| /* SPDX-License-Identifier: MIT */ |
| /* |
| * libslirp glue |
| * |
| * Copyright (c) 2004-2008 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "slirp.h" |
| |
| |
| #ifndef _WIN32 |
| #include <net/if.h> |
| #endif |
| |
| /* https://gitlab.freedesktop.org/slirp/libslirp/issues/18 */ |
| #if defined(__NetBSD__) && defined(if_mtu) |
| #undef if_mtu |
| #endif |
| |
| #if defined(_WIN32) |
| |
| #define INITIAL_DNS_ADDR_BUF_SIZE 32 * 1024 |
| #define REALLOC_RETRIES 5 |
| |
| // Broadcast site local DNS resolvers. We do not use these because they are |
| // highly unlikely to be valid. |
| // https://www.ietf.org/proceedings/52/I-D/draft-ietf-ipngwg-dns-discovery-03.txt |
| static const struct in6_addr SITE_LOCAL_DNS_BROADCAST_ADDRS[] = { |
| { |
| {{ |
| 0xfe, 0xc0, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 |
| }} |
| }, |
| { |
| {{ |
| 0xfe, 0xc0, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02 |
| }} |
| }, |
| { |
| {{ |
| 0xfe, 0xc0, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, |
| }} |
| }, |
| }; |
| |
| #endif |
| |
| int slirp_debug; |
| |
| /* Define to 1 if you want KEEPALIVE timers */ |
| bool slirp_do_keepalive; |
| |
| /* host loopback address */ |
| struct in_addr loopback_addr; |
| /* host loopback network mask */ |
| unsigned long loopback_mask; |
| |
| /* emulated hosts use the MAC addr 52:55:IP:IP:IP:IP */ |
| static const uint8_t special_ethaddr[ETH_ALEN] = { 0x52, 0x55, 0x00, |
| 0x00, 0x00, 0x00 }; |
| |
| unsigned curtime; |
| |
| static struct in_addr dns_addr; |
| static struct in6_addr dns6_addr; |
| static uint32_t dns6_scope_id; |
| static unsigned dns_addr_time; |
| static unsigned dns6_addr_time; |
| |
| #define TIMEOUT_FAST 2 /* milliseconds */ |
| #define TIMEOUT_SLOW 499 /* milliseconds */ |
| /* for the aging of certain requests like DNS */ |
| #define TIMEOUT_DEFAULT 1000 /* milliseconds */ |
| |
| #if defined(_WIN32) |
| |
| int get_dns_addr(struct in_addr *pdns_addr) |
| { |
| FIXED_INFO *FixedInfo = NULL; |
| ULONG BufLen; |
| DWORD ret; |
| IP_ADDR_STRING *pIPAddr; |
| struct in_addr tmp_addr; |
| |
| if (dns_addr.s_addr != 0 && (curtime - dns_addr_time) < TIMEOUT_DEFAULT) { |
| *pdns_addr = dns_addr; |
| return 0; |
| } |
| |
| FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO)); |
| BufLen = sizeof(FIXED_INFO); |
| |
| if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) { |
| if (FixedInfo) { |
| GlobalFree(FixedInfo); |
| FixedInfo = NULL; |
| } |
| FixedInfo = GlobalAlloc(GPTR, BufLen); |
| } |
| |
| if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) { |
| printf("GetNetworkParams failed. ret = %08x\n", (unsigned)ret); |
| if (FixedInfo) { |
| GlobalFree(FixedInfo); |
| FixedInfo = NULL; |
| } |
| return -1; |
| } |
| |
| pIPAddr = &(FixedInfo->DnsServerList); |
| inet_aton(pIPAddr->IpAddress.String, &tmp_addr); |
| *pdns_addr = tmp_addr; |
| dns_addr = tmp_addr; |
| dns_addr_time = curtime; |
| if (FixedInfo) { |
| GlobalFree(FixedInfo); |
| FixedInfo = NULL; |
| } |
| return 0; |
| } |
| |
| int is_site_local_dns_broadcast(struct in6_addr *address) |
| { |
| int i; |
| for (i = 0; i < G_N_ELEMENTS(SITE_LOCAL_DNS_BROADCAST_ADDRS); i++) { |
| if (in6_equal(address, &SITE_LOCAL_DNS_BROADCAST_ADDRS[i])) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| void print_dns_v6_address(struct in6_addr address) |
| { |
| char address_str[INET6_ADDRSTRLEN] = ""; |
| if (inet_ntop(AF_INET6, &address, address_str, INET6_ADDRSTRLEN) |
| == NULL) { |
| DEBUG_ERROR("Failed to stringify IPv6 address for logging."); |
| return; |
| } |
| DEBUG_CALL("IPv6 DNS server found: %s", address_str); |
| } |
| |
| // Gets the first valid DNS resolver with an IPv6 address. |
| // Ignores any site local broadcast DNS servers, as these |
| // are on deprecated addresses and not generally expected |
| // to work. Further details at: |
| // https://www.ietf.org/proceedings/52/I-D/draft-ietf-ipngwg-dns-discovery-03.txt |
| int get_ipv6_dns_server(struct in6_addr *dns_server_address, uint32_t *scope_id) |
| { |
| PIP_ADAPTER_ADDRESSES addresses = NULL; |
| PIP_ADAPTER_ADDRESSES address = NULL; |
| IP_ADAPTER_DNS_SERVER_ADDRESS *dns_server = NULL; |
| struct sockaddr_in6 *dns_v6_addr = NULL; |
| |
| ULONG buf_size = INITIAL_DNS_ADDR_BUF_SIZE; |
| DWORD res = ERROR_BUFFER_OVERFLOW; |
| int i; |
| |
| for (i = 0; i < REALLOC_RETRIES; i++) { |
| // If non null, we hit buffer overflow, free it so we can try again. |
| if (addresses != NULL) { |
| g_free(addresses); |
| } |
| |
| addresses = g_malloc(buf_size); |
| res = GetAdaptersAddresses(AF_UNSPEC, GAA_FLAG_INCLUDE_PREFIX, NULL, |
| addresses, &buf_size); |
| |
| if (res != ERROR_BUFFER_OVERFