blob: 6524aa92dd4f75bcfd85cc086900d8868f2e6aea [file] [log] [blame]
# SPDX-License-Identifier: Apache-2.0
# Copyright 2013-2021 The Meson development team
from __future__ import annotations
from .. import mesonlib, mlog
from .disabler import Disabler
from .exceptions import InterpreterException, InvalidArguments
from ._unholder import _unholder
from dataclasses import dataclass
from functools import wraps
import abc
import itertools
import copy
import typing as T
if T.TYPE_CHECKING:
from typing_extensions import Protocol
from .. import mparser
from .baseobjects import InterpreterObject, SubProject, TV_func, TYPE_var, TYPE_kwargs
from .operator import MesonOperator
_TV_IntegerObject = T.TypeVar('_TV_IntegerObject', bound=InterpreterObject, contravariant=True)
_TV_ARG1 = T.TypeVar('_TV_ARG1', bound=TYPE_var, contravariant=True)
class FN_Operator(Protocol[_TV_IntegerObject, _TV_ARG1]):
def __call__(s, self: _TV_IntegerObject, other: _TV_ARG1) -> TYPE_var: ...
_TV_FN_Operator = T.TypeVar('_TV_FN_Operator', bound=FN_Operator)
def get_callee_args(wrapped_args: T.Sequence[T.Any]) -> T.Tuple['mparser.BaseNode', T.List['TYPE_var'], 'TYPE_kwargs', 'SubProject']:
# First argument could be InterpreterBase, InterpreterObject or ModuleObject.
# In the case of a ModuleObject it is the 2nd argument (ModuleState) that
# contains the needed information.
s = wrapped_args[0]
if not hasattr(s, 'current_node'):
s = wrapped_args[1]
node = s.current_node
subproject = s.subproject
args = kwargs = None
if len(wrapped_args) >= 3:
args = wrapped_args[-2]
kwargs = wrapped_args[-1]
return node, args, kwargs, subproject
def noPosargs(f: TV_func) -> TV_func:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
args = get_callee_args(wrapped_args)[1]
if args:
raise InvalidArguments('Function does not take positional arguments.')
return f(*wrapped_args, **wrapped_kwargs)
return T.cast('TV_func', wrapped)
def noKwargs(f: TV_func) -> TV_func:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
kwargs = get_callee_args(wrapped_args)[2]
if kwargs:
raise InvalidArguments('Function does not take keyword arguments.')
return f(*wrapped_args, **wrapped_kwargs)
return T.cast('TV_func', wrapped)
def stringArgs(f: TV_func) -> TV_func:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
args = get_callee_args(wrapped_args)[1]
if not isinstance(args, list):
mlog.debug('Not a list:', str(args))
raise InvalidArguments('Argument not a list.')
if not all(isinstance(s, str) for s in args):
mlog.debug('Element not a string:', str(args))
raise InvalidArguments('Arguments must be strings.')
return f(*wrapped_args, **wrapped_kwargs)
return T.cast('TV_func', wrapped)
def noArgsFlattening(f: TV_func) -> TV_func:
setattr(f, 'no-args-flattening', True) # noqa: B010
return f
def noSecondLevelHolderResolving(f: TV_func) -> TV_func:
setattr(f, 'no-second-level-holder-flattening', True) # noqa: B010
return f
def unholder_return(f: TV_func) -> T.Callable[..., TYPE_var]:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
res = f(*wrapped_args, **wrapped_kwargs)
return _unholder(res)
return T.cast('T.Callable[..., TYPE_var]', wrapped)
def disablerIfNotFound(f: TV_func) -> TV_func:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
kwargs = get_callee_args(wrapped_args)[2]
disabler = kwargs.pop('disabler', False)
ret = f(*wrapped_args, **wrapped_kwargs)
if disabler and not ret.found():
return Disabler()
return ret
return T.cast('TV_func', wrapped)
@dataclass(repr=False, eq=False)
class permittedKwargs:
permitted: T.Set[str]
def __call__(self, f: TV_func) -> TV_func:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
kwargs = get_callee_args(wrapped_args)[2]
unknowns = set(kwargs).difference(self.permitted)
if unknowns:
ustr = ', '.join([f'"{u}"' for u in sorted(unknowns)])
raise InvalidArguments(f'Got unknown keyword arguments {ustr}')
return f(*wrapped_args, **wrapped_kwargs)
return T.cast('TV_func', wrapped)
def typed_operator(operator: MesonOperator,
types: T.Union[T.Type, T.Tuple[T.Type, ...]]) -> T.Callable[['_TV_FN_Operator'], '_TV_FN_Operator']:
"""Decorator that does type checking for operator calls.
