blob: e39963f13b7de81e2afc2b8335fd92a726bf4276 [file] [log] [blame]
/*
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2023 Rivos Systems Inc.
*
*/
#include <sbi/riscv_asm.h>
#include <sbi/riscv_barrier.h>
#include <sbi/riscv_encoding.h>
#include <sbi/riscv_locks.h>
#include <sbi/sbi_domain.h>
#include <sbi/sbi_ecall.h>
#include <sbi/sbi_ecall_interface.h>
#include <sbi/sbi_error.h>
#include <sbi/sbi_fifo.h>
#include <sbi/sbi_hart.h>
#include <sbi/sbi_heap.h>
#include <sbi/sbi_hsm.h>
#include <sbi/sbi_ipi.h>
#include <sbi/sbi_list.h>
#include <sbi/sbi_platform.h>
#include <sbi/sbi_pmu.h>
#include <sbi/sbi_sse.h>
#include <sbi/sbi_scratch.h>
#include <sbi/sbi_string.h>
#include <sbi/sbi_trap.h>
#include <sbi/sbi_console.h>
#define sse_get_hart_state_ptr(__scratch) \
sbi_scratch_read_type((__scratch), void *, shs_ptr_off)
#define sse_thishart_state_ptr() \
sse_get_hart_state_ptr(sbi_scratch_thishart_ptr())
#define sse_set_hart_state_ptr(__scratch, __sse_state) \
sbi_scratch_write_type((__scratch), void *, shs_ptr_off, (__sse_state))
#define EVENT_IS_GLOBAL(__event_id) ((__event_id) & SBI_SSE_EVENT_GLOBAL_BIT)
static const uint32_t supported_events[] = {
SBI_SSE_EVENT_LOCAL_RAS,
SBI_SSE_EVENT_GLOBAL_RAS,
SBI_SSE_EVENT_LOCAL_PMU,
SBI_SSE_EVENT_LOCAL_SOFTWARE,
SBI_SSE_EVENT_GLOBAL_SOFTWARE,
};
#define EVENT_COUNT array_size(supported_events)
#define sse_event_invoke_cb(_event, _cb, ...) \
{ \
if (_event->cb_ops && _event->cb_ops->_cb) \
_event->cb_ops->_cb(_event->event_id, ##__VA_ARGS__); \
}
struct sse_entry_state {
/** entry pc */
unsigned long pc;
/** a6 register state */
unsigned long arg;
};
struct sse_interrupted_state {
/** sepc register state */
unsigned long sepc;
/** flags register state */
unsigned long flags;
/** a6 register state */
unsigned long a6;
/** a7 register state */
unsigned long a7;
};
struct sse_ipi_inject_data {
uint32_t event_id;
};
struct sbi_sse_event_attrs {
unsigned long status;
unsigned long prio;
unsigned long config;
unsigned long hartid;
struct sse_entry_state entry;
struct sse_interrupted_state interrupted;
};
/* Make sure all attributes are packed for direct memcpy in ATTR_READ */
#define assert_field_offset(field, attr_offset) \
_Static_assert( \
((offsetof(struct sbi_sse_event_attrs, field)) / \
sizeof(unsigned long)) == attr_offset, \
"field " #field \
" from struct sbi_sse_event_attrs invalid offset, expected " #attr_offset)
assert_field_offset(status, SBI_SSE_ATTR_STATUS);
assert_field_offset(prio, SBI_SSE_ATTR_PRIO);
assert_field_offset(config, SBI_SSE_ATTR_CONFIG);
assert_field_offset(hartid, SBI_SSE_ATTR_PREFERRED_HART);
assert_field_offset(entry.pc, SBI_SSE_ATTR_ENTRY_PC);
assert_field_offset(entry.arg, SBI_SSE_ATTR_ENTRY_ARG);
assert_field_offset(interrupted.sepc, SBI_SSE_ATTR_INTERRUPTED_SEPC);
assert_field_offset(interrupted.flags, SBI_SSE_ATTR_INTERRUPTED_FLAGS);
assert_field_offset(interrupted.a6, SBI_SSE_ATTR_INTERRUPTED_A6);
assert_field_offset(interrupted.a7, SBI_SSE_ATTR_INTERRUPTED_A7);
struct sbi_sse_event {
struct sbi_sse_event_attrs attrs;
uint32_t event_id;
const struct sbi_sse_cb_ops *cb_ops;
struct sbi_dlist node;
};
/** Per-hart state */
struct sse_hart_state {
/* Priority sorted list of enabled events (global and local in >=
* ENABLED state). This list is protected by the enabled_event_lock.
