blob: 21db6e473281b5577409bc07d34295550633e88b [file] [log] [blame]
/*
* Copyright (c) 2019 Nutanix Inc. All rights reserved.
*
* Authors: Thanos Makatos <thanos@nutanix.com>
* Swapnil Ingle <swapnil.ingle@nutanix.com>
* Felipe Franciosi <felipe@nutanix.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Nutanix nor the names of its contributors may be
* used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/param.h>
#include "pci_caps.h"
#include "common.h"
#include "libvfio-user.h"
#include "pci.h"
#include "private.h"
static inline void
pci_hdr_write_bar(vfu_ctx_t *vfu_ctx, uint16_t bar_index, const char *buf)
{
uint32_t cfg_addr;
unsigned long mask;
vfu_pci_hdr_t *hdr;
assert(vfu_ctx != NULL);
if (vfu_ctx->reg_info[bar_index].size == 0) {
return;
}
hdr = &vfu_pci_get_config_space(vfu_ctx)->hdr;
cfg_addr = *(uint32_t *) buf;
vfu_log(vfu_ctx, LOG_DEBUG, "BAR%d addr 0x%x", bar_index, cfg_addr);
if (cfg_addr == 0xffffffff) {
cfg_addr = ~(vfu_ctx->reg_info[bar_index].size) + 1;
}
if ((vfu_ctx->reg_info[bar_index].flags & VFU_REGION_FLAG_MEM)) {
mask = PCI_BASE_ADDRESS_MEM_MASK;
} else {
mask = PCI_BASE_ADDRESS_IO_MASK;
}
cfg_addr |= (hdr->bars[bar_index].raw & ~mask);
hdr->bars[bar_index].raw = htole32(cfg_addr);
}
#define BAR_INDEX(offset) ((offset - PCI_BASE_ADDRESS_0) >> 2)
static int
handle_command_write(vfu_ctx_t *ctx, vfu_pci_config_space_t *pci,
const char *buf)
{
uint16_t v;
assert(ctx != NULL);
assert(pci != NULL);
assert(buf != NULL);
v = *(uint16_t*)buf;
if ((v & PCI_COMMAND_IO) == PCI_COMMAND_IO) {
if (!pci->hdr.cmd.iose) {
pci->hdr.cmd.iose = 0x1;
vfu_log(ctx, LOG_DEBUG, "I/O space enabled");
}
v &= ~PCI_COMMAND_IO;
} else {
if (pci->hdr.cmd.iose) {
pci->hdr.cmd.iose = 0x0;
vfu_log(ctx, LOG_DEBUG, "I/O space disabled");
}
}
if ((v & PCI_COMMAND_MEMORY) == PCI_COMMAND_MEMORY) {
if (!pci->hdr.cmd.mse) {
pci->hdr.cmd.mse = 0x1;
vfu_log(ctx, LOG_DEBUG, "memory space enabled");
}
v &= ~PCI_COMMAND_MEMORY;
} else {
if (pci->hdr.cmd.mse) {
pci->hdr.cmd.mse = 0x0;
vfu_log(ctx, LOG_DEBUG, "memory space disabled");
}
}
if ((v & PCI_COMMAND_MASTER) == PCI_COMMAND_MASTER) {
if (!pci->hdr.cmd.bme) {
pci->hdr.cmd.bme = 0x1;
vfu_log(ctx, LOG_DEBUG, "bus master enabled");
}
v &= ~PCI_COMMAND_MASTER;
} else {
if (pci->hdr.cmd.bme) {
pci->hdr.cmd.bme = 0x0;
vfu_log(ctx, LOG_DEBUG, "bus master disabled");
}
}
if ((v & PCI_COMMAND_SERR) == PCI_COMMAND_SERR) {
if (!pci->hdr.cmd.see) {
pci->hdr.cmd.see = 0x1;
vfu_log(ctx, LOG_DEBUG, "SERR# enabled");
}
v &= ~PCI_COMMAND_SERR;
} else {
if (pci->hdr.cmd.see) {
pci->hdr.cmd.see = 0x0;
vfu_log(ctx, LOG_DEBUG, "SERR# disabled");
}
}
if ((v & PCI_COMMAND_INTX_DISABLE) == PCI_COMMAND_INTX_DISABLE) {
if (!pci->hdr.cmd.id) {
pci->hdr.cmd.id = 0x1;
vfu_log(ctx, LOG_DEBUG, "INTx emulation disabled");
}
v &= ~PCI_COMMAND_INTX_DISABLE;
} else {
if (pci->hdr.cmd.id) {
pci->hdr.cmd.id = 0x0;
vfu_log(ctx, LOG_DEBUG, "INTx emulation enabled");
}
}