The principle here is similar to typed_pos_args, however much simpler
since only one other object ever is passed
"""
def inner(f: '_TV_FN_Operator') -> '_TV_FN_Operator':
@wraps(f)
def wrapper(self: 'InterpreterObject', other: TYPE_var) -> TYPE_var:
if not isinstance(other, types):
raise InvalidArguments(f'The `{operator.value}` of {self.display_name()} does not accept objects of type {type(other).__name__} ({other})')
return f(self, other)
return T.cast('_TV_FN_Operator', wrapper)
return inner
def typed_pos_args(name: str, *types: T.Union[T.Type, T.Tuple[T.Type, ...]],
varargs: T.Optional[T.Union[T.Type, T.Tuple[T.Type, ...]]] = None,
optargs: T.Optional[T.List[T.Union[T.Type, T.Tuple[T.Type, ...]]]] = None,
min_varargs: int = 0, max_varargs: int = 0) -> T.Callable[..., T.Any]:
"""Decorator that types type checking of positional arguments.
This supports two different models of optional arguments, the first is the
variadic argument model. Variadic arguments are a possibly bounded,
possibly unbounded number of arguments of the same type (unions are
supported). The second is the standard default value model, in this case
a number of optional arguments may be provided, but they are still
ordered, and they may have different types.
This function does not support mixing variadic and default arguments.
:name: The name of the decorated function (as displayed in error messages)
:varargs: They type(s) of any variadic arguments the function takes. If
None the function takes no variadic args
:min_varargs: the minimum number of variadic arguments taken
:max_varargs: the maximum number of variadic arguments taken. 0 means unlimited
:optargs: The types of any optional arguments parameters taken. If None
then no optional parameters are taken.
Some examples of usage blow:
>>> @typed_pos_args('mod.func', str, (str, int))
... def func(self, state: ModuleState, args: T.Tuple[str, T.Union[str, int]], kwargs: T.Dict[str, T.Any]) -> T.Any:
... pass
>>> @typed_pos_args('method', str, varargs=str)
... def method(self, node: BaseNode, args: T.Tuple[str, T.List[str]], kwargs: T.Dict[str, T.Any]) -> T.Any:
... pass
>>> @typed_pos_args('method', varargs=str, min_varargs=1)
... def method(self, node: BaseNode, args: T.Tuple[T.List[str]], kwargs: T.Dict[str, T.Any]) -> T.Any:
... pass
>>> @typed_pos_args('method', str, optargs=[(str, int), str])
... def method(self, node: BaseNode, args: T.Tuple[str, T.Optional[T.Union[str, int]], T.Optional[str]], kwargs: T.Dict[str, T.Any]) -> T.Any:
... pass
When should you chose `typed_pos_args('name', varargs=str,
min_varargs=1)` vs `typed_pos_args('name', str, varargs=str)`?
The answer has to do with the semantics of the function, if all of the
inputs are the same type (such as with `files()`) then the former is
correct, all of the arguments are string names of files. If the first
argument is something else the it should be separated.