*
* Global events can also be inserted in this list. Since these events
* can be accessed by all harts, we actually need to lock independently
* (see sse_global_event).
*
* Local events do not actually need to be locked since, we do
* not have preemption and there are solely accessed by the current
* hart. So when inserting a local event in this list, we just need to
* lock the list at insertion/removal time.
*
* When an event is in a state >= ENABLED, then it is inserted in the
* this enabled_event_list and thus can only be removed from this
* list upon disable ecall or on complete with ONESHOT flag.
*/
struct sbi_dlist enabled_event_list;
/**
* Lock that protects enabled_event_list
*/
spinlock_t enabled_event_lock;
/**
* List of local events allocated at boot time.
*/
struct sbi_sse_event *local_events;
};
/**
* Global events are accessible by all harts
*/
struct sse_global_event {
/**
* global event struct
*/
struct sbi_sse_event event;
/**
* Global event lock protecting access from multiple harts from ecall to
* the event.
*/
spinlock_t lock;
};
static unsigned int local_event_count;
static unsigned int global_event_count;
static struct sse_global_event *global_events;
static unsigned long sse_inject_fifo_off;
static unsigned long sse_inject_fifo_mem_off;
/* Offset of pointer to SSE HART state in scratch space */
static unsigned long shs_ptr_off;
static u32 sse_ipi_inject_event = SBI_IPI_EVENT_MAX;
static int sse_ipi_inject_send(unsigned long hartid, uint32_t event_id);
static unsigned long sse_event_state(struct sbi_sse_event *e)
{
return e->attrs.status & SBI_SSE_ATTR_STATUS_STATE_MASK;
}
static unsigned long sse_event_pending(struct sbi_sse_event *e)
{
return !!(e->attrs.status & BIT(SBI_SSE_ATTR_STATUS_PENDING_OFFSET));
}
static bool sse_event_is_global(struct sbi_sse_event *e)
{
return EVENT_IS_GLOBAL(e->event_id);
}
static bool sse_event_is_local(struct sbi_sse_event *e)
{
return !sse_event_is_global(e);
}
/**
* If event is global, must be called under global event lock
*/
static struct sse_hart_state *sse_get_hart_state(struct sbi_sse_event *e)
{
struct sbi_scratch *s = sbi_hartid_to_scratch(e->attrs.hartid);
return sse_get_hart_state_ptr(s);
}
static struct sse_global_event *sse_get_global_event(struct sbi_sse_event *e)
{
return container_of(e, struct sse_global_event, event);
}
/**
* If event is global, must be called under enabled event lock
*/
static void sse_enabled_event_lock(struct sbi_sse_event *e)
{
struct sse_hart_state *shs;
shs = sse_get_hart_state(e);
spin_lock(&shs->enabled_event_lock);
}
/**
* If event is global, must be called under enabled event lock
*/
static void sse_enabled_event_unlock(struct sbi_sse_event *e)
{
struct sse_hart_state *shs;
shs = sse_get_hart_state(e);
spin_unlock(&shs->enabled_event_lock);
}
static void sse_event_set_state(struct sbi_sse_event *e,
unsigned long new_state)
{
e->attrs.status &= ~SBI_SSE_ATTR_STATUS_STATE_MASK;
e->attrs.status |= new_state;
}
static struct sbi_sse_event *sse_event_get(uint32_t event_id)
{
unsigned int i;
struct sbi_sse_event *e;
struct sse_hart_state *shs;
if (EVENT_IS_GLOBAL(event_id)) {
for (i = 0; i < global_event_count; i++) {
e = &global_events[i].event;
if (e->event_id == event_id) {
spin_lock(&global_events[i].lock);
return e;
}
}
} else {
shs = sse_thishart_state_ptr();
for (i = 0; i < local_event_count; i++) {