if ((v & PCI_COMMAND_INVALIDATE) == PCI_COMMAND_INVALIDATE) {
if (!pci->hdr.cmd.mwie) {
pci->hdr.cmd.mwie = 1U;
vfu_log(ctx, LOG_DEBUG, "memory write and invalidate enabled");
}
v &= ~PCI_COMMAND_INVALIDATE;
} else {
if (pci->hdr.cmd.mwie) {
pci->hdr.cmd.mwie = 0;
vfu_log(ctx, LOG_DEBUG, "memory write and invalidate disabled");
}
}
if ((v & PCI_COMMAND_VGA_PALETTE) == PCI_COMMAND_VGA_PALETTE) {
vfu_log(ctx, LOG_DEBUG, "enabling VGA palette snooping ignored");
v &= ~PCI_COMMAND_VGA_PALETTE;
}
if (v != 0) {
vfu_log(ctx, LOG_ERR, "unconsumed command flags %x", v);
return ERROR_INT(EINVAL);
}
return 0;
}
static int
handle_erom_write(vfu_ctx_t *ctx, vfu_pci_config_space_t *pci,
const char *buf)
{
uint32_t v;
assert(ctx != NULL);
assert(pci != NULL);
v = *(uint32_t*)buf;
if (v == (uint32_t)PCI_ROM_ADDRESS_MASK) {
vfu_log(ctx, LOG_DEBUG, "write mask to EROM ignored");
} else if (v == 0) {
vfu_log(ctx, LOG_DEBUG, "cleared EROM");
pci->hdr.erom = 0;
} else if (v == (uint32_t)~PCI_ROM_ADDRESS_ENABLE) {
vfu_log(ctx, LOG_DEBUG, "EROM disable ignored");
} else if (v == ~0U) {
vfu_log(ctx, LOG_INFO, "EROM not implemented");
} else {
vfu_log(ctx, LOG_ERR, "bad write to EROM 0x%x bytes", v);
return ERROR_INT(EINVAL);
}
return 0;
}
static int
pci_hdr_write(vfu_ctx_t *vfu_ctx, const char *buf, loff_t offset)
{
vfu_pci_config_space_t *cfg_space;
int ret = 0;
assert(vfu_ctx != NULL);
assert(buf != NULL);
cfg_space = vfu_pci_get_config_space(vfu_ctx);
switch (offset) {
case PCI_COMMAND:
ret = handle_command_write(vfu_ctx, cfg_space, buf);
break;
case PCI_STATUS:
/* FIXME ignoring write completely is wrong as some bits are RW1C */
vfu_log(vfu_ctx, LOG_INFO, "write to status ignored");
break;
/*
* According to the PCI spec, writing to read-only registers must be
* ignored by the device. Some OSes tend to do this, e.g. FreeBSD.
*/
case offsetof(vfu_pci_hdr_t, rid):
case offsetof(vfu_pci_hdr_t, cc):
case offsetof(vfu_pci_hdr_t, intr.ipin):
case offsetof(vfu_pci_hdr_t, mgnt):
case offsetof(vfu_pci_hdr_t, mlat):
break;
case PCI_INTERRUPT_LINE:
cfg_space->hdr.intr.iline = buf[0];
vfu_log(vfu_ctx, LOG_DEBUG, "ILINE=%0x", cfg_space->hdr.intr.iline);
break;
case PCI_CACHE_LINE_SIZE:
cfg_space->hdr.cls = (uint8_t)buf[0];
vfu_log(vfu_ctx, LOG_DEBUG, "cache line size set to %#hhx",
cfg_space->hdr.cls);
break;
case PCI_LATENCY_TIMER:
cfg_space->hdr.mlt = (uint8_t)buf[0];
vfu_log(vfu_ctx, LOG_DEBUG, "set to latency timer to %hhx",
cfg_space->hdr.mlt);
break;
case PCI_BASE_ADDRESS_0:
case PCI_BASE_ADDRESS_1:
case PCI_BASE_ADDRESS_2:
case PCI_BASE_ADDRESS_3:
case PCI_BASE_ADDRESS_4:
case PCI_BASE_ADDRESS_5:
pci_hdr_write_bar(vfu_ctx, BAR_INDEX(offset), buf);
break;
case PCI_ROM_ADDRESS:
ret = handle_erom_write(vfu_ctx, cfg_space, buf);
break;
default:
vfu_log(vfu_ctx, LOG_ERR, "PCI config write %#lx not handled",
offset);
ret = ERROR_INT(EINVAL);
}
return ret;
}
/*
* Access to the standard PCI header at the given offset.
