blob: c2c0f78bf386e52f0d61d025dbd57d1b20ae5062 [file] [log] [blame]
/*
* Driver for USB OHCI ported from CoreBoot
*
* Copyright (C) 2014 BALATON Zoltan
*
* This file was part of the libpayload project.
*
* Copyright (C) 2010 Patrick Georgi
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
//#define USB_DEBUG_ED
#include "config.h"
#include <asm/io.h>
#include <libopenbios/ofmem.h>
#include "timer.h"
#include "drivers/pci.h"
#include "pci.h"
#include <drivers/usb.h>
#include "usbohci_private.h"
#include "usbohci.h"
static void ohci_start (hci_t *controller);
static void ohci_stop (hci_t *controller);
static void ohci_reset (hci_t *controller);
static void ohci_shutdown (hci_t *controller);
static int ohci_bulk (endpoint_t *ep, int size, u8 *data, int finalize);
static int ohci_control (usbdev_t *dev, direction_t dir, int drlen, void *devreq,
int dalen, u8 *data);
static void* ohci_create_intr_queue (endpoint_t *ep, int reqsize, int reqcount, int reqtiming);
static void ohci_destroy_intr_queue (endpoint_t *ep, void *queue);
static u8* ohci_poll_intr_queue (void *queue);
static void ohci_process_done_queue(ohci_t *ohci, int spew_debug);
#ifdef USB_DEBUG_ED
static void
dump_td (td_t *cur)
{
usb_debug("+---------------------------------------------------+\n");
if (((__le32_to_cpu(cur->config) & (3UL << 19)) >> 19) == 0)
usb_debug("|..[SETUP]..........................................|\n");
else if (((__le32_to_cpu(cur->config) & (3UL << 8)) >> 8) == 2)
usb_debug("|..[IN].............................................|\n");
else if (((__le32_to_cpu(cur->config) & (3UL << 8)) >> 8) == 1)
usb_debug("|..[OUT]............................................|\n");
else
usb_debug("|..[]...............................................|\n");
usb_debug("|:|============ OHCI TD at [0x%08lx] ==========|:|\n", virt_to_phys(cur));
usb_debug("|:| ERRORS = [%ld] | CONFIG = [0x%08x] | |:|\n",
3 - ((__le32_to_cpu(cur->config) & (3UL << 26)) >> 26), __le32_to_cpu(cur->config));
usb_debug("|:+-----------------------------------------------+:|\n");
usb_debug("|:| C | Condition Code | [%02ld] |:|\n",
(__le32_to_cpu(cur->config) & (0xFUL << 28)) >> 28);
usb_debug("|:| O | Direction/PID | [%ld] |:|\n",
(__le32_to_cpu(cur->config) & (3UL << 19)) >> 19);
usb_debug("|:| N | Buffer Rounding | [%ld] |:|\n",
(__le32_to_cpu(cur->config) & (1UL << 18)) >> 18);
usb_debug("|:| F | Delay Intterrupt | [%ld] |:|\n",
(__le32_to_cpu(cur->config) & (7UL << 21)) >> 21);
usb_debug("|:| I | Data Toggle | [%ld] |:|\n",
(__le32_to_cpu(cur->config) & (3UL << 24)) >> 24);
usb_debug("|:| G | Error Count | [%ld] |:|\n",
(__le32_to_cpu(cur->config) & (3UL << 26)) >> 26);
usb_debug("|:+-----------------------------------------------+:|\n");
usb_debug("|:| Current Buffer Pointer [0x%08x] |:|\n", __le32_to_cpu(cur->current_buffer_pointer));
usb_debug("|:+-----------------------------------------------+:|\n");
usb_debug("|:| Next TD [0x%08x] |:|\n", __le32_to_cpu(cur->next_td));
usb_debug("|:+-----------------------------------------------+:|\n");
usb_debug("|:| Current Buffer End [0x%08x] |:|\n", __le32_to_cpu(cur->buffer_end));
usb_debug("|:|-----------------------------------------------|:|\n");
usb_debug("|...................................................|\n");
usb_debug("+---------------------------------------------------+\n");
}
static void
dump_ed (ed_t *cur)
{
td_t *tmp_td = NULL;
usb_debug("+===================================================+\n");
usb_debug("| ############# OHCI ED at [0x%08lx] ########### |\n", virt_to_phys(cur));
usb_debug("+---------------------------------------------------+\n");
usb_debug("| Next Endpoint Descriptor [0x%08lx] |\n", __le32_to_cpu(cur->next_ed) & ~0xFUL);
usb_debug("+---------------------------------------------------+\n");
usb_debug("| | @ 0x%08x : |\n", __le32_to_cpu(cur->config));