e = &shs->local_events[i];
if (e->event_id == event_id)
return e;
}
}
return NULL;
}
static void sse_event_put(struct sbi_sse_event *e)
{
struct sse_global_event *ge;
if (sse_event_is_local(e))
return;
ge = sse_get_global_event(e);
spin_unlock(&ge->lock);
}
static void sse_event_remove_from_list(struct sbi_sse_event *e)
{
sbi_list_del(&e->node);
}
/**
* Must be called under owner hart lock
*/
static void sse_event_add_to_list(struct sbi_sse_event *e)
{
struct sse_hart_state *state = sse_get_hart_state(e);
struct sbi_sse_event *tmp;
sbi_list_for_each_entry(tmp, &state->enabled_event_list, node) {
if (e->attrs.prio < tmp->attrs.prio)
break;
if (e->attrs.prio == tmp->attrs.prio &&
e->event_id < tmp->event_id)
break;
}
sbi_list_add_tail(&e->node, &tmp->node);
}
/**
* Must be called under owner hart lock
*/
static int sse_event_disable(struct sbi_sse_event *e)
{
if (sse_event_state(e) != SBI_SSE_STATE_ENABLED)
return SBI_EINVALID_STATE;
sse_event_invoke_cb(e, disable_cb);
sse_event_remove_from_list(e);
sse_event_set_state(e, SBI_SSE_STATE_REGISTERED);
return SBI_OK;
}
static int sse_event_set_hart_id_check(struct sbi_sse_event *e,
unsigned long new_hartid)
{
int hstate;
unsigned int hartid = (uint32_t)new_hartid;
struct sbi_domain *hd = sbi_domain_thishart_ptr();
if (!sse_event_is_global(e))
return SBI_EBAD_RANGE;
if (!sbi_domain_is_assigned_hart(hd, new_hartid))
return SBI_EINVAL;
hstate = sbi_hsm_hart_get_state(hd, hartid);
if (hstate != SBI_HSM_STATE_STARTED)
return SBI_EINVAL;
return SBI_OK;
}
static int sse_event_set_attr_check(struct sbi_sse_event *e, uint32_t attr_id,
unsigned long val)
{
switch (attr_id) {
case SBI_SSE_ATTR_CONFIG:
if (sse_event_state(e) >= SBI_SSE_STATE_ENABLED)
return SBI_EINVALID_STATE;
if (val & ~SBI_SSE_ATTR_CONFIG_ONESHOT)
return SBI_EINVAL;
return SBI_OK;
case SBI_SSE_ATTR_PRIO:
if (sse_event_state(e) >= SBI_SSE_STATE_ENABLED)
return SBI_EINVALID_STATE;
#if __riscv_xlen > 32
if (val != (uint32_t)val)
return SBI_EINVAL;
#endif
return SBI_OK;
case SBI_SSE_ATTR_PREFERRED_HART:
if (sse_event_state(e) >= SBI_SSE_STATE_ENABLED)
return SBI_EINVALID_STATE;
return sse_event_set_hart_id_check(e, val);
case SBI_SSE_ATTR_INTERRUPTED_FLAGS:
if (val & ~(SBI_SSE_ATTR_INTERRUPTED_FLAGS_STATUS_SPP |
SBI_SSE_ATTR_INTERRUPTED_FLAGS_STATUS_SPIE |
SBI_SSE_ATTR_INTERRUPTED_FLAGS_HSTATUS_SPV |
SBI_SSE_ATTR_INTERRUPTED_FLAGS_HSTATUS_SPVP))
return SBI_EINVAL;
__attribute__((__fallthrough__));
case SBI_SSE_ATTR_INTERRUPTED_SEPC:
case SBI_SSE_ATTR_INTERRUPTED_A6:
case SBI_SSE_ATTR_INTERRUPTED_A7:
if (sse_event_state(e) != SBI_SSE_STATE_RUNNING)
return SBI_EINVALID_STATE;
if (current_hartid() != e->attrs.hartid)
return SBI_EINVAL;
return SBI_OK;
default:
return SBI_EBAD_RANGE;
}
}
static void sse_event_set_attr(struct sbi_sse_event *e, uint32_t attr_id,
unsigned long val)
{
switch (attr_id) {
case SBI_SSE_ATTR_CONFIG:
e->attrs.config = val;
break;
case SBI_SSE_ATTR_PRIO:
e->attrs.prio = (uint32_t)val;
break;
case SBI_SSE_ATTR_PREFERRED_HART:
e->attrs.hartid = val;
sse_event_invoke_cb(e, set_hartid_cb, val);
break;
case SBI_SSE_ATTR_INTERRUPTED_SEPC:
e->attrs.interrupted.sepc = val;
break;
case SBI_SSE_ATTR_INTERRUPTED_FLAGS:
e->attrs.interrupted.flags = val;
break;
case SBI_SSE_ATTR_INTERRUPTED_A6:
e->attrs.interrupted.a6 = val;
break;
case SBI_SSE_ATTR_INTERRUPTED_A7:
e->attrs.interrupted.a7 = val;