*/
static ssize_t
pci_hdr_access(vfu_ctx_t *vfu_ctx, char *buf, size_t count,
loff_t offset, bool is_write)
{
ssize_t ret;
assert(count <= PCI_STD_HEADER_SIZEOF);
if (is_write) {
ret = pci_hdr_write(vfu_ctx, buf, offset);
if (ret < 0) {
vfu_log(vfu_ctx, LOG_ERR, "failed to write to PCI header: %m");
} else {
ret = count;
}
} else {
memcpy(buf, pci_config_space_ptr(vfu_ctx, offset), count);
ret = count;
}
return ret;
}
/*
* Access to the PCI config space that isn't handled by pci_hdr_access() or a
* capability handler.
*/
ssize_t
pci_nonstd_access(vfu_ctx_t *vfu_ctx, char *buf, size_t count,
loff_t offset, bool is_write)
{
vfu_region_access_cb_t *cb =
vfu_ctx->reg_info[VFU_PCI_DEV_CFG_REGION_IDX].cb;
if (cb != NULL) {
return cb(vfu_ctx, buf, count, offset, is_write);
}
if (is_write) {
vfu_log(vfu_ctx, LOG_ERR, "no callback for write to config space "
"offset %lu size %zu", offset, count);
return ERROR_INT(EINVAL);
}
memcpy(buf, pci_config_space_ptr(vfu_ctx, offset), count);
return count;
}
#define PCI_REG_SZ(reg) \
[offsetof(vfu_pci_hdr_t, reg)] = sizeof(((vfu_pci_hdr_t *)0)->reg)
static size_t
pci_config_space_size_for_reg(loff_t offset)
{
static const size_t off2sz[] = {
PCI_REG_SZ(id),
PCI_REG_SZ(cmd),
PCI_REG_SZ(sts),
PCI_REG_SZ(rid),
PCI_REG_SZ(cc),
PCI_REG_SZ(cls),
PCI_REG_SZ(mlt),
PCI_REG_SZ(htype),
PCI_REG_SZ(bist),
PCI_REG_SZ(bars[0]),
PCI_REG_SZ(bars[1]),
PCI_REG_SZ(bars[2]),
PCI_REG_SZ(bars[3]),
PCI_REG_SZ(bars[4]),
PCI_REG_SZ(bars[5]),
PCI_REG_SZ(ccptr),
PCI_REG_SZ(ss),
PCI_REG_SZ(erom),
PCI_REG_SZ(cap),
PCI_REG_SZ(intr.iline),
PCI_REG_SZ(intr.ipin),
PCI_REG_SZ(mgnt),
PCI_REG_SZ(mlat)
};
assert(offset < PCI_STD_HEADER_SIZEOF);
return off2sz[offset];
}
/*
* Returns the size of the next segment to access, which may be less than
* @count: we might need to split up an access that straddles capabilities and
* normal config space, for example.
*
* @cb is set to the callback to use for accessing the segment.
*/
static size_t
pci_config_space_next_segment(vfu_ctx_t *ctx, size_t count, loff_t offset,
bool is_write, vfu_region_access_cb_t **cb)
{
struct pci_cap *cap;
if (offset < PCI_STD_HEADER_SIZEOF) {
*cb = pci_hdr_access;
if (is_write) {
size_t reg_size = pci_config_space_size_for_reg(offset);
if (reg_size == 0) {
*cb = NULL;
return 0;
}
count = MIN(count, reg_size);
} else {
count = MIN(count, (size_t)(PCI_STD_HEADER_SIZEOF - offset));
}
return count;
}
cap = cap_find_by_offset(ctx, offset, count);
if (cap == NULL) {
*cb = pci_nonstd_access;
return count;
}
/* If we have config space before the capability. */
if (offset < (loff_t)cap->off) {
*cb = pci_nonstd_access;
return cap->off - offset;
}
*cb = pci_cap_access;
return MIN(count, cap->size);
}
/*
* Special handler for config space: we handle all accesses to the standard PCI
* header, as well as to any capabilities.