usb_debug("| C | Maximum Packet Length | [%04ld] |\n",
((__le32_to_cpu(cur->config) & (0x3fffUL << 16)) >> 16));
usb_debug("| O | Function Address | [%04d] |\n",
__le32_to_cpu(cur->config) & 0x7F);
usb_debug("| N | Endpoint Number | [%02ld] |\n",
(__le32_to_cpu(cur->config) & (0xFUL << 7)) >> 7);
usb_debug("| F | Endpoint Direction | [%ld] |\n",
((__le32_to_cpu(cur->config) & (3UL << 11)) >> 11));
usb_debug("| I | Endpoint Speed | [%ld] |\n",
((__le32_to_cpu(cur->config) & (1UL << 13)) >> 13));
usb_debug("| G | Skip | [%ld] |\n",
((__le32_to_cpu(cur->config) & (1UL << 14)) >> 14));
usb_debug("| | Format | [%ld] |\n",
((__le32_to_cpu(cur->config) & (1UL << 15)) >> 15));
usb_debug("+---------------------------------------------------+\n");
usb_debug("| TD Queue Tail Pointer [0x%08lx] |\n",
__le32_to_cpu(cur->tail_pointer) & ~0xFUL);
usb_debug("+---------------------------------------------------+\n");
usb_debug("| TD Queue Head Pointer [0x%08lx] |\n",
__le32_to_cpu(cur->head_pointer) & ~0xFUL);
usb_debug("| CarryToggleBit [%d] Halted [%d] |\n",
(u16)(__le32_to_cpu(cur->head_pointer) & 0x2UL)>>1, (u16)(__le32_to_cpu(cur->head_pointer) & 0x1UL));
tmp_td = (td_t *)phys_to_virt((__le32_to_cpu(cur->head_pointer) & ~0xFUL));
if ((__le32_to_cpu(cur->head_pointer) & ~0xFUL) != (__le32_to_cpu(cur->tail_pointer) & ~0xFUL)) {
usb_debug("|:::::::::::::::::: OHCI TD CHAIN ::::::::::::::::::|\n");
while (virt_to_phys(tmp_td) != (__le32_to_cpu(cur->tail_pointer) & ~0xFUL))
{
dump_td(tmp_td);
tmp_td = (td_t *)phys_to_virt((__le32_to_cpu(tmp_td->next_td) & ~0xFUL));
}
usb_debug("|:::::::::::::::: EOF OHCI TD CHAIN ::::::::::::::::|\n");
usb_debug("+---------------------------------------------------+\n");
} else {
usb_debug("+---------------------------------------------------+\n");
}
}
#endif
static void
ohci_reset (hci_t *controller)
{
if (controller == NULL)
return;
OHCI_INST(controller)->opreg->HcCommandStatus = __cpu_to_le32(HostControllerReset);
mdelay(2); /* wait 2ms */
OHCI_INST(controller)->opreg->HcControl = 0;
mdelay(10); /* wait 10ms */
}
static void
ohci_reinit (hci_t *controller)
{
}
hci_t *
ohci_init (void *bar)
{
int i;
hci_t *controller = new_controller ();
if (!controller) {
printk("Could not create USB controller instance.\n");
return NULL;
}
controller->instance = malloc (sizeof (ohci_t));
if(!controller->instance) {
printk("Not enough memory creating USB controller instance.\n");
return NULL;
}
controller->type = OHCI;
controller->start = ohci_start;
controller->stop = ohci_stop;
controller->reset = ohci_reset;
controller->init = ohci_reinit;
controller->shutdown = ohci_shutdown;
controller->bulk = ohci_bulk;
controller->control = ohci_control;
controller->set_address = generic_set_address;
controller->finish_device_config = NULL;
controller->destroy_device = NULL;
controller->create_intr_queue = ohci_create_intr_queue;
controller->destroy_intr_queue = ohci_destroy_intr_queue;
controller->poll_intr_queue = ohci_poll_intr_queue;
for (i = 0; i < 128; i++) {
controller->devices[i] = 0;
}
init_device_entry (controller, 0);
OHCI_INST (controller)->roothub = controller->devices[0];
controller->reg_base = (u32)(unsigned long)bar;
OHCI_INST (controller)->opreg = (opreg_t*)phys_to_virt(controller->reg_base);
usb_debug("OHCI Version %x.%x\n",
(READ_OPREG(OHCI_INST(controller), HcRevision) >> 4) & 0xf,
READ_OPREG(OHCI_INST(controller), HcRevision) & 0xf);
if ((READ_OPREG(OHCI_INST(controller), HcControl) & HostControllerFunctionalStateMask) == USBReset) {
/* cold boot */
OHCI_INST (controller)->opreg->HcControl &= __cpu_to_le32(~RemoteWakeupConnected);
OHCI_INST (controller)->opreg->HcFmInterval =
__cpu_to_le32((11999 * FrameInterval) | ((((11999 - 210)*6)/7) * FSLargestDataPacket));
/* TODO: right value for PowerOnToPowerGoodTime ? */
OHCI_INST (controller)->opreg->HcRhDescriptorA =
