blob: 974b1b883eb4ff63448e65d67d0c2fb51b597e47 [file] [log] [blame]
// SPDX-License-Identifier: BSD-2-Clause
/*
* fdt_fixup.c - Flat Device Tree parsing helper routines
* Implement helper routines to parse FDT nodes on top of
* libfdt for OpenSBI usage
*
* Copyright (C) 2020 Bin Meng <bmeng.cn@gmail.com>
*/
#include <libfdt.h>
#include <sbi/sbi_console.h>
#include <sbi/sbi_domain.h>
#include <sbi/sbi_math.h>
#include <sbi/sbi_hart.h>
#include <sbi/sbi_scratch.h>
#include <sbi/sbi_string.h>
#include <sbi/sbi_error.h>
#include <sbi_utils/fdt/fdt_fixup.h>
#include <sbi_utils/fdt/fdt_pmu.h>
#include <sbi_utils/fdt/fdt_helper.h>
int fdt_add_cpu_idle_states(void *fdt, const struct sbi_cpu_idle_state *state)
{
int cpu_node, cpus_node, err, idle_states_node;
uint32_t count, phandle;
err = fdt_open_into(fdt, fdt, fdt_totalsize(fdt) + 1024);
if (err < 0)
return err;
err = fdt_find_max_phandle(fdt, &phandle);
phandle++;
if (err < 0)
return err;
cpus_node = fdt_path_offset(fdt, "/cpus");
if (cpus_node < 0)
return cpus_node;
/* Do nothing if the idle-states node already exists. */
idle_states_node = fdt_subnode_offset(fdt, cpus_node, "idle-states");
if (idle_states_node >= 0)
return 0;
/* Create the idle-states node and its child nodes. */
idle_states_node = fdt_add_subnode(fdt, cpus_node, "idle-states");
if (idle_states_node < 0)
return idle_states_node;
for (count = 0; state->name; count++, phandle++, state++) {
int idle_state_node;
idle_state_node = fdt_add_subnode(fdt, idle_states_node,
state->name);
if (idle_state_node < 0)
return idle_state_node;
fdt_setprop_string(fdt, idle_state_node, "compatible",
"riscv,idle-state");
fdt_setprop_u32(fdt, idle_state_node,
"riscv,sbi-suspend-param",
state->suspend_param);
if (state->local_timer_stop)
fdt_setprop_empty(fdt, idle_state_node,
"local-timer-stop");
fdt_setprop_u32(fdt, idle_state_node, "entry-latency-us",
state->entry_latency_us);
fdt_setprop_u32(fdt, idle_state_node, "exit-latency-us",
state->exit_latency_us);
fdt_setprop_u32(fdt, idle_state_node, "min-residency-us",
state->min_residency_us);
if (state->wakeup_latency_us)
fdt_setprop_u32(fdt, idle_state_node,
"wakeup-latency-us",
state->wakeup_latency_us);
fdt_setprop_u32(fdt, idle_state_node, "phandle", phandle);
}
if (count == 0)
return 0;
/* Link each cpu node to the idle state nodes. */
fdt_for_each_subnode(cpu_node, fdt, cpus_node) {
const char *device_type;
fdt32_t *value;
/* Only process child nodes with device_type = "cpu". */
device_type = fdt_getprop(fdt, cpu_node, "device_type", NULL);
if (!device_type || strcmp(device_type, "cpu"))
continue;
/* Allocate space for the list of phandles. */
err = fdt_setprop_placeholder(fdt, cpu_node, "cpu-idle-states",
count * sizeof(phandle),
(void **)&value);
if (err < 0)
return err;
/* Fill in the phandles of the idle state nodes. */
for (uint32_t i = 0; i < count; ++i)
value[i] = cpu_to_fdt32(phandle - count + i);
}
return 0;
}
void fdt_cpu_fixup(void *fdt)
{
struct sbi_domain *dom = sbi_domain_thishart_ptr();
int err, cpu_offset, cpus_offset, len;
const char *mmu_type;
u32 hartid;
err = fdt_open_into(fdt, fdt, fdt_totalsize(fdt) + 32);
if (err < 0)
return;
cpus_offset = fdt_path_offset(fdt, "/cpus");
if (cpus_offset < 0)
return;
fdt_for_each_subnode(cpu_offset, fdt, cpus_offset) {