break;
}
}
static int sse_event_register(struct sbi_sse_event *e,
unsigned long handler_entry_pc,
unsigned long handler_entry_arg)
{
if (sse_event_state(e) != SBI_SSE_STATE_UNUSED)
return SBI_EINVALID_STATE;
e->attrs.entry.pc = handler_entry_pc;
e->attrs.entry.arg = handler_entry_arg;
sse_event_set_state(e, SBI_SSE_STATE_REGISTERED);
sse_event_invoke_cb(e, register_cb);
return 0;
}
static int sse_event_unregister(struct sbi_sse_event *e)
{
if (sse_event_state(e) != SBI_SSE_STATE_REGISTERED)
return SBI_EINVALID_STATE;
sse_event_invoke_cb(e, unregister_cb);
sse_event_set_state(e, SBI_SSE_STATE_UNUSED);
return 0;
}
static unsigned long sse_interrupted_flags(unsigned long mstatus)
{
unsigned long hstatus, flags = 0;
if (mstatus & (MSTATUS_SPIE))
flags |= SBI_SSE_ATTR_INTERRUPTED_FLAGS_STATUS_SPIE;
if (mstatus & (MSTATUS_SPP))
flags |= SBI_SSE_ATTR_INTERRUPTED_FLAGS_STATUS_SPP;
if (misa_extension('H')) {
hstatus = csr_read(CSR_HSTATUS);
if (hstatus & HSTATUS_SPV)
flags |= SBI_SSE_ATTR_INTERRUPTED_FLAGS_HSTATUS_SPV;
if (hstatus & HSTATUS_SPVP)
flags |= SBI_SSE_ATTR_INTERRUPTED_FLAGS_HSTATUS_SPVP;
}
return flags;
}
static void sse_event_inject(struct sbi_sse_event *e,
struct sbi_trap_regs *regs)
{
struct sse_interrupted_state *i_ctx = &e->attrs.interrupted;
sse_event_set_state(e, SBI_SSE_STATE_RUNNING);
e->attrs.status = ~BIT(SBI_SSE_ATTR_STATUS_PENDING_OFFSET);
i_ctx->a6 = regs->a6;
i_ctx->a7 = regs->a7;
i_ctx->flags = sse_interrupted_flags(regs->mstatus);
i_ctx->sepc = csr_read(CSR_SEPC);
regs->mstatus &= ~(MSTATUS_SPP | SSTATUS_SPIE);
if (regs->mstatus & MSTATUS_MPP)
regs->mstatus |= MSTATUS_SPP;
if (regs->mstatus & MSTATUS_SIE)
regs->mstatus |= MSTATUS_SPIE;
if (misa_extension('H')) {
unsigned long hstatus = csr_read(CSR_HSTATUS);
#if __riscv_xlen == 64
if (regs->mstatus & MSTATUS_MPV)
#elif __riscv_xlen == 32
if (regs->mstatusH & MSTATUSH_MPV)
#else
#error "Unexpected __riscv_xlen"
#endif
hstatus |= HSTATUS_SPV;
hstatus &= ~HSTATUS_SPVP;
if (hstatus & HSTATUS_SPV && regs->mstatus & SSTATUS_SPP)
hstatus |= HSTATUS_SPVP;
csr_write(CSR_HSTATUS, hstatus);
}
csr_write(CSR_SEPC, regs->mepc);
/* Setup entry context */
regs->a6 = e->attrs.entry.arg;
regs->a7 = current_hartid();
regs->mepc = e->attrs.entry.pc;
/* Return to S-mode with virtualization disabled */
regs->mstatus &= ~(MSTATUS_MPP | MSTATUS_SIE);
regs->mstatus |= (PRV_S << MSTATUS_MPP_SHIFT);
#if __riscv_xlen == 64
regs->mstatus &= ~MSTATUS_MPV;
#elif __riscv_xlen == 32
regs->mstatusH &= ~MSTATUSH_MPV;
#else
#error "Unexpected __riscv_xlen"
#endif
}
static void sse_event_resume(struct sbi_sse_event *e,
struct sbi_trap_regs *regs)
{
struct sse_interrupted_state *i_ctx = &e->attrs.interrupted;
regs->mepc = csr_read(CSR_SEPC);
regs->mstatus &= ~MSTATUS_MPP;
if (regs->mstatus & MSTATUS_SPP)
regs->mstatus |= (PRV_S << MSTATUS_MPP_SHIFT);
if (misa_extension('H')) {
unsigned long hstatus = csr_read(CSR_HSTATUS);
#if __riscv_xlen == 64
regs->mstatus &= ~MSTATUS_MPV;
if (hstatus & HSTATUS_SPV)
regs->mstatus |= MSTATUS_MPV;
#elif __riscv_xlen == 32
regs->mstatusH &= ~MSTATUSH_MPV;
if (hstatus & HSTATUS_SPV)
regs->mstatusH |= MSTATUSH_MPV;
#else
#error "Unexpected __riscv_xlen"
#endif
hstatus &= ~(HSTATUS_SPV | HSTATUS_SPVP);
if (i_ctx->flags & SBI_SSE_ATTR_INTERRUPTED_FLAGS_HSTATUS_SPV)
hstatus |= HSTATUS_SPV;
if (i_ctx->flags & SBI_SSE_ATTR_INTERRUPTED_FLAGS_HSTATUS_SPVP)