__cpu_to_le32(NoPowerSwitching | NoOverCurrentProtection | (10 * PowerOnToPowerGoodTime));
OHCI_INST (controller)->opreg->HcRhDescriptorB = __cpu_to_le32(0 * DeviceRemovable);
udelay(100); /* TODO: reset asserting according to USB spec */
} else if ((READ_OPREG(OHCI_INST(controller), HcControl) & HostControllerFunctionalStateMask) != USBOperational) {
OHCI_INST (controller)->opreg->HcControl =
__cpu_to_le32((READ_OPREG(OHCI_INST(controller), HcControl) & ~HostControllerFunctionalStateMask)
| USBResume);
udelay(100); /* TODO: resume time according to USB spec */
}
int interval = OHCI_INST (controller)->opreg->HcFmInterval;
OHCI_INST (controller)->opreg->HcCommandStatus = __cpu_to_le32(HostControllerReset);
udelay (10); /* at most 10us for reset to complete. State must be set to Operational within 2ms (5.1.1.4) */
OHCI_INST (controller)->opreg->HcFmInterval = interval;
ofmem_posix_memalign((void **)&(OHCI_INST (controller)->hcca), 256, 256);
memset((void*)OHCI_INST (controller)->hcca, 0, 256);
usb_debug("HCCA addr %p\n", OHCI_INST(controller)->hcca);
/* Initialize interrupt table. */
ohci_t *const ohci = OHCI_INST(controller);
ed_t *const periodic_ed;
ofmem_posix_memalign((void **)&periodic_ed, sizeof(ed_t), sizeof(ed_t));
memset((void *)periodic_ed, 0, sizeof(*periodic_ed));
for (i = 0; i < 32; ++i)
ohci->hcca->HccaInterruptTable[i] = __cpu_to_le32(virt_to_phys(periodic_ed));
OHCI_INST (controller)->periodic_ed = periodic_ed;
OHCI_INST (controller)->opreg->HcHCCA = __cpu_to_le32(virt_to_phys(OHCI_INST(controller)->hcca));
/* Make sure periodic schedule is enabled. */
OHCI_INST (controller)->opreg->HcControl |= __cpu_to_le32(PeriodicListEnable);
OHCI_INST (controller)->opreg->HcControl &= __cpu_to_le32(~IsochronousEnable); // unused by this driver
// disable everything, contrary to what OHCI spec says in 5.1.1.4, as we don't need IRQs
OHCI_INST (controller)->opreg->HcInterruptEnable = __cpu_to_le32(1<<31);
OHCI_INST (controller)->opreg->HcInterruptDisable = __cpu_to_le32(~(1<<31));
OHCI_INST (controller)->opreg->HcInterruptStatus = __cpu_to_le32(~0);
OHCI_INST (controller)->opreg->HcPeriodicStart =
__cpu_to_le32((READ_OPREG(OHCI_INST(controller), HcFmInterval) & FrameIntervalMask) / 10 * 9);
OHCI_INST (controller)->opreg->HcControl = __cpu_to_le32((READ_OPREG(OHCI_INST(controller), HcControl)
& ~HostControllerFunctionalStateMask) | USBOperational);
mdelay(100);
controller->devices[0]->controller = controller;
controller->devices[0]->init = ohci_rh_init;
controller->devices[0]->init (controller->devices[0]);
return controller;
}
hci_t *
ohci_pci_init (pci_addr addr)
{
u32 reg_base;
uint16_t cmd;
cmd = pci_config_read16(addr, PCI_COMMAND);
cmd |= PCI_COMMAND_BUS_MASTER;
pci_config_write16(addr, PCI_COMMAND, cmd);
/* regarding OHCI spec, Appendix A, BAR_OHCI register description, Table A-4
* BASE ADDRESS only [31-12] bits. All other usually 0, but not all.
* OHCI mandates MMIO, so bit 0 is clear */
reg_base = pci_config_read32 (addr, PCI_BASE_ADDR_0) & 0xfffff000;
return ohci_init((void *)(unsigned long)reg_base);
}
static void
ohci_shutdown (hci_t *controller)
{
if (controller == 0)
return;
detach_controller (controller);
ohci_stop(controller);
OHCI_INST (controller)->roothub->destroy (OHCI_INST (controller)->
roothub);
controller->reset (controller);
free ((void *)OHCI_INST (controller)->periodic_ed);
free (OHCI_INST (controller));
free (controller);
}
static void
ohci_start (hci_t *controller)
{
// TODO: turn on all operation of OHCI, but assume that it's initialized.
}
static void
ohci_stop (hci_t *controller)
{
// TODO: turn off all operation of OHCI
}
static int
wait_for_ed(usbdev_t *dev, ed_t *head, int pages)
{
usb_debug("Waiting for %d pages on dev %p with head %p\n", pages, dev, head);
/* wait for results */
/* TOTEST: how long to wait?
