blob: 2e08947beedec060e404cd16159358304cb217a7 [file] [log] [blame]
/*
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2019 Western Digital Corporation or its affiliates.
*
* Authors:
* Atish Patra <atish.patra@wdc.com>
*/
#ifndef __SBI_BITOPS_H__
#define __SBI_BITOPS_H__
#include <sbi/sbi_types.h>
#define BITS_PER_LONG (8 * __SIZEOF_LONG__)
#define EXTRACT_FIELD(val, which) \
(((val) & (which)) / ((which) & ~((which)-1)))
#define INSERT_FIELD(val, which, fieldval) \
(((val) & ~(which)) | ((fieldval) * ((which) & ~((which)-1))))
#define BITS_TO_LONGS(nbits) (((nbits) + BITS_PER_LONG - 1) / \
BITS_PER_LONG)
#define BIT(nr) (1UL << (nr))
#define BIT_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
#define BIT_WORD(bit) ((bit) / BITS_PER_LONG)
#define BIT_WORD_OFFSET(bit) ((bit) & (BITS_PER_LONG - 1))
#define GENMASK(h, l) \
(((~0UL) - (1UL << (l)) + 1) & (~0UL >> (BITS_PER_LONG - 1 - (h))))
/**
* sbi_ffs - find first (less-significant) set bit in a long word.
* @word: The word to search
*
* Undefined if no bit exists, so code should check against 0 first.
*/
static inline int sbi_ffs(unsigned long word)
{
int num = 0;
#if BITS_PER_LONG == 64
if ((word & 0xffffffff) == 0) {
num += 32;
word >>= 32;
}
#endif
if ((word & 0xffff) == 0) {
num += 16;
word >>= 16;
}
if ((word & 0xff) == 0) {
num += 8;
word >>= 8;
}
if ((word & 0xf) == 0) {
num += 4;
word >>= 4;
}
if ((word & 0x3) == 0) {
num += 2;
word >>= 2;
}
if ((word & 0x1) == 0)
num += 1;
return num;
}
/*
* sbi_ffz - find first zero in word.
* @word: The word to search
*
* Undefined if no zero exists, so code should check against ~0UL first.
*/
#define sbi_ffz(x) sbi_ffs(~(x))
/**
* sbi_fls - find last (most-significant) set bit in a long word
* @word: the word to search
*
* Undefined if no set bit exists, so code should check against 0 first.
*/
static inline unsigned long sbi_fls(unsigned long word)
{
int num = BITS_PER_LONG - 1;
#if BITS_PER_LONG == 64
if (!(word & (~0ul << 32))) {
num -= 32;
word <<= 32;
}
#endif
if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
num -= 16;
word <<= 16;
}
if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
num -= 8;
word <<= 8;
}
if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
num -= 4;
word <<= 4;
}
if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
num -= 2;
word <<= 2;
}
if (!(word & (~0ul << (BITS_PER_LONG-1))))
num -= 1;
return num;
}
#define for_each_set_bit(bit, addr, size) \
for ((bit) = find_first_bit((addr), (size)); \
(bit) < (size); \
(bit) = find_next_bit((addr), (size), (bit) + 1))
/* same as for_each_set_bit() but use bit as value to start with */
#define for_each_set_bit_from(bit, addr, size) \
for ((bit) = find_next_bit((addr), (size), (bit)); \
(bit) < (size); \
(bit) = find_next_bit((addr), (size), (bit) + 1))
#define for_each_clear_bit(bit, addr, size) \
for ((bit) = find_first_zero_bit((addr), (size)); \
(bit) < (size); \
(bit) = find_next_zero_bit((addr), (size), (bit) + 1))
/* same as for_each_clear_bit() but use bit as value to start with */
#define for_each_clear_bit_from(bit, addr, size) \
for ((bit) = find_next_zero_bit((addr), (size), (bit)); \
(bit) < (size); \
(bit) = find_next_zero_bit((addr), (size), (bit) + 1))
unsigned long find_first_bit(const unsigned long *addr,
unsigned long size);
unsigned long find_first_zero_bit(const unsigned long *addr,
unsigned long size);
unsigned long find_last_bit(const unsigned long *addr,
unsigned long size);
unsigned long find_next_bit(const unsigned long *addr,
unsigned long size, unsigned long offset);
unsigned long find_next_zero_bit(const unsigned long *addr,
unsigned long size,
unsigned long offset);
/**
* __set_bit - Set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* This function is non-atomic and may be reordered.
*/
static inline void __set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
*p |= mask;
}
/**
* __clear_bit - Clear a bit in memory
* @nr: the bit to clear
* @addr: the address to start counting from
*
* This function is non-atomic and may be reordered.
*/
static inline void __clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
*p &= ~mask;
}
/**
* __change_bit - Toggle a bit in memory
* @nr: the bit to change
* @addr: the address to start counting from
*
* This function is non-atomic and may be reordered.
*/
static inline void __change_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
*p ^= mask;
}
/**
* __test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
*/
static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
unsigned long old = *p;
*p = old | mask;
return (old & mask) != 0;
}
/**
* __test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
*/
static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
unsigned long old = *p;
*p = old & ~mask;
return (old & mask) != 0;
}
/**
* __test_bit - Determine whether a bit is set
* @nr: bit number to test
* @addr: Address to start counting from
*
* This operation is non-atomic and can be reordered.
*/
static inline int __test_bit(int nr, const volatile unsigned long *addr)
{
return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
}
#endif