hstatus |= HSTATUS_SPVP;
csr_write(CSR_HSTATUS, hstatus);
}
regs->mstatus &= ~MSTATUS_SIE;
if (regs->mstatus & MSTATUS_SPIE)
regs->mstatus |= MSTATUS_SIE;
regs->mstatus &= ~MSTATUS_SPIE;
if (i_ctx->flags & SBI_SSE_ATTR_INTERRUPTED_FLAGS_STATUS_SPIE)
regs->mstatus |= MSTATUS_SPIE;
regs->mstatus &= ~MSTATUS_SPP;
if (i_ctx->flags & SBI_SSE_ATTR_INTERRUPTED_FLAGS_STATUS_SPP)
regs->mstatus |= MSTATUS_SPP;
regs->a7 = i_ctx->a7;
regs->a6 = i_ctx->a6;
csr_write(CSR_SEPC, i_ctx->sepc);
}
static bool sse_event_is_ready(struct sbi_sse_event *e)
{
if (!sse_event_pending(e) ||
sse_event_state(e) != SBI_SSE_STATE_ENABLED ||
e->attrs.hartid != current_hartid()) {
return false;
}
return true;
}
static bool sse_event_check_inject(struct sbi_sse_event *e,
struct sbi_trap_regs *regs)
{
/*
* List of event is ordered by priority, stop at first running
* event since all other events after this one are of lower
* priority. This means an event of higher priority is already
* running.
*/
if (sse_event_state(e) == SBI_SSE_STATE_RUNNING) {
return true;
}
if (sse_event_is_ready(e)) {
sse_event_inject(e, regs);
return true;
}
return false;
}
/* Return true if an event has been injected, false otherwise */
void sbi_sse_process_pending_events(struct sbi_trap_regs *regs)
{
bool ret;
struct sbi_sse_event *e;
struct sse_hart_state *state = sse_thishart_state_ptr();
spin_lock(&state->enabled_event_lock);
sbi_list_for_each_entry(e, &state->enabled_event_list, node) {
ret = sse_event_check_inject(e, regs);
if (ret)
goto out;
}
out:
spin_unlock(&state->enabled_event_lock);
}
static int sse_event_set_pending(struct sbi_sse_event *e)
{
if (sse_event_state(e) != SBI_SSE_STATE_RUNNING &&
sse_event_state(e) != SBI_SSE_STATE_ENABLED)
return SBI_EINVALID_STATE;
e->attrs.status |= BIT(SBI_SSE_ATTR_STATUS_PENDING_OFFSET);
return SBI_OK;
}
static void sse_ipi_inject_process(struct sbi_scratch *scratch)
{
struct sbi_sse_event *e;
struct sse_ipi_inject_data evt;
struct sbi_fifo *sse_inject_fifo_r =
sbi_scratch_offset_ptr(scratch, sse_inject_fifo_off);
/* Mark all queued events as pending */
while (!sbi_fifo_dequeue(sse_inject_fifo_r, &evt)) {
e = sse_event_get(evt.event_id);
if (!e)
continue;
sse_event_set_pending(e);
sse_event_put(e);
}
}
static struct sbi_ipi_event_ops sse_ipi_inject_ops = {
.name = "IPI_SSE_INJECT",
.process = sse_ipi_inject_process,
};
static int sse_ipi_inject_send(unsigned long hartid, uint32_t event_id)
{
int ret;
struct sbi_scratch *remote_scratch = NULL;
struct sse_ipi_inject_data evt = {event_id};
struct sbi_fifo *sse_inject_fifo_r;
remote_scratch = sbi_hartid_to_scratch(hartid);
if (!remote_scratch)
return SBI_EINVAL;
sse_inject_fifo_r =
sbi_scratch_offset_ptr(remote_scratch, sse_inject_fifo_off);
ret = sbi_fifo_enqueue(sse_inject_fifo_r, &evt);
if (ret)
return SBI_EFAIL;
ret = sbi_ipi_send_many(1, hartid, sse_ipi_inject_event, NULL);
if (ret)
return SBI_EFAIL;
return SBI_OK;
}
static int sse_inject_event(uint32_t event_id, unsigned long hartid,
struct sbi_ecall_return *out)
{
int ret;
struct sbi_sse_event *e;
e = sse_event_get(event_id);
if (!e)
return SBI_EINVAL;
/* In case of global event, provided hart_id is ignored */
if (sse_event_is_global(e))
hartid = e->attrs.hartid;
/* Event is for another hart, send it through IPI */
if (hartid != current_hartid()) {
sse_event_put(e);