* give 2s per TD (2 pages) plus another 2s for now
*/
int timeout = pages*1000 + 2000;
while (((__le32_to_cpu(head->head_pointer) & ~3) != __le32_to_cpu(head->tail_pointer)) &&
!(__le32_to_cpu(head->head_pointer) & 1) &&
((__le32_to_cpu((((td_t*)phys_to_virt(__le32_to_cpu(head->head_pointer) & ~3)))->config)
& TD_CC_MASK) >= TD_CC_NOACCESS) && timeout--) {
/* don't log every ms */
if (!(timeout % 100))
usb_debug("intst: %x; ctrl: %x; cmdst: %x; head: %x -> %x, tail: %x, condition: %x\n",
READ_OPREG(OHCI_INST(dev->controller), HcInterruptStatus),
READ_OPREG(OHCI_INST(dev->controller), HcControl),
READ_OPREG(OHCI_INST(dev->controller), HcCommandStatus),
__le32_to_cpu(head->head_pointer),
__le32_to_cpu(((td_t*)phys_to_virt(__le32_to_cpu(head->head_pointer) & ~3))->next_td),
__le32_to_cpu(head->tail_pointer),
(__le32_to_cpu(((td_t*)phys_to_virt(__le32_to_cpu(head->head_pointer) & ~3))->config) & TD_CC_MASK) >> TD_CC_SHIFT);
mdelay(1);
}
if (timeout < 0)
usb_debug("Error: ohci: endpoint "
"descriptor processing timed out.\n");
/* Clear the done queue. */
ohci_process_done_queue(OHCI_INST(dev->controller), 1);
if (__le32_to_cpu(head->head_pointer) & 1) {
usb_debug("HALTED!\n");
return 1;
}
return 0;
}
static void
ohci_free_ed (ed_t *const head)
{
/* In case the transfer canceled, we have to free unprocessed TDs. */
while ((__le32_to_cpu(head->head_pointer) & ~0x3) != __le32_to_cpu(head->tail_pointer)) {
/* Save current TD pointer. */
td_t *const cur_td =
(td_t*)phys_to_virt(__le32_to_cpu(head->head_pointer) & ~0x3);
/* Advance head pointer. */
head->head_pointer = cur_td->next_td;
/* Free current TD. */
free((void *)cur_td);
}
/* Always free the dummy TD */
if ((__le32_to_cpu(head->head_pointer) & ~0x3) == __le32_to_cpu(head->tail_pointer))
free(phys_to_virt(__le32_to_cpu(head->head_pointer) & ~0x3));
/* and the ED. */
free((void *)head);
}
static int
ohci_control (usbdev_t *dev, direction_t dir, int drlen, void *devreq, int dalen,
unsigned char *data)
{
td_t *cur;
// pages are specified as 4K in OHCI, so don't use getpagesize()
int first_page = (unsigned long)data / 4096;
int last_page = (unsigned long)(data+dalen-1)/4096;
if (last_page < first_page) last_page = first_page;
int pages = (dalen==0)?0:(last_page - first_page + 1);
/* First TD. */
td_t *const first_td;
ofmem_posix_memalign((void **)&first_td, sizeof(td_t), sizeof(td_t));
memset((void *)first_td, 0, sizeof(*first_td));
cur = first_td;
cur->config = __cpu_to_le32(TD_DIRECTION_SETUP |
TD_DELAY_INTERRUPT_NOINTR |
TD_TOGGLE_FROM_TD |
TD_TOGGLE_DATA0 |
TD_CC_NOACCESS);
cur->current_buffer_pointer = __cpu_to_le32(virt_to_phys(devreq));
cur->buffer_end = __cpu_to_le32(virt_to_phys((char *)devreq + drlen - 1));
while (pages > 0) {
/* One more TD. */
td_t *const next;
ofmem_posix_memalign((void **)&next, sizeof(td_t), sizeof(td_t));
memset((void *)next, 0, sizeof(*next));
/* Linked to the previous. */
cur->next_td = __cpu_to_le32(virt_to_phys(next));
/* Advance to the new TD. */
cur = next;
cur->config = __cpu_to_le32((dir == IN ? TD_DIRECTION_IN : TD_DIRECTION_OUT) |
TD_DELAY_INTERRUPT_NOINTR |
TD_TOGGLE_FROM_ED |
TD_CC_NOACCESS);
cur->current_buffer_pointer = __cpu_to_le32(virt_to_phys(data));
pages--;
int consumed = (4096 - ((unsigned long)data % 4096));
if (consumed >= dalen) {
// end of data is within same page
cur->buffer_end = __cpu_to_le32(virt_to_phys(data + dalen - 1));
dalen = 0;
/* assert(pages == 0); */
} else {
dalen -= consumed;
data += consumed;
pages--;
int second_page_size = dalen;
if (dalen > 4096) {
second_page_size = 4096;