"""
def inner(f: TV_func) -> TV_func:
@wraps(f)
def wrapper(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
args = get_callee_args(wrapped_args)[1]
# These are implementation programming errors, end users should never see them.
assert isinstance(args, list), args
assert max_varargs >= 0, 'max_varags cannot be negative'
assert min_varargs >= 0, 'min_varags cannot be negative'
assert optargs is None or varargs is None, \
'varargs and optargs not supported together as this would be ambiguous'
num_args = len(args)
num_types = len(types)
a_types = types
if varargs:
min_args = num_types + min_varargs
max_args = num_types + max_varargs
if max_varargs == 0 and num_args < min_args:
raise InvalidArguments(f'{name} takes at least {min_args} arguments, but got {num_args}.')
elif max_varargs != 0 and (num_args < min_args or num_args > max_args):
raise InvalidArguments(f'{name} takes between {min_args} and {max_args} arguments, but got {num_args}.')
elif optargs:
if num_args < num_types:
raise InvalidArguments(f'{name} takes at least {num_types} arguments, but got {num_args}.')
elif num_args > num_types + len(optargs):
raise InvalidArguments(f'{name} takes at most {num_types + len(optargs)} arguments, but got {num_args}.')
# Add the number of positional arguments required
if num_args > num_types:
diff = num_args - num_types
a_types = tuple(list(types) + list(optargs[:diff]))
elif num_args != num_types:
raise InvalidArguments(f'{name} takes exactly {num_types} arguments, but got {num_args}.')
for i, (arg, type_) in enumerate(itertools.zip_longest(args, a_types, fillvalue=varargs), start=1):
if not isinstance(arg, type_):
if isinstance(type_, tuple):
shouldbe = 'one of: {}'.format(", ".join(f'"{t.__name__}"' for t in type_))
else:
shouldbe = f'"{type_.__name__}"'
raise InvalidArguments(f'{name} argument {i} was of type "{type(arg).__name__}" but should have been {shouldbe}')
# Ensure that we're actually passing a tuple.
# Depending on what kind of function we're calling the length of
# wrapped_args can vary.
nargs = list(wrapped_args)
i = nargs.index(args)
if varargs:
# if we have varargs we need to split them into a separate
# tuple, as python's typing doesn't understand tuples with
# fixed elements and variadic elements, only one or the other.
# so in that case we need T.Tuple[int, str, float, T.Tuple[str, ...]]
pos = args[:len(types)]
var = list(args[len(types):])
pos.append(var)
nargs[i] = tuple(pos)
elif optargs:
if num_args < num_types + len(optargs):
diff = num_types + len(optargs) - num_args
nargs[i] = tuple(list(args) + [None] * diff)
else:
nargs[i] = tuple(args)
else:
nargs[i] = tuple(args)
return f(*nargs, **wrapped_kwargs)
return T.cast('TV_func', wrapper)
return inner
class ContainerTypeInfo:
"""Container information for keyword arguments.
For keyword arguments that are containers (list or dict), this class encodes
that information.
:param container: the type of container
:param contains: the types the container holds
:param pairs: if the container is supposed to be of even length.
This is mainly used for interfaces that predate the addition of dictionaries, and use
`[key, value, key2, value2]` format.
:param allow_empty: Whether this container is allowed to be empty
There are some cases where containers not only must be passed, but must
not be empty, and other cases where an empty container is allowed.
"""
def __init__(self, container: T.Type, contains: T.Union[T.Type, T.Tuple[T.Type, ...]], *,
pairs: bool = False, allow_empty: bool = True):
self.container = container
self.contains = contains
self.pairs = pairs
self.allow_empty = allow_empty
def check(self, value: T.Any) -> bool:
"""Check that a value is valid.
:param value: A value to check
:return: True if it is valid, False otherwise
"""
if not isinstance(value, self.container):
return False
iter_ = iter(value.values()) if isinstance(value, dict) else iter(value)
if any(not isinstance(i, self.contains) for i in iter_):
return False
if self.pairs and len(value) % 2 != 0:
return False
if not value and not self.allow_empty:
return False
return True
def check_any(self, value: T.Any) -> bool:
"""Check a value should emit new/deprecated feature.