return sse_ipi_inject_send(hartid, event_id);
}
ret = sse_event_set_pending(e);
sse_event_put(e);
if (ret)
return ret;
return SBI_OK;
}
/**
* Must be called under owner hart lock
*/
static int sse_event_enable(struct sbi_sse_event *e)
{
if (sse_event_state(e) != SBI_SSE_STATE_REGISTERED)
return SBI_EINVALID_STATE;
sse_event_set_state(e, SBI_SSE_STATE_ENABLED);
sse_event_add_to_list(e);
sse_event_invoke_cb(e, enable_cb);
if (sse_event_is_global(e) && sse_event_pending(e))
sbi_ipi_send_many(1, e->attrs.hartid, sse_ipi_inject_event,
NULL);
return SBI_OK;
}
static int sse_event_complete(struct sbi_sse_event *e,
struct sbi_trap_regs *regs,
struct sbi_ecall_return *out)
{
if (sse_event_state(e) != SBI_SSE_STATE_RUNNING)
return SBI_EINVALID_STATE;
if (e->attrs.hartid != current_hartid())
return SBI_EINVAL;
sse_event_set_state(e, SBI_SSE_STATE_ENABLED);
if (e->attrs.config & SBI_SSE_ATTR_CONFIG_ONESHOT)
sse_event_disable(e);
sse_event_invoke_cb(e, complete_cb);
sse_event_resume(e, regs);
out->skip_regs_update = true;
return SBI_OK;
}
int sbi_sse_complete(struct sbi_trap_regs *regs, struct sbi_ecall_return *out)
{
int ret = SBI_OK;
struct sbi_sse_event *tmp;
struct sse_hart_state *state = sse_thishart_state_ptr();
spin_lock(&state->enabled_event_lock);
sbi_list_for_each_entry(tmp, &state->enabled_event_list, node) {
/*
* List of event is ordered by priority, first one running is
* the one that needs to be completed
*/
if (sse_event_state(tmp) == SBI_SSE_STATE_RUNNING) {
ret = sse_event_complete(tmp, regs, out);
break;
}
}
spin_unlock(&state->enabled_event_lock);
return ret;
}
int sbi_sse_enable(uint32_t event_id)
{
int ret;
struct sbi_sse_event *e;
e = sse_event_get(event_id);
if (!e)
return SBI_EINVAL;
sse_enabled_event_lock(e);
ret = sse_event_enable(e);
sse_enabled_event_unlock(e);
sse_event_put(e);
return ret;
}
int sbi_sse_disable(uint32_t event_id)
{
int ret;
struct sbi_sse_event *e;
e = sse_event_get(event_id);
if (!e)
return SBI_EINVAL;
sse_enabled_event_lock(e);
ret = sse_event_disable(e);
sse_enabled_event_unlock(e);
sse_event_put(e);
return ret;
}
int sbi_sse_inject_from_ecall(uint32_t event_id, unsigned long hartid,
struct sbi_ecall_return *out)
{
if (!sbi_domain_is_assigned_hart(sbi_domain_thishart_ptr(), hartid))
return SBI_EINVAL;
return sse_inject_event(event_id, hartid, out);
}
int sbi_sse_inject_event(uint32_t event_id)
{
/* We don't really care about return value here */
struct sbi_ecall_return out;
return sse_inject_event(event_id, current_hartid(), &out);
}
int sbi_sse_set_cb_ops(uint32_t event_id, const struct sbi_sse_cb_ops *cb_ops)
{
struct sbi_sse_event *e;
if (cb_ops->set_hartid_cb && !EVENT_IS_GLOBAL(event_id))
return SBI_EINVAL;
e = sse_event_get(event_id);
if (!e)
return SBI_EINVAL;
e->cb_ops = cb_ops;
sse_event_put(e);
return SBI_OK;
}
int sbi_sse_attr_check(uint32_t base_attr_id, uint32_t attr_count,
unsigned long phys_lo, unsigned long phys_hi,
unsigned long access)
{
const unsigned align = __riscv_xlen >> 3;
uint64_t end_id = (uint64_t)base_attr_id + (attr_count - 1);
if (attr_count == 0)
return SBI_ERR_INVALID_PARAM;
if (end_id >= SBI_SSE_ATTR_MAX)
return SBI_EBAD_RANGE;
if (phys_lo & (align - 1))
return SBI_EINVALID_ADDR;
/*
* On RV32, the M-mode can only access the first 4GB of
* the physical address space because M-mode does not have
* MMU to access full 34-bit physical address space.