}
cur->buffer_end = __cpu_to_le32(virt_to_phys(data + second_page_size - 1));
dalen -= second_page_size;
data += second_page_size;
}
}
/* One more TD. */
td_t *const next_td;
ofmem_posix_memalign((void **)&next_td, sizeof(td_t), sizeof(td_t));
memset((void *)next_td, 0, sizeof(*next_td));
/* Linked to the previous. */
cur->next_td = __cpu_to_le32(virt_to_phys(next_td));
/* Advance to the new TD. */
cur = next_td;
cur->config = __cpu_to_le32((dir == IN ? TD_DIRECTION_OUT : TD_DIRECTION_IN) |
TD_DELAY_INTERRUPT_ZERO | /* Write done head after this TD. */
TD_TOGGLE_FROM_TD |
TD_TOGGLE_DATA1 |
TD_CC_NOACCESS);
cur->current_buffer_pointer = 0;
cur->buffer_end = 0;
/* Final dummy TD. */
td_t *const final_td;
ofmem_posix_memalign((void **)&final_td, sizeof(td_t), sizeof(td_t));
memset((void *)final_td, 0, sizeof(*final_td));
/* Linked to the previous. */
cur->next_td = __cpu_to_le32(virt_to_phys(final_td));
/* Data structures */
ed_t *head;
ofmem_posix_memalign((void **)&head, sizeof(ed_t), sizeof(ed_t));
memset((void*)head, 0, sizeof(*head));
head->config = __cpu_to_le32((dev->address << ED_FUNC_SHIFT) |
(0 << ED_EP_SHIFT) |
(OHCI_FROM_TD << ED_DIR_SHIFT) |
(dev->speed?ED_LOWSPEED:0) |
(dev->endpoints[0].maxpacketsize << ED_MPS_SHIFT));
head->tail_pointer = __cpu_to_le32(virt_to_phys(final_td));
head->head_pointer = __cpu_to_le32(virt_to_phys(first_td));
usb_debug("ohci_control(): doing transfer with %x. first_td at %x\n",
__le32_to_cpu(head->config) & ED_FUNC_MASK, __le32_to_cpu(head->head_pointer));
#ifdef USB_DEBUG_ED
dump_ed(head);
#endif
/* activate schedule */
OHCI_INST(dev->controller)->opreg->HcControlHeadED = __cpu_to_le32(virt_to_phys(head));
OHCI_INST(dev->controller)->opreg->HcControl |= __cpu_to_le32(ControlListEnable);
OHCI_INST(dev->controller)->opreg->HcCommandStatus = __cpu_to_le32(ControlListFilled);
int failure = wait_for_ed(dev, head,
(dalen==0)?0:(last_page - first_page + 1));
/* Wait some frames before and one after disabling list access. */
mdelay(4);
OHCI_INST(dev->controller)->opreg->HcControl &= __cpu_to_le32(~ControlListEnable);
mdelay(1);
/* free memory */
ohci_free_ed(head);
return failure;
}
/* finalize == 1: if data is of packet aligned size, add a zero length packet */
static int
ohci_bulk (endpoint_t *ep, int dalen, u8 *data, int finalize)
{
int i;
usb_debug("bulk: %x bytes from %p, finalize: %x, maxpacketsize: %x\n", dalen, data, finalize, ep->maxpacketsize);
td_t *cur, *next;
// pages are specified as 4K in OHCI, so don't use getpagesize()
int first_page = (unsigned long)data / 4096;
int last_page = (unsigned long)(data+dalen-1)/4096;
if (last_page < first_page) last_page = first_page;
int pages = (dalen==0)?0:(last_page - first_page + 1);
int td_count = (pages+1)/2;
if (finalize && ((dalen % ep->maxpacketsize) == 0)) {
td_count++;
}
/* First TD. */
td_t *const first_td;
ofmem_posix_memalign((void **)&first_td, sizeof(td_t), sizeof(td_t));
memset((void *)first_td, 0, sizeof(*first_td));
cur = next = first_td;
for (i = 0; i < td_count; ++i) {
/* Advance to next TD. */
cur = next;
cur->config = __cpu_to_le32((ep->direction == IN ? TD_DIRECTION_IN : TD_DIRECTION_OUT) |
TD_DELAY_INTERRUPT_NOINTR |
TD_TOGGLE_FROM_ED |
TD_CC_NOACCESS);
cur->current_buffer_pointer = __cpu_to_le32(virt_to_phys(data));
pages--;
if (dalen == 0) {
/* magic TD for empty packet transfer */
cur->current_buffer_pointer = 0;
cur->buffer_end = 0;
/* assert((pages == 0) && finalize); */
}
int consumed = (4096 - ((unsigned long)data % 4096));
if (consumed >= dalen) {
// end of data is within same page
