blob: c7567612a85e8c411fc4c828c0b0ebcb8b052963 [file] [log] [blame]
# SPDX-License-Identifier: Apache-2.0
# Copyright 2013-2021 The Meson development team
from __future__ import annotations
from .. import mparser
from .exceptions import InvalidCode, InvalidArguments
from .helpers import flatten, resolve_second_level_holders
from .operator import MesonOperator
from ..mesonlib import HoldableObject, MesonBugException
import textwrap
import typing as T
from abc import ABCMeta
from contextlib import AbstractContextManager
if T.TYPE_CHECKING:
from typing_extensions import TypeAlias
# Object holders need the actual interpreter
from ..interpreter import Interpreter
TV_func = T.TypeVar('TV_func', bound=T.Callable[..., T.Any])
TYPE_elementary: TypeAlias = T.Union[str, int, bool, T.Sequence['TYPE_elementary'], T.Dict[str, 'TYPE_elementary']]
TYPE_var: TypeAlias = T.Union[TYPE_elementary, HoldableObject, 'MesonInterpreterObject', T.Sequence['TYPE_var'], T.Dict[str, 'TYPE_var']]
TYPE_nvar = T.Union[TYPE_var, mparser.BaseNode]
TYPE_kwargs = T.Dict[str, TYPE_var]
TYPE_nkwargs = T.Dict[str, TYPE_nvar]
TYPE_key_resolver = T.Callable[[mparser.BaseNode], str]
TYPE_op_arg = T.TypeVar('TYPE_op_arg', bound='TYPE_var', contravariant=True)
TYPE_op_func = T.Callable[[TYPE_op_arg, TYPE_op_arg], TYPE_var]
TYPE_method_func = T.Callable[['InterpreterObject', T.List[TYPE_var], TYPE_kwargs], TYPE_var]
SubProject = T.NewType('SubProject', str)
class InterpreterObject:
TRIVIAL_OPERATORS: T.Dict[
MesonOperator,
T.Tuple[
T.Union[T.Type, T.Tuple[T.Type, ...]],
TYPE_op_func
]
] = {}
OPERATORS: T.Dict[MesonOperator, TYPE_op_func] = {}
METHODS: T.Dict[
str,
TYPE_method_func,
] = {}
def __init_subclass__(cls: T.Type[InterpreterObject], **kwargs: T.Any) -> None:
super().__init_subclass__(**kwargs)
saved_trivial_operators = cls.TRIVIAL_OPERATORS
cls.METHODS = {}
cls.OPERATORS = {}
cls.TRIVIAL_OPERATORS = {}
# Compute inherited operators and methods according to the Python resolution
# order. Reverse the result of mro() because update() will overwrite entries
# that are set by the superclass with those that are set by the subclass.
for superclass in reversed(cls.mro()[1:]):
if superclass is InterpreterObject:
# InterpreterObject cannot use @InterpreterObject.operator because
# __init_subclass__ does not operate on InterpreterObject itself
cls.OPERATORS.update({
MesonOperator.EQUALS: InterpreterObject.op_equals,
MesonOperator.NOT_EQUALS: InterpreterObject.op_not_equals
})
elif issubclass(superclass, InterpreterObject):
cls.METHODS.update(superclass.METHODS)
cls.OPERATORS.update(superclass.OPERATORS)
cls.TRIVIAL_OPERATORS.update(superclass.TRIVIAL_OPERATORS)
for name, method in cls.__dict__.items():
if hasattr(method, 'meson_method'):
cls.METHODS[method.meson_method] = method
if hasattr(method, 'meson_operator'):
cls.OPERATORS[method.meson_operator] = method
cls.TRIVIAL_OPERATORS.update(saved_trivial_operators)
@staticmethod
def method(name: str) -> T.Callable[[TV_func], TV_func]:
'''Decorator that tags a Python method as the implementation of a method
for the Meson interpreter'''
def decorator(f: TV_func) -> TV_func:
f.meson_method = name # type: ignore[attr-defined]
return f
return decorator
@staticmethod
def operator(op: MesonOperator) -> T.Callable[[TV_func], TV_func]:
'''Decorator that tags a method as the implementation of an operator
for the Meson interpreter'''
def decorator(f: TV_func) -> TV_func:
f.meson_operator = op # type: ignore[attr-defined]
return f
return decorator
def __init__(self, *, subproject: T.Optional['SubProject'] = None) -> None:
# Current node set during a method call. This can be used as location
# when printing a warning message during a method call.
self.current_node: mparser.BaseNode = None
self.subproject = subproject or SubProject('')
# The type of the object that can be printed to the user
def display_name(self) -> str:
return type(self).__name__
def method_call(
self,
method_name: str,
args: T.List[TYPE_var],
kwargs: TYPE_kwargs
) -> TYPE_var:
if method_name in self.METHODS:
method = self.METHODS[method_name]
if not getattr(method, 'no-args-flattening', False):
args = flatten(args)
if not getattr(method, 'no-second-level-holder-flattening', False):
args, kwargs = resolve_second_level_holders(args, kwargs)
return method(self, args, kwargs)
raise InvalidCode(f'Unknown method "{method_name}" in object {self} of type {type(self).__name__}.')