*
* Based on above, we simply fail if the upper 32bits of
* the physical address (i.e. a2 register) is non-zero on
* RV32.
*/
if (phys_hi)
return SBI_EINVALID_ADDR;
if (!sbi_domain_check_addr_range(sbi_domain_thishart_ptr(), phys_lo,
sizeof(unsigned long) * attr_count,
PRV_S, access))
return SBI_EINVALID_ADDR;
return SBI_OK;
}
static void copy_attrs(unsigned long *out, const unsigned long *in,
unsigned int long_count)
{
int i = 0;
/*
* sbi_memcpy() does byte-per-byte copy, using this yields long-per-long
* copy
*/
for (i = 0; i < long_count; i++)
out[i] = in[i];
}
int sbi_sse_read_attrs(uint32_t event_id, uint32_t base_attr_id,
uint32_t attr_count, unsigned long output_phys_lo,
unsigned long output_phys_hi)
{
int ret;
unsigned long *e_attrs;
struct sbi_sse_event *e;
unsigned long *attrs;
ret = sbi_sse_attr_check(base_attr_id, attr_count, output_phys_lo,
output_phys_hi, SBI_DOMAIN_WRITE);
if (ret)
return ret;
e = sse_event_get(event_id);
if (!e)
return SBI_EINVAL;
sbi_hart_map_saddr(output_phys_lo, sizeof(unsigned long) * attr_count);
/*
* Copy all attributes at once since struct sse_event_attrs is matching
* the SBI_SSE_ATTR_* attributes. READ_ATTR is used in SSE handling path
* to retrieve the value of registers when interrupted. Rather than
* doing multiple SBI calls a single one is done allowing to retrieve
* them all at once.
*/
e_attrs = (unsigned long *)&e->attrs;
attrs = (unsigned long *)output_phys_lo;
copy_attrs(attrs, &e_attrs[base_attr_id], attr_count);
sbi_hart_unmap_saddr();
sse_event_put(e);
return SBI_OK;
}
static int sse_write_attrs(struct sbi_sse_event *e, uint32_t base_attr_id,
uint32_t attr_count, unsigned long input_phys)
{
int ret = 0;
unsigned long attr = 0, val;
uint32_t id, end_id = base_attr_id + attr_count;
unsigned long *attrs = (unsigned long *)input_phys;
sbi_hart_map_saddr(input_phys, sizeof(unsigned long) * attr_count);
for (id = base_attr_id; id < end_id; id++) {
val = attrs[attr++];
ret = sse_event_set_attr_check(e, id, val);
if (ret)
goto out;
}
attr = 0;
for (id = base_attr_id; id < end_id; id++) {
val = attrs[attr++];
sse_event_set_attr(e, id, val);
}
out:
sbi_hart_unmap_saddr();
return ret;
}
int sbi_sse_write_attrs(uint32_t event_id, uint32_t base_attr_id,
uint32_t attr_count, unsigned long input_phys_lo,
unsigned long input_phys_hi)
{
int ret = 0;
struct sbi_sse_event *e;
ret = sbi_sse_attr_check(base_attr_id, attr_count, input_phys_lo,
input_phys_hi, SBI_DOMAIN_READ);
if (ret)
return ret;
e = sse_event_get(event_id);
if (!e)
return SBI_EINVAL;
ret = sse_write_attrs(e, base_attr_id, attr_count, input_phys_lo);
sse_event_put(e);
return ret;
}
int sbi_sse_register(uint32_t event_id, unsigned long handler_entry_pc,
unsigned long handler_entry_arg)
{
int ret;
struct sbi_sse_event *e;
if (handler_entry_pc & 0x1)
return SBI_EINVAL;
if (!sbi_domain_check_addr_range(sbi_domain_thishart_ptr(),
handler_entry_pc,
sizeof(unsigned long), PRV_S,
SBI_DOMAIN_EXECUTE))
return SBI_EINVALID_ADDR;
e = sse_event_get(event_id);
if (!e)
return SBI_EINVAL;
ret = sse_event_register(e, handler_entry_pc, handler_entry_arg);
sse_event_put(e);
return ret;
}
int sbi_sse_unregister(uint32_t event_id)
{