cur->buffer_end = __cpu_to_le32(virt_to_phys(data + dalen - 1));
dalen = 0;
/* assert(pages == finalize); */
} else {
dalen -= consumed;
data += consumed;
pages--;
int second_page_size = dalen;
if (dalen > 4096) {
second_page_size = 4096;
}
cur->buffer_end = __cpu_to_le32(virt_to_phys(data + second_page_size - 1));
dalen -= second_page_size;
data += second_page_size;
}
/* One more TD. */
ofmem_posix_memalign((void **)&next, sizeof(td_t), sizeof(td_t));
memset((void *)next, 0, sizeof(*next));
/* Linked to the previous. */
cur->next_td = __cpu_to_le32(virt_to_phys(next));
}
/* Write done head after last TD. */
cur->config &= __cpu_to_le32(~TD_DELAY_INTERRUPT_MASK);
/* Advance to final, dummy TD. */
cur = next;
/* Data structures */
ed_t *head;
ofmem_posix_memalign((void **)&head, sizeof(ed_t), sizeof(ed_t));
memset((void*)head, 0, sizeof(*head));
head->config = __cpu_to_le32((ep->dev->address << ED_FUNC_SHIFT) |
((ep->endpoint & 0xf) << ED_EP_SHIFT) |
(((ep->direction==IN)?OHCI_IN:OHCI_OUT) << ED_DIR_SHIFT) |
(ep->dev->speed?ED_LOWSPEED:0) |
(ep->maxpacketsize << ED_MPS_SHIFT));
head->tail_pointer = __cpu_to_le32(virt_to_phys(cur));
head->head_pointer = __cpu_to_le32(virt_to_phys(first_td) | (ep->toggle?ED_TOGGLE:0));
usb_debug("doing bulk transfer with %x(%x). first_td at %lx, last %lx\n",
__le32_to_cpu(head->config) & ED_FUNC_MASK,
(__le32_to_cpu(head->config) & ED_EP_MASK) >> ED_EP_SHIFT,
virt_to_phys(first_td), virt_to_phys(cur));
/* activate schedule */
OHCI_INST(ep->dev->controller)->opreg->HcBulkHeadED = __cpu_to_le32(virt_to_phys(head));
OHCI_INST(ep->dev->controller)->opreg->HcControl |= __cpu_to_le32(BulkListEnable);
OHCI_INST(ep->dev->controller)->opreg->HcCommandStatus = __cpu_to_le32(BulkListFilled);
int failure = wait_for_ed(ep->dev, head,
(dalen==0)?0:(last_page - first_page + 1));
/* Wait some frames before and one after disabling list access. */
mdelay(4);
OHCI_INST(ep->dev->controller)->opreg->HcControl &= __cpu_to_le32(~BulkListEnable);
mdelay(1);
ep->toggle = __le32_to_cpu(head->head_pointer) & ED_TOGGLE;
/* free memory */
ohci_free_ed(head);
if (failure) {
/* try cleanup */
clear_stall(ep);
}
return failure;
}
struct _intr_queue;
struct _intrq_td {
volatile td_t td;
u8 *data;
struct _intrq_td *next;
struct _intr_queue *intrq;
} __attribute__ ((packed));
struct _intr_queue {
volatile ed_t ed;
struct _intrq_td *head;
struct _intrq_td *tail;
u8 *data;
int reqsize;
endpoint_t *endp;
unsigned int remaining_tds;
int destroy;
};
typedef struct _intrq_td intrq_td_t;
typedef struct _intr_queue intr_queue_t;
#define INTRQ_TD_FROM_TD(x) ((intrq_td_t *)x)
static void
ohci_fill_intrq_td(intrq_td_t *const td, intr_queue_t *const intrq,
u8 *const data)
{
memset(td, 0, sizeof(*td));
td->td.config = __cpu_to_le32(TD_QUEUETYPE_INTR |
(intrq->endp->direction == IN ? TD_DIRECTION_IN : TD_DIRECTION_OUT) |
TD_DELAY_INTERRUPT_ZERO |
TD_TOGGLE_FROM_ED |
TD_CC_NOACCESS);
td->td.current_buffer_pointer = __cpu_to_le32(virt_to_phys(data));
td->td.buffer_end = __cpu_to_le32(virt_to_phys(data) + intrq->reqsize - 1);
td->intrq = intrq;
td->data = data;
}
/* create and hook-up an intr queue into device schedule */
static void *
ohci_create_intr_queue(endpoint_t *const ep, const int reqsize,
const int reqcount, const int reqtiming)
{
int i;
intrq_td_t *first_td = NULL, *last_td = NULL;
if (reqsize > 4096)
return NULL;
intr_queue_t *const intrq;
ofmem_posix_memalign((void **)&intrq, sizeof(intrq->ed), sizeof(*intrq));
memset(intrq, 0, sizeof(*intrq));
intrq->data = (u8 *)malloc(reqcount * reqsize);