:param value: A value to check
:return: True if any of the items in value matches, False otherwise
"""
if not isinstance(value, self.container):
return False
iter_ = iter(value.values()) if isinstance(value, dict) else iter(value)
return any(isinstance(i, self.contains) for i in iter_)
def description(self) -> str:
"""Human readable description of this container type.
:return: string to be printed
"""
container = 'dict' if self.container is dict else 'array'
if isinstance(self.contains, tuple):
contains = ' | '.join([t.__name__ for t in self.contains])
else:
contains = self.contains.__name__
s = f'{container}[{contains}]'
if self.pairs:
s += ' that has even size'
if not self.allow_empty:
s += ' that cannot be empty'
return s
_T = T.TypeVar('_T')
class _NULL_T:
"""Special null type for evolution, this is an implementation detail."""
_NULL = _NULL_T()
class KwargInfo(T.Generic[_T]):
"""A description of a keyword argument to a meson function
This is used to describe a value to the :func:typed_kwargs function.
:param name: the name of the parameter
:param types: A type or tuple of types that are allowed, or a :class:ContainerType
:param required: Whether this is a required keyword argument. defaults to False
:param listify: If true, then the argument will be listified before being
checked. This is useful for cases where the Meson DSL allows a scalar or
a container, but internally we only want to work with containers
:param default: A default value to use if this isn't set. defaults to None,
this may be safely set to a mutable type, as long as that type does not
itself contain mutable types, typed_kwargs will copy the default
:param since: Meson version in which this argument has been added. defaults to None
:param since_message: An extra message to pass to FeatureNew when since is triggered
:param deprecated: Meson version in which this argument has been deprecated. defaults to None
:param deprecated_message: An extra message to pass to FeatureDeprecated
when since is triggered
:param validator: A callable that does additional validation. This is mainly
intended for cases where a string is expected, but only a few specific
values are accepted. Must return None if the input is valid, or a
message if the input is invalid
:param convertor: A callable that converts the raw input value into a
different type. This is intended for cases such as the meson DSL using a
string, but the implementation using an Enum. This should not do
validation, just conversion.
:param deprecated_values: a dictionary mapping a value to the version of
meson it was deprecated in. The Value may be any valid value for this
argument.
:param since_values: a dictionary mapping a value to the version of meson it was
added in.
:param not_set_warning: A warning message that is logged if the kwarg is not
set by the user.
"""
def __init__(self, name: str,
types: T.Union[T.Type[_T], T.Tuple[T.Union[T.Type[_T], ContainerTypeInfo], ...], ContainerTypeInfo],
*, required: bool = False, listify: bool = False,
default: T.Optional[_T] = None,
since: T.Optional[str] = None,
since_message: T.Optional[str] = None,
since_values: T.Optional[T.Dict[T.Union[_T, ContainerTypeInfo, type], T.Union[str, T.Tuple[str, str]]]] = None,
deprecated: T.Optional[str] = None,
deprecated_message: T.Optional[str] = None,
deprecated_values: T.Optional[T.Dict[T.Union[_T, ContainerTypeInfo, type], T.Union[str, T.Tuple[str, str]]]] = None,
validator: T.Optional[T.Callable[[T.Any], T.Optional[str]]] = None,
convertor: T.Optional[T.Callable[[_T], object]] = None,
not_set_warning: T.Optional[str] = None):
self.name = name
self.types = types
self.required = required
self.listify = listify
self.default = default
self.since = since
self.since_message = since_message
self.since_values = since_values
self.deprecated = deprecated
self.deprecated_message = deprecated_message
self.deprecated_values = deprecated_values
self.validator = validator
self.convertor = convertor
self.not_set_warning = not_set_warning
def evolve(self, *,
name: T.Union[str, _NULL_T] = _NULL,
required: T.Union[bool, _NULL_T] = _NULL,
listify: T.Union[bool, _NULL_T] = _NULL,
default: T.Union[_T, None, _NULL_T] = _NULL,
since: T.Union[str, None, _NULL_T] = _NULL,
since_message: T.Union[str, None, _NULL_T] = _NULL,
since_values: T.Union[T.Dict[T.Union[_T, ContainerTypeInfo, type], T.Union[str, T.Tuple[str, str]]], None, _NULL_T] = _NULL,
deprecated: T.Union[str, None, _NULL_T] = _NULL,
deprecated_message: T.Union[str, None, _NULL_T] = _NULL,
deprecated_values: T.Union[T.Dict[T.Union[_T, ContainerTypeInfo, type], T.Union[str, T.Tuple[str, str]]], None, _NULL_T] = _NULL,
validator: T.Union[T.Callable[[_T], T.Optional[str]], None, _NULL_T] = _NULL,
convertor: T.Union[T.Callable[[_T], TYPE_var], None, _NULL_T] = _NULL) -> 'KwargInfo':
"""Create a shallow copy of this KwargInfo, with modifications.
This allows us to create a new copy of a KwargInfo with modifications.
This allows us to use a shared kwarg that implements complex logic, but
has slight differences in usage, such as being added to different
functions in different versions of Meson.
The use the _NULL special value here allows us to pass None, which has
meaning in many of these cases. _NULL itself is never stored, always
being replaced by either the copy in self, or the provided new version.
"""
return type(self)(
name if not isinstance(name, _NULL_T) else self.name,
self.types,
listify=listify if not isinstance(listify, _NULL_T) else self.listify,
required=required if not isinstance(required, _NULL_T) else self.required,
default=default if not isinstance(default, _NULL_T) else self.default,
since=since if not isinstance(since, _NULL_T) else self.since,
since_message=since_message if not isinstance(since_message, _NULL_T) else self.since_message,
since_values=since_values if not isinstance(since_values, _NULL_T) else self.since_values,
deprecated=deprecated if not isinstance(deprecated, _NULL_T) else self.deprecated,
deprecated_message=deprecated_message if not isinstance(deprecated_message, _NULL_T) else self.deprecated_message,
deprecated_values=deprecated_values if not isinstance(deprecated_values, _NULL_T) else self.deprecated_values,
validator=validator if not isinstance(validator, _NULL_T) else self.validator,
convertor=convertor if not isinstance(convertor, _NULL_T) else self.convertor,
)
def typed_kwargs(name: str, *types: KwargInfo, allow_unknown: bool = False) -> T.Callable[..., T.Any]:
"""Decorator for type checking keyword arguments.
Used to wrap a meson DSL implementation function, where it checks various
things about keyword arguments, including the type, and various other
information. For non-required values it sets the value to a default, which
means the value will always be provided.
If type is a :class:ContainerTypeInfo, then the default value will be
passed as an argument to the container initializer, making a shallow copy
:param name: the name of the function, including the object it's attached to
(if applicable)
:param *types: KwargInfo entries for each keyword argument.
"""
def inner(f: TV_func) -> TV_func:
def types_description(types_tuple: T.Tuple[T.Union[T.Type, ContainerTypeInfo], ...]) -> str:
candidates = []
for t in types_tuple:
if isinstance(t, ContainerTypeInfo):
candidates.append(t.description())
else:
candidates.append(t.__name__)
shouldbe = 'one of: ' if len(candidates) > 1 else ''
shouldbe += ', '.join(candidates)
return shouldbe
def raw_description(t: object) -> str:
"""describe a raw type (ie, one that is not a ContainerTypeInfo)."""
if isinstance(t, list):
if t:
return f"array[{' | '.join(sorted(mesonlib.OrderedSet(type(v).__name__ for v in t)))}]"
return 'array[]'
elif isinstance(t, dict):
if t:
return f"dict[{' | '.join(sorted(mesonlib.OrderedSet(type(v).__name__ for v in t.values())))}]"
return 'dict[]'
return type(t).__name__
def check_value_type(types_tuple: T.Tuple[T.Union[T.Type, ContainerTypeInfo], ...],
value: T.Any) -> bool:
for t in types_tuple:
if isinstance(t, ContainerTypeInfo):
if t.check(value):
return True
elif isinstance(value, t):
return True
return False
@wraps(f)
def wrapper(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
def emit_feature_change(values: T.Dict[_T, T.Union[str, T.Tuple[str, str]]], feature: T.Union[T.Type['FeatureDeprecated'], T.Type['FeatureNew']]) -> None:
for n, version in values.items():
if isinstance(version, tuple):
version, msg = version
else:
msg = None
warning: T.Optional[str] = None
if isinstance(n, ContainerTypeInfo):
if n.check_any(value):
warning = f'of type {n.description()}'
elif isinstance(n, type):
if isinstance(value, n):
warning = f'of type {n.__name__}'
elif isinstance(value, list):
if n in value:
warning = f'value "{n}" in list'
elif isinstance(value, dict):
if n in value.keys():
warning = f'value "{n}" in dict keys'
elif n == value:
warning = f'value "{n}"'
if warning:
feature.single_use(f'"{name}" keyword argument "{info.name}" {warning}', version, subproject, msg, location=node)
node, _, _kwargs, subproject = get_callee_args(wrapped_args)
# Cast here, as the convertor function may place something other than a TYPE_var in the kwargs
kwargs = T.cast('T.Dict[str, object]', _kwargs)
if not allow_unknown:
all_names = {t.name for t in types}
unknowns = set(kwargs).difference(all_names)
if unknowns:
ustr = ', '.join([f'"{u}"' for u in sorted(unknowns)])
raise InvalidArguments(f'{name} got unknown keyword arguments {ustr}')
for info in types:
types_tuple = info.types if isinstance(info.types, tuple) else (info.types,)
value = kwargs.get(info.name)
if value is not None:
if info.since:
feature_name = info.name + ' arg in ' + name
FeatureNew.single_use(feature_name, info.since, subproject, info.since_message, location=node)
if info.deprecated:
feature_name = info.name + ' arg in ' + name
FeatureDeprecated.single_use(feature_name, info.deprecated, subproject, info.deprecated_message, location=node)
if info.listify:
kwargs[info.name] = value = mesonlib.listify(value)
if not check_value_type(types_tuple, value):
shouldbe = types_description(types_tuple)
raise InvalidArguments(f'{name} keyword argument {info.name!r} was of type {raw_description(value)} but should have been {shouldbe}')
if info.validator is not None:
msg = info.validator(value)
if msg is not None:
raise InvalidArguments(f'{name} keyword argument "{info.name}" {msg}')
if info.deprecated_values is not None:
emit_feature_change(info.deprecated_values, FeatureDeprecated)
if info.since_values is not None:
emit_feature_change(info.since_values, FeatureNew)
elif info.required:
raise InvalidArguments(f'{name} is missing required keyword argument "{info.name}"')
else:
# set the value to the default, this ensuring all kwargs are present
# This both simplifies the typing checking and the usage
assert check_value_type(types_tuple, info.default), f'In function {name} default value of {info.name} is not a valid type, got {type(info.default)} expected {types_description(types_tuple)}'
# Create a shallow copy of the container. This allows mutable
# types to be used safely as default values
kwargs[info.name] = copy.copy(info.default)
if info.not_set_warning:
mlog.warning(info.not_set_warning)
if info.convertor:
kwargs[info.name] = info.convertor(kwargs[info.name])
return f(*wrapped_args, **wrapped_kwargs)