int ret;
struct sbi_sse_event *e;
e = sse_event_get(event_id);
if (!e)
return SBI_EINVAL;
ret = sse_event_unregister(e);
sse_event_put(e);
return ret;
}
static void sse_event_init(struct sbi_sse_event *e, uint32_t event_id)
{
e->event_id = event_id;
e->attrs.hartid = current_hartid();
/* Declare all events as injectable */
e->attrs.status |= BIT(SBI_SSE_ATTR_STATUS_INJECT_OFFSET);
}
static void sse_event_count_init()
{
unsigned int i;
for (i = 0; i < EVENT_COUNT; i++) {
if (EVENT_IS_GLOBAL(supported_events[i]))
global_event_count++;
else
local_event_count++;
}
}
static int sse_global_init()
{
struct sbi_sse_event *e;
unsigned int i, ev = 0;
global_events = sbi_zalloc(sizeof(*global_events) * global_event_count);
if (!global_events)
return SBI_ENOMEM;
for (i = 0; i < EVENT_COUNT; i++) {
if (!EVENT_IS_GLOBAL(supported_events[i]))
continue;
e = &global_events[ev].event;
sse_event_init(e, supported_events[i]);
SPIN_LOCK_INIT(global_events[ev].lock);
ev++;
}
return 0;
}
static void sse_local_init(struct sse_hart_state *shs)
{
unsigned int i, ev = 0;
SBI_INIT_LIST_HEAD(&shs->enabled_event_list);
SPIN_LOCK_INIT(shs->enabled_event_lock);
for (i = 0; i < EVENT_COUNT; i++) {
if (EVENT_IS_GLOBAL(supported_events[i]))
continue;
sse_event_init(&shs->local_events[ev++], supported_events[i]);
}
}
int sbi_sse_init(struct sbi_scratch *scratch, bool cold_boot)
{
int ret;
void *sse_inject_mem;
struct sse_hart_state *shs;
struct sbi_fifo *sse_inject_q;
if (cold_boot) {
sse_event_count_init();
ret = sse_global_init();
if (ret)
return ret;
shs_ptr_off = sbi_scratch_alloc_offset(sizeof(void *));
if (!shs_ptr_off)
return SBI_ENOMEM;
sse_inject_fifo_off =
sbi_scratch_alloc_offset(sizeof(*sse_inject_q));
if (!sse_inject_fifo_off) {
sbi_scratch_free_offset(shs_ptr_off);
return SBI_ENOMEM;
}
sse_inject_fifo_mem_off = sbi_scratch_alloc_offset(
EVENT_COUNT * sizeof(struct sse_ipi_inject_data));
if (!sse_inject_fifo_mem_off) {
sbi_scratch_free_offset(sse_inject_fifo_off);
sbi_scratch_free_offset(shs_ptr_off);
return SBI_ENOMEM;
}
ret = sbi_ipi_event_create(&sse_ipi_inject_ops);
if (ret < 0) {
sbi_scratch_free_offset(shs_ptr_off);
return ret;
}
sse_ipi_inject_event = ret;
}
shs = sse_get_hart_state_ptr(scratch);
if (!shs) {
/* Allocate per hart state and local events at once */
shs = sbi_zalloc(sizeof(*shs) + sizeof(struct sbi_sse_event) *
local_event_count);
if (!shs)
return SBI_ENOMEM;
shs->local_events = (struct sbi_sse_event *)(shs + 1);
sse_set_hart_state_ptr(scratch, shs);
}
sse_local_init(shs);
sse_inject_q = sbi_scratch_offset_ptr(scratch, sse_inject_fifo_off);
sse_inject_mem =
sbi_scratch_offset_ptr(scratch, sse_inject_fifo_mem_off);
sbi_fifo_init(sse_inject_q, sse_inject_mem, EVENT_COUNT,
sizeof(struct sse_ipi_inject_data));
return 0;
}
void sbi_sse_exit(struct sbi_scratch *scratch)
{
int i;
struct sbi_sse_event *e;
for (i = 0; i < EVENT_COUNT; i++) {
e = sse_event_get(supported_events[i]);
if (!e)
continue;
if (e->attrs.hartid != current_hartid())
goto skip;
if (sse_event_state(e) > SBI_SSE_STATE_REGISTERED) {
sbi_printf("Event %d in invalid state at exit", i);
sse_event_set_state(e, SBI_SSE_STATE_UNUSED);
}
skip:
sse_event_put(e);
}
}