
| |
| int x86_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| target_ulong tmp; |
| int len; |
| |
| /* N.B. GDB can't deal with changes in registers or sizes in the middle |
| of a session. So if we're in 32-bit mode on a 64-bit cpu, still act |
| as if we're on a 64-bit cpu. */ |
| |
| if (n < CPU_NB_REGS) { |
| if (TARGET_LONG_BITS == 64) { |
| if (env->hflags & HF_CS64_MASK) { |
| env->regs[gpr_map[n]] = ldtul_p(mem_buf); |
| } else if (n < CPU_NB_REGS32) { |
| env->regs[gpr_map[n]] = ldtul_p(mem_buf) & 0xffffffffUL; |
| } |
| return sizeof(target_ulong); |
| } else if (n < CPU_NB_REGS32) { |
| n = gpr_map32[n]; |
| env->regs[n] &= ~0xffffffffUL; |
| env->regs[n] |= (uint32_t)ldl_p(mem_buf); |
| return 4; |
| } |
| } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { |
| floatx80 *fp = (floatx80 *) &env->fpregs[n - IDX_FP_REGS]; |
| fp->low = le64_to_cpu(* (uint64_t *) mem_buf); |
| fp->high = le16_to_cpu(* (uint16_t *) (mem_buf + 8)); |
| return 10; |
| } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { |
| n -= IDX_XMM_REGS; |
| if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) { |
| env->xmm_regs[n].ZMM_Q(0) = ldq_p(mem_buf); |
| env->xmm_regs[n].ZMM_Q(1) = ldq_p(mem_buf + 8); |
| return 16; |
| } |
| } else { |
| switch (n) { |
| case IDX_IP_REG: |
| if (TARGET_LONG_BITS == 64) { |
| if (env->hflags & HF_CS64_MASK) { |
| env->eip = ldq_p(mem_buf); |
| } else { |
| env->eip = ldq_p(mem_buf) & 0xffffffffUL; |
| } |
| return 8; |
| } else { |
| env->eip &= ~0xffffffffUL; |
| env->eip |= (uint32_t)ldl_p(mem_buf); |
| return 4; |
| } |
| case IDX_FLAGS_REG: |
| env->eflags = ldl_p(mem_buf); |
| return 4; |
| |
| case IDX_SEG_REGS: |
| return x86_cpu_gdb_load_seg(cpu, R_CS, mem_buf); |
| case IDX_SEG_REGS + 1: |
| return x86_cpu_gdb_load_seg(cpu, R_SS, mem_buf); |
| case IDX_SEG_REGS + 2: |
| return x86_cpu_gdb_load_seg(cpu, R_DS, mem_buf); |
| case IDX_SEG_REGS + 3: |
| return x86_cpu_gdb_load_seg(cpu, R_ES, mem_buf); |
| case IDX_SEG_REGS + 4: |
| return x86_cpu_gdb_load_seg(cpu, R_FS, mem_buf); |
| case IDX_SEG_REGS + 5: |
| return x86_cpu_gdb_load_seg(cpu, R_GS, mem_buf); |
| case IDX_SEG_REGS + 6: |
| return gdb_write_reg_cs64(env->hflags, mem_buf, &env->segs[R_FS].base); |
| case IDX_SEG_REGS + 7: |
| return gdb_write_reg_cs64(env->hflags, mem_buf, &env->segs[R_GS].base); |
| case IDX_SEG_REGS + 8: |
| #ifdef TARGET_X86_64 |
| return gdb_write_reg_cs64(env->hflags, mem_buf, &env->kernelgsbase); |
| #endif |
| return 4; |
| |
| case IDX_FP_REGS + 8: |
| cpu_set_fpuc(env, ldl_p(mem_buf)); |
| return 4; |
| case IDX_FP_REGS + 9: |
| tmp = ldl_p(mem_buf); |
| env->fpstt = (tmp >> 11) & 7; |
| env->fpus = tmp & ~0x3800; |
| return 4; |
| case IDX_FP_REGS + 10: /* ftag */ |
| return 4; |
| case IDX_FP_REGS + 11: /* fiseg */ |
| return 4; |
| case IDX_FP_REGS + 12: /* fioff */ |
| return 4; |
| case IDX_FP_REGS + 13: /* foseg */ |
| return 4; |
| case IDX_FP_REGS + 14: /* fooff */ |
| return 4; |
| case IDX_FP_REGS + 15: /* fop */ |
| return 4; |
| |
| case IDX_MXCSR_REG: |
| cpu_set_mxcsr(env, ldl_p(mem_buf)); |
| return 4; |
| |
| case IDX_CTL_CR0_REG: |
| len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp); |
| #ifndef CONFIG_USER_ONLY |
| cpu_x86_update_cr0(env, tmp); |
| #endif |
| return len; |
| |
| case IDX_CTL_CR2_REG: |
| len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp); |
| #ifndef CONFIG_USER_ONLY |
| env->cr[2] = tmp; |
| #endif |
| return len; |
| |
| case IDX_CTL_CR3_REG: |
| len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp); |
| #ifndef CONFIG_USER_ONLY |
| cpu_x86_update_cr3(env, tmp); |
| #endif |
| return len; |
| |
| case IDX_CTL_CR4_REG: |
| len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp); |
| #ifndef CONFIG_USER_ONLY |
| cpu_x86_update_cr4(env, tmp); |
| #endif |
| return len; |
| |
| case IDX_CTL_CR8_REG: |
| len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp); |
| #ifndef CONFIG_USER_ONLY |
| cpu_set_apic_tpr(cpu->apic_state, tmp); |
| #endif |
| return len; |
| |
| case IDX_CTL_EFER_REG: |
| len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp); |
| #ifndef CONFIG_USER_ONLY |
| cpu_load_efer(env, tmp); |
| #endif |
| return len; |
| } |
| } |
| /* Unrecognised register. */ |
| return 0; |
| } |