return T.cast('TV_func', wrapper)
return inner
# This cannot be a dataclass due to https://github.com/python/mypy/issues/5374
class FeatureCheckBase(metaclass=abc.ABCMeta):
"Base class for feature version checks"
feature_registry: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[T.Tuple[str, T.Optional['mparser.BaseNode']]]]]]
emit_notice = False
unconditional = False
def __init__(self, feature_name: str, feature_version: str, extra_message: str = ''):
self.feature_name = feature_name
self.feature_version = feature_version
self.extra_message = extra_message
@staticmethod
def get_target_version(subproject: str) -> str:
# Don't do any checks if project() has not been parsed yet
if subproject not in mesonlib.project_meson_versions:
return ''
return mesonlib.project_meson_versions[subproject]
@staticmethod
@abc.abstractmethod
def check_version(target_version: str, feature_version: str) -> bool:
pass
def use(self, subproject: 'SubProject', location: T.Optional['mparser.BaseNode'] = None) -> None:
tv = self.get_target_version(subproject)
# No target version
if tv == '' and not self.unconditional:
return
# Target version is new enough, don't warn
if self.check_version(tv, self.feature_version) and not self.emit_notice:
return
# Feature is too new for target version or we want to emit notices, register it
if subproject not in self.feature_registry:
self.feature_registry[subproject] = {self.feature_version: set()}
register = self.feature_registry[subproject]
if self.feature_version not in register:
register[self.feature_version] = set()
feature_key = (self.feature_name, location)
if feature_key in register[self.feature_version]:
# Don't warn about the same feature multiple times
# FIXME: This is needed to prevent duplicate warnings, but also
# means we won't warn about a feature used in multiple places.
return
register[self.feature_version].add(feature_key)
# Target version is new enough, don't warn even if it is registered for notice
if self.check_version(tv, self.feature_version):
return
self.log_usage_warning(tv, location)
@classmethod
def report(cls, subproject: str) -> None:
if subproject not in cls.feature_registry:
return
warning_str = cls.get_warning_str_prefix(cls.get_target_version(subproject))
notice_str = cls.get_notice_str_prefix(cls.get_target_version(subproject))
fv = cls.feature_registry[subproject]
tv = cls.get_target_version(subproject)
for version in sorted(fv.keys()):
message = ', '.join(sorted({f"'{i[0]}'" for i in fv[version]}))
if cls.check_version(tv, version):
notice_str += '\n * {}: {{{}}}'.format(version, message)
else:
warning_str += '\n * {}: {{{}}}'.format(version, message)
if '\n' in notice_str:
mlog.notice(notice_str, fatal=False)
if '\n' in warning_str:
mlog.warning(warning_str)
def log_usage_warning(self, tv: str, location: T.Optional['mparser.BaseNode']) -> None:
raise InterpreterException('log_usage_warning not implemented')
@staticmethod
def get_warning_str_prefix(tv: str) -> str:
raise InterpreterException('get_warning_str_prefix not implemented')
@staticmethod
def get_notice_str_prefix(tv: str) -> str:
raise InterpreterException('get_notice_str_prefix not implemented')
def __call__(self, f: TV_func) -> TV_func:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
node, _, _, subproject = get_callee_args(wrapped_args)
if subproject is None:
raise AssertionError(f'{wrapped_args!r}')
self.use(subproject, node)
return f(*wrapped_args, **wrapped_kwargs)
return T.cast('TV_func', wrapped)
@classmethod
def single_use(cls, feature_name: str, version: str, subproject: 'SubProject',
extra_message: str = '', location: T.Optional['mparser.BaseNode'] = None) -> None:
"""Oneline version that instantiates and calls use()."""
cls(feature_name, version, extra_message).use(subproject, location)
class FeatureNew(FeatureCheckBase):
"""Checks for new features"""
# Class variable, shared across all instances
#
# Format: {subproject: {feature_version: set(feature_names)}}
feature_registry = {}
@staticmethod
def check_version(target_version: str, feature_version: str) -> bool:
return mesonlib.version_compare_condition_with_min(target_version, feature_version)
@staticmethod
def get_warning_str_prefix(tv: str) -> str:
return f'Project specifies a minimum meson_version \'{tv}\' but uses features which were added in newer versions:'
@staticmethod
def get_notice_str_prefix(tv: str) -> str:
return ''
def log_usage_warning(self, tv: str, location: T.Optional['mparser.BaseNode']) -> None:
args = [
'Project targets', f"'{tv}'",
'but uses feature introduced in',
f"'{self.feature_version}':",
f'{self.feature_name}.',
]
if self.extra_message:
args.append(self.extra_message)
mlog.warning(*args, location=location)
class FeatureDeprecated(FeatureCheckBase):
"""Checks for deprecated features"""
# Class variable, shared across all instances
#
# Format: {subproject: {feature_version: set(feature_names)}}
feature_registry = {}
emit_notice = True
@staticmethod
def check_version(target_version: str, feature_version: str) -> bool:
# For deprecation checks we need to return the inverse of FeatureNew checks
return not mesonlib.version_compare_condition_with_min(target_version, feature_version)
@staticmethod
def get_warning_str_prefix(tv: str) -> str:
return 'Deprecated features used:'
@staticmethod
def get_notice_str_prefix(tv: str) -> str:
return 'Future-deprecated features used:'
def log_usage_warning(self, tv: str, location: T.Optional['mparser.BaseNode']) -> None:
args = [
'Project targets', f"'{tv}'",
'but uses feature deprecated since',
f"'{self.feature_version}':",
f'{self.feature_name}.',
]
if self.extra_message:
args.append(self.extra_message)
mlog.warning(*args, location=location)
class FeatureBroken(FeatureCheckBase):
"""Checks for broken features"""
# Class variable, shared across all instances
#
# Format: {subproject: {feature_version: set(feature_names)}}
feature_registry = {}
unconditional = True
@staticmethod
def check_version(target_version: str, feature_version: str) -> bool:
# always warn for broken stuff
return False
@staticmethod
def get_warning_str_prefix(tv: str) -> str:
return 'Broken features used:'
@staticmethod
def get_notice_str_prefix(tv: str) -> str:
return ''
def log_usage_warning(self, tv: str, location: T.Optional['mparser.BaseNode']) -> None:
args = [
'Project uses feature that was always broken,',
'and is now deprecated since',
f"'{self.feature_version}':",
f'{self.feature_name}.',
]
if self.extra_message:
args.append(self.extra_message)
mlog.deprecation(*args, location=location)
# This cannot be a dataclass due to https://github.com/python/mypy/issues/5374
class FeatureCheckKwargsBase(metaclass=abc.ABCMeta):
@property
@abc.abstractmethod
def feature_check_class(self) -> T.Type[FeatureCheckBase]:
pass
def __init__(self, feature_name: str, feature_version: str,
kwargs: T.List[str], extra_message: T.Optional[str] = None):
self.feature_name = feature_name
self.feature_version = feature_version
self.kwargs = kwargs
self.extra_message = extra_message
def __call__(self, f: TV_func) -> TV_func:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
node, _, kwargs, subproject = get_callee_args(wrapped_args)
if subproject is None:
raise AssertionError(f'{wrapped_args!r}')
for arg in self.kwargs:
if arg not in kwargs:
continue
name = arg + ' arg in ' + self.feature_name
self.feature_check_class.single_use(
name, self.feature_version, subproject, self.extra_message, node)
return f(*wrapped_args, **wrapped_kwargs)
return T.cast('TV_func', wrapped)
class FeatureNewKwargs(FeatureCheckKwargsBase):
feature_check_class = FeatureNew
class FeatureDeprecatedKwargs(FeatureCheckKwargsBase):
feature_check_class = FeatureDeprecated