*
* Outside of those areas, if a callback is specified for the region, we'll use
* that; otherwise, writes are not allowed, and reads are satisfied with
* memcpy().
*
* Returns the number of bytes handled, or -1 and errno on error.
*/
ssize_t
pci_config_space_access(vfu_ctx_t *vfu_ctx, char *buf, size_t count,
loff_t offset, bool is_write)
{
loff_t start = offset;
ssize_t ret = 0;
assert(vfu_ctx != NULL);
while (count > 0) {
vfu_region_access_cb_t *cb;
size_t size;
size = pci_config_space_next_segment(vfu_ctx, count, offset, is_write,
&cb);
if (cb == NULL) {
vfu_log(vfu_ctx, LOG_ERR, "bad write to PCI config space %#lx-%#lx",
offset, offset + count - 1);
return size;
}
ret = cb(vfu_ctx, buf, size, offset, is_write);
// FIXME: partial reads, still return an error?
if (ret < 0) {
return ret;
}
offset += ret;
count -= ret;
buf += ret;
}
return offset - start;
}
EXPORT int
vfu_pci_init(vfu_ctx_t *vfu_ctx, vfu_pci_type_t pci_type,
int hdr_type, int revision UNUSED)
{
vfu_pci_config_space_t *cfg_space;
size_t size;
assert(vfu_ctx != NULL);
switch (pci_type) {
case VFU_PCI_TYPE_CONVENTIONAL:
case VFU_PCI_TYPE_PCI_X_1:
size = PCI_CFG_SPACE_SIZE;
break;
case VFU_PCI_TYPE_PCI_X_2:
case VFU_PCI_TYPE_EXPRESS:
size = PCI_CFG_SPACE_EXP_SIZE;
break;
default:
vfu_log(vfu_ctx, LOG_ERR, "invalid PCI type %u", pci_type);
return ERROR_INT(EINVAL);
}
if (hdr_type != PCI_HEADER_TYPE_NORMAL) {
vfu_log(vfu_ctx, LOG_ERR, "invalid PCI header type %d", hdr_type);
return ERROR_INT(EINVAL);
}
/*
* TODO there no real reason why we shouldn't allow this, we should just
* clean up and redo it.
*/
if (vfu_ctx->pci.config_space != NULL) {
vfu_log(vfu_ctx, LOG_ERR,
"PCI configuration space header already setup");
return ERROR_INT(EEXIST);
}
// Allocate a buffer for the config space.
cfg_space = calloc(1, size);
if (cfg_space == NULL) {
return ERROR_INT(ENOMEM);
}
vfu_ctx->pci.type = pci_type;
vfu_ctx->pci.config_space = cfg_space;
vfu_ctx->reg_info[VFU_PCI_DEV_CFG_REGION_IDX].size = size;
return 0;
}
EXPORT void
vfu_pci_set_id(vfu_ctx_t *vfu_ctx, uint16_t vid, uint16_t did,
uint16_t ssvid, uint16_t ssid)
{
vfu_ctx->pci.config_space->hdr.id.vid = vid;
vfu_ctx->pci.config_space->hdr.id.did = did;
vfu_ctx->pci.config_space->hdr.ss.vid = ssvid;
vfu_ctx->pci.config_space->hdr.ss.sid = ssid;
}
EXPORT void
vfu_pci_set_class(vfu_ctx_t *vfu_ctx, uint8_t base, uint8_t sub, uint8_t pi)
{
vfu_ctx->pci.config_space->hdr.cc.bcc = base;
vfu_ctx->pci.config_space->hdr.cc.scc = sub;
vfu_ctx->pci.config_space->hdr.cc.pi = pi;
}
EXPORT vfu_pci_config_space_t *
vfu_pci_get_config_space(vfu_ctx_t *vfu_ctx)
{
assert(vfu_ctx != NULL);
return vfu_ctx->pci.config_space;
}
/* ex: set tabstop=4 shiftwidth=4 softtabstop=4 expandtab: */