def operator_call(self, operator: MesonOperator, other: TYPE_var) -> TYPE_var:
if operator in self.TRIVIAL_OPERATORS:
op = self.TRIVIAL_OPERATORS[operator]
if op[0] is None and other is not None:
raise MesonBugException(f'The unary operator `{operator.value}` of {self.display_name()} was passed the object {other} of type {type(other).__name__}')
if op[0] is not None and not isinstance(other, op[0]):
raise InvalidArguments(f'The `{operator.value}` operator of {self.display_name()} does not accept objects of type {type(other).__name__} ({other})')
return op[1](self, other)
if operator in self.OPERATORS:
return self.OPERATORS[operator](self, other)
raise InvalidCode(f'Object {self} of type {self.display_name()} does not support the `{operator.value}` operator.')
# Default comparison operator support
def _throw_comp_exception(self, other: TYPE_var, opt_type: str) -> T.NoReturn:
raise InvalidArguments(textwrap.dedent(
f'''
Trying to compare values of different types ({self.display_name()}, {type(other).__name__}) using {opt_type}.
This was deprecated and undefined behavior previously and is as of 0.60.0 a hard error.
'''
))
def op_equals(self, other: TYPE_var) -> bool:
# We use `type(...) == type(...)` here to enforce an *exact* match for comparison. We
# don't want comparisons to be possible where `isinstance(derived_obj, type(base_obj))`
# would pass because this comparison must never be true: `derived_obj == base_obj`
if type(self) is not type(other):
self._throw_comp_exception(other, '==')
return self == other
def op_not_equals(self, other: TYPE_var) -> bool:
if type(self) is not type(other):
self._throw_comp_exception(other, '!=')
return self != other
class MesonInterpreterObject(InterpreterObject):
''' All non-elementary objects and non-object-holders should be derived from this '''
class MutableInterpreterObject:
''' Dummy class to mark the object type as mutable '''
class UnknownValue(MesonInterpreterObject):
'''This class is only used for the rewriter/static introspection tool and
indicates that a value cannot be determined statically, either because of
limitations in our code or because the value differs from machine to
machine.'''
class UndefinedVariable(MesonInterpreterObject):
'''This class is only used for the rewriter/static introspection tool and
represents the `value` a meson-variable has if it was never written to.'''
HoldableTypes = (HoldableObject, int, bool, str, list, dict)
TYPE_HoldableTypes = T.Union[TYPE_var, HoldableObject]
InterpreterObjectTypeVar = T.TypeVar('InterpreterObjectTypeVar', bound=TYPE_HoldableTypes)
class ObjectHolder(InterpreterObject, T.Generic[InterpreterObjectTypeVar]):
def __init__(self, obj: InterpreterObjectTypeVar, interpreter: 'Interpreter') -> None:
super().__init__(subproject=interpreter.subproject)
# This causes some type checkers to assume that obj is a base
# HoldableObject, not the specialized type, so only do this assert in
# non-type checking situations
if not T.TYPE_CHECKING:
assert isinstance(obj, HoldableTypes), f'This is a bug: Trying to hold object of type `{type(obj).__name__}` that is not in `{HoldableTypes}`'
self.held_object = obj
self.interpreter = interpreter
self.env = self.interpreter.environment
# Hide the object holder abstraction from the user
def display_name(self) -> str:
return type(self.held_object).__name__
# Override default comparison operators for the held object
@InterpreterObject.operator(MesonOperator.EQUALS)
def op_equals(self, other: TYPE_var) -> bool:
# See the comment from InterpreterObject why we are using `type()` here.
if type(self.held_object) is not type(other):
self._throw_comp_exception(other, '==')
return self.held_object == other
@InterpreterObject.operator(MesonOperator.NOT_EQUALS)
def op_not_equals(self, other: TYPE_var) -> bool:
if type(self.held_object) is not type(other):
self._throw_comp_exception(other, '!=')
return self.held_object != other
def __repr__(self) -> str:
return f'<[{type(self).__name__}] holds [{type(self.held_object).__name__}]: {self.held_object!r}>'
class IterableObject(metaclass=ABCMeta):
'''Base class for all objects that can be iterated over in a foreach loop'''
def iter_tuple_size(self) -> T.Optional[int]:
'''Return the size of the tuple for each iteration. Returns None if only a single value is returned.'''
raise MesonBugException(f'iter_tuple_size not implemented for {self.__class__.__name__}')
def iter_self(self) -> T.Iterator[T.Union[TYPE_var, T.Tuple[TYPE_var, ...]]]:
raise MesonBugException(f'iter not implemented for {self.__class__.__name__}')
def size(self) -> int:
raise MesonBugException(f'size not implemented for {self.__class__.__name__}')
class ContextManagerObject(MesonInterpreterObject, AbstractContextManager):
def __init__(self, subproject: 'SubProject') -> None:
super().__init__(subproject=subproject)