err = fdt_parse_hart_id(fdt, cpu_offset, &hartid);
if (err)
continue;
if (!fdt_node_is_enabled(fdt, cpu_offset))
continue;
/*
* Disable a HART DT node if one of the following is true:
* 1. The HART is not assigned to the current domain
* 2. MMU is not available for the HART
*/
mmu_type = fdt_getprop(fdt, cpu_offset, "mmu-type", &len);
if (!sbi_domain_is_assigned_hart(dom, hartid) ||
!mmu_type || !len)
fdt_setprop_string(fdt, cpu_offset, "status",
"disabled");
}
}
static void fdt_domain_based_fixup_one(void *fdt, int nodeoff)
{
int rc;
uint64_t reg_addr, reg_size;
struct sbi_domain *dom = sbi_domain_thishart_ptr();
rc = fdt_get_node_addr_size(fdt, nodeoff, 0, &reg_addr, &reg_size);
if (rc < 0 || !reg_addr || !reg_size)
return;
if (!sbi_domain_check_addr(dom, reg_addr, dom->next_mode,
SBI_DOMAIN_READ | SBI_DOMAIN_WRITE)) {
rc = fdt_open_into(fdt, fdt, fdt_totalsize(fdt) + 32);
if (rc < 0)
return;
fdt_setprop_string(fdt, nodeoff, "status", "disabled");
}
}
static void fdt_fixup_node(void *fdt, const char *compatible)
{
int noff = 0;
while ((noff = fdt_node_offset_by_compatible(fdt, noff,
compatible)) >= 0)
fdt_domain_based_fixup_one(fdt, noff);
}
void fdt_aplic_fixup(void *fdt)
{
fdt_fixup_node(fdt, "riscv,aplic");
}
void fdt_imsic_fixup(void *fdt)
{
fdt_fixup_node(fdt, "riscv,imsics");
}
void fdt_plic_fixup(void *fdt)
{
u32 *cells;
int i, cells_count;
int plic_off;
plic_off = fdt_node_offset_by_compatible(fdt, 0, "sifive,plic-1.0.0");
if (plic_off < 0) {
plic_off = fdt_node_offset_by_compatible(fdt, 0, "riscv,plic0");
if (plic_off < 0)
return;
}
cells = (u32 *)fdt_getprop(fdt, plic_off,
"interrupts-extended", &cells_count);
if (!cells)
return;
cells_count = cells_count / sizeof(u32);
if (!cells_count)
return;
for (i = 0; i < (cells_count / 2); i++) {
if (fdt32_to_cpu(cells[2 * i + 1]) == IRQ_M_EXT)
cells[2 * i + 1] = cpu_to_fdt32(0xffffffff);
}
}
static int fdt_resv_memory_update_node(void *fdt, unsigned long addr,
unsigned long size, int index,
int parent)
{
int na = fdt_address_cells(fdt, 0);
int ns = fdt_size_cells(fdt, 0);
fdt32_t addr_high, addr_low;
fdt32_t size_high, size_low;
int subnode, err;
fdt32_t reg[4];
fdt32_t *val;
char name[32];
addr_high = (u64)addr >> 32;
addr_low = addr;
size_high = (u64)size >> 32;
size_low = size;
if (na > 1 && addr_high)
sbi_snprintf(name, sizeof(name),
"mmode_resv%d@%x,%x", index,
addr_high, addr_low);
else
sbi_snprintf(name, sizeof(name),
"mmode_resv%d@%x", index,
addr_low);
subnode = fdt_add_subnode(fdt, parent, name);
if (subnode < 0)
return subnode;
/*
* Tell operating system not to create a virtual
* mapping of the region as part of its standard
* mapping of system memory.
*/
err = fdt_setprop_empty(fdt, subnode, "no-map");
if (err < 0)
return err;
/* encode the <reg> property value */
val = reg;
if (na > 1)
*val++ = cpu_to_fdt32(addr_high);
*val++ = cpu_to_fdt32(addr_low);
if (ns > 1)
*val++ = cpu_to_fdt32(size_high);
*val++ = cpu_to_fdt32(size_low);
err = fdt_setprop(fdt, subnode, "reg", reg,
(na + ns) * sizeof(fdt32_t));
if (err < 0)
return err;
return 0;
}
/**
* We use PMP to protect OpenSBI firmware to safe-guard it from buggy S-mode
* software, see pmp_init() in lib/sbi/sbi_hart.c. The protected memory region
* information needs to be conveyed to S-mode software (e.g.: operating system)
* via some well-known method.
*
* With device tree, this can be done by inserting a child node of the reserved
* memory node which is used to specify one or more regions of reserved memory.
*
* For the reserved memory node bindings, see Linux kernel documentation at
* Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
*
* Some additional memory spaces may be protected by platform codes via PMP as
* well, and corresponding child nodes will be inserted.
*/
int fdt_reserved_memory_fixup(void *fdt)
{
struct sbi_domain_memregion *reg;
struct sbi_domain *dom = sbi_domain_thishart_ptr();
unsigned long filtered_base[PMP_COUNT] = { 0 };
unsigned char filtered_order[PMP_COUNT] = { 0 };
unsigned long addr, size;
int err, parent, i, j;
int na = fdt_address_cells(fdt, 0);
int ns = fdt_size_cells(fdt, 0);
/*
* Expand the device tree to accommodate new node
* by the following estimated size:
*
* Each PMP memory region entry occupies 64 bytes.
* With 16 PMP memory regions we need 64 * 16 = 1024 bytes.
*/
err = fdt_open_into(fdt, fdt, fdt_totalsize(fdt) + 1024);
if (err < 0)
return err;
/* try to locate the reserved memory node */
parent = fdt_path_offset(fdt, "/reserved-memory");
if (parent < 0) {
/* if such node does not exist, create one */
parent = fdt_add_subnode(fdt, 0, "reserved-memory");
if (parent < 0)
return parent;
/*
* reserved-memory node has 3 required properties:
* - #address-cells: the same value as the root node
* - #size-cells: the same value as the root node
* - ranges: should be empty
*/
err = fdt_setprop_empty(fdt, parent, "ranges");
if (err < 0)
return err;
err = fdt_setprop_u32(fdt, parent, "#size-cells", ns);
if (err < 0)
return err;
err = fdt_setprop_u32(fdt, parent, "#address-cells", na);
if (err < 0)
return err;
}
/*
* We assume the given device tree does not contain any memory region
* child node protected by PMP. Normally PMP programming happens at
* M-mode firmware. The memory space used by OpenSBI is protected.
* Some additional memory spaces may be protected by domain memory
* regions.
*
* With above assumption, we create child nodes directly.
*/
i = 0;
sbi_domain_for_each_memregion(dom, reg) {
/* Ignore MMIO or READABLE or WRITABLE or EXECUTABLE regions */
if (reg->flags & SBI_DOMAIN_MEMREGION_MMIO)
continue;
if (reg->flags & SBI_DOMAIN_MEMREGION_SU_READABLE)
continue;
if (reg->flags & SBI_DOMAIN_MEMREGION_SU_WRITABLE)
continue;
if (reg->flags & SBI_DOMAIN_MEMREGION_SU_EXECUTABLE)
continue;
if (i >= PMP_COUNT) {
sbi_printf("%s: Too many memory regions to fixup.\n",
__func__);
return SBI_ENOSPC;
}
bool overlap = false;
addr = reg->base;
for (j = 0; j < i; j++) {
if (addr == filtered_base[j]
&& filtered_order[j] < reg->order) {
overlap = true;
filtered_order[j] = reg->order;
break;
}
}
if (!overlap) {
filtered_base[i] = reg->base;
filtered_order[i] = reg->order;
i++;
}
}
for (j = 0; j < i; j++) {
addr = filtered_base[j];
size = 1UL << filtered_order[j];
fdt_resv_memory_update_node(fdt, addr, size, j, parent);
}
return 0;
}
void fdt_config_fixup(void *fdt)
{
int chosen_offset, config_offset;
chosen_offset = fdt_path_offset(fdt, "/chosen");
if (chosen_offset < 0)
return;
config_offset = fdt_node_offset_by_compatible(fdt, chosen_offset, "opensbi,config");
if (config_offset < 0)
return;
fdt_nop_node(fdt, config_offset);
}
void fdt_fixups(void *fdt)
{
fdt_aplic_fixup(fdt);
fdt_imsic_fixup(fdt);
fdt_plic_fixup(fdt);
fdt_reserved_memory_fixup(fdt);
#ifndef CONFIG_FDT_FIXUPS_PRESERVE_PMU_NODE
fdt_pmu_fixup(fdt);
#endif
fdt_config_fixup(fdt);
}