intrq->reqsize = reqsize;
intrq->endp = ep;
/* Create #reqcount TDs. */
u8 *cur_data = intrq->data;
for (i = 0; i < reqcount; ++i) {
intrq_td_t *const td;
ofmem_posix_memalign((void **)&td, sizeof(td->td), sizeof(*td));
++intrq->remaining_tds;
ohci_fill_intrq_td(td, intrq, cur_data);
cur_data += reqsize;
if (!first_td)
first_td = td;
else
last_td->td.next_td = __cpu_to_le32(virt_to_phys(&td->td));
last_td = td;
}
/* Create last, dummy TD. */
intrq_td_t *dummy_td;
ofmem_posix_memalign((void **)&dummy_td, sizeof(dummy_td->td), sizeof(*dummy_td));
memset(dummy_td, 0, sizeof(*dummy_td));
dummy_td->intrq = intrq;
if (last_td)
last_td->td.next_td = __cpu_to_le32(virt_to_phys(&dummy_td->td));
last_td = dummy_td;
/* Initialize ED. */
intrq->ed.config = __cpu_to_le32((ep->dev->address << ED_FUNC_SHIFT) |
((ep->endpoint & 0xf) << ED_EP_SHIFT) |
(((ep->direction == IN) ? OHCI_IN : OHCI_OUT) << ED_DIR_SHIFT) |
(ep->dev->speed ? ED_LOWSPEED : 0) |
(ep->maxpacketsize << ED_MPS_SHIFT));
intrq->ed.tail_pointer = __cpu_to_le32(virt_to_phys(last_td));
intrq->ed.head_pointer = __cpu_to_le32(virt_to_phys(first_td) | (ep->toggle ? ED_TOGGLE : 0));
#ifdef USB_DEBUG_ED
dump_ed(&intrq->ed);
#endif
/* Insert ED into periodic table. */
int nothing_placed = 1;
ohci_t *const ohci = OHCI_INST(ep->dev->controller);
const u32 dummy_ptr = __cpu_to_le32(virt_to_phys(ohci->periodic_ed));
for (i = 0; i < 32; i += reqtiming) {
/* Advance to the next free position. */
while ((i < 32) && (ohci->hcca->HccaInterruptTable[i] != dummy_ptr)) ++i;
if (i < 32) {
usb_debug("Placed endpoint %lx to %d\n", virt_to_phys(&intrq->ed), i);
ohci->hcca->HccaInterruptTable[i] = __cpu_to_le32(virt_to_phys(&intrq->ed));
nothing_placed = 0;
}
}
if (nothing_placed) {
usb_debug("Error: Failed to place ohci interrupt endpoint "
"descriptor into periodic table: no space left\n");
ohci_destroy_intr_queue(ep, intrq);
return NULL;
}
return intrq;
}
/* remove queue from device schedule, dropping all data that came in */
static void
ohci_destroy_intr_queue(endpoint_t *const ep, void *const q_)
{
intr_queue_t *const intrq = (intr_queue_t *)q_;
int i;
/* Remove interrupt queue from periodic table. */
ohci_t *const ohci = OHCI_INST(ep->dev->controller);
for (i=0; i < 32; ++i) {
if (ohci->hcca->HccaInterruptTable[i] == __cpu_to_le32(virt_to_phys(intrq)))
ohci->hcca->HccaInterruptTable[i] = __cpu_to_le32(virt_to_phys(ohci->periodic_ed));
}
/* Wait for frame to finish. */
mdelay(1);
/* Free unprocessed TDs. */
while ((__le32_to_cpu(intrq->ed.head_pointer) & ~0x3) != __le32_to_cpu(intrq->ed.tail_pointer)) {
td_t *const cur_td = (td_t *)phys_to_virt(__le32_to_cpu(intrq->ed.head_pointer) & ~0x3);
intrq->ed.head_pointer = cur_td->next_td;
free(INTRQ_TD_FROM_TD(cur_td));
--intrq->remaining_tds;
}
/* Free final, dummy TD. */
free(phys_to_virt(__le32_to_cpu(intrq->ed.head_pointer) & ~0x3));
/* Free data buffer. */
free(intrq->data);
/* Free TDs already fetched from the done queue. */
ohci_process_done_queue(ohci, 1);
while (intrq->head) {
intrq_td_t *const cur_td = (intrq_td_t *const )__le32_to_cpu(intrq->head);
intrq->head = intrq->head->next;
free(cur_td);
--intrq->remaining_tds;
}
/* Mark interrupt queue to be destroyed.
ohci_process_done_queue() will free the remaining TDs
and finish the interrupt queue off once all TDs are gone. */
intrq->destroy = 1;
/* Save data toggle. */
ep->toggle = __le32_to_cpu(intrq->ed.head_pointer) & ED_TOGGLE;
}
/* read one intr-packet from queue, if available. extend the queue for new input.
return NULL if nothing new available.
Recommended use: while (data=poll_intr_queue(q)) process(data);
*/
static u8 *
ohci_poll_intr_queue(void *const q_)
{
intr_queue_t *const intrq = (intr_queue_t *)q_;
u8 *data = NULL;
/* Process done queue first, then check if we have work to do. */
ohci_process_done_queue(OHCI_INST(intrq->endp->dev->controller), 0);
if (intrq->head) {
/* Save pointer to processed TD and advance. */
intrq_td_t *const cur_td = intrq->head;
intrq->head = cur_td->next;
/* Return data buffer of this TD. */
data = cur_td->data;
/* Requeue this TD (i.e. copy to dummy and requeue as dummy). */
intrq_td_t *const dummy_td =
INTRQ_TD_FROM_TD(phys_to_virt(__le32_to_cpu(intrq->ed.tail_pointer)));
ohci_fill_intrq_td(dummy_td, intrq, data);
/* Reset all but intrq pointer (i.e. init as dummy). */
memset(cur_td, 0, sizeof(*cur_td));
cur_td->intrq = intrq;
/* Insert into interrupt queue as dummy. */
dummy_td->td.next_td = __le32_to_cpu(virt_to_phys(&cur_td->td));
intrq->ed.tail_pointer = __le32_to_cpu(virt_to_phys(&cur_td->td));
}
return data;
}
static void
ohci_process_done_queue(ohci_t *const ohci, const int spew_debug)
{
int i, j;
/* Temporary queue of interrupt queue TDs (to reverse order). */
intrq_td_t *temp_tdq = NULL;
/* Check if done head has been written. */
if (!(READ_OPREG(ohci, HcInterruptStatus) & WritebackDoneHead))
return;
/* Fetch current done head.
Lsb is only interesting for hw interrupts. */
u32 phys_done_queue = __le32_to_cpu(ohci->hcca->HccaDoneHead) & ~1;
/* Tell host controller, he may overwrite the done head pointer. */
ohci->opreg->HcInterruptStatus = __cpu_to_le32(WritebackDoneHead);
i = 0;
/* Process done queue (it's in reversed order). */
while (phys_done_queue) {
td_t *const done_td = (td_t *)phys_to_virt(phys_done_queue);
/* Advance pointer to next TD. */
phys_done_queue = __le32_to_cpu(done_td->next_td);
switch (__le32_to_cpu(done_td->config) & TD_QUEUETYPE_MASK) {
case TD_QUEUETYPE_ASYNC:
/* Free processed async TDs. */
free((void *)done_td);
break;
case TD_QUEUETYPE_INTR: {
intrq_td_t *const td = INTRQ_TD_FROM_TD(done_td);
intr_queue_t *const intrq = td->intrq;
/* Check if the corresponding interrupt
queue is still beeing processed. */
if (intrq->destroy) {
/* Free this TD, and */
free(td);
--intrq->remaining_tds;
/* the interrupt queue if it has no more TDs. */
if (!intrq->remaining_tds)
free(intrq);
usb_debug("Freed TD from orphaned interrupt "
"queue, %d TDs remain.\n",
intrq->remaining_tds);
} else {
/* Save done TD to be processed. */
td->next = temp_tdq;
temp_tdq = td;
}
break;
}
default:
break;
}
++i;
}
if (spew_debug)
usb_debug("Processed %d done TDs.\n", i);
j = 0;
/* Process interrupt queue TDs in right order. */
while (temp_tdq) {
/* Save pointer of current TD and advance. */
intrq_td_t *const cur_td = temp_tdq;
temp_tdq = temp_tdq->next;
/* The interrupt queue for the current TD. */
intr_queue_t *const intrq = cur_td->intrq;
/* Append to interrupt queue. */
if (!intrq->head) {
/* First element. */
intrq->head = intrq->tail = cur_td;
} else {
/* Insert at tail. */
intrq->tail->next = cur_td;
intrq->tail = cur_td;
}
/* It's always the last element. */
cur_td->next = NULL;
++j;
}
if (spew_debug)
usb_debug("processed %d done tds, %d intr tds thereof.\n", i, j);
}
int ob_usb_ohci_init (const char *path, uint32_t addr)
{
hci_t *ctrl;
int i;
usb_debug("ohci_init: %s addr = %x\n", path, addr);
ctrl = ohci_pci_init(addr);
if (!ctrl)
return 0;
/* Init ports */
usb_poll();
/* Look for a keyboard */
for (i = 0; i < 128; i++) {
if (ctrl->devices[i] && ctrl->devices[i]->configuration) {
configuration_descriptor_t *cd;
interface_descriptor_t *intf;
cd = (configuration_descriptor_t *)ctrl->devices[i]->configuration;
intf = (interface_descriptor_t *)(ctrl->devices[i]->configuration + cd->bLength);
usb_debug("Device at port %d is class %d\n", i, intf->bInterfaceClass);
if (intf->bInterfaceClass == hid_device &&
intf->bInterfaceSubClass == hid_subclass_boot &&
intf->bInterfaceProtocol == hid_boot_proto_keyboard ) {
break;
}
}
}
if ( i < 128 )
ob_usb_hid_add_keyboard(path);
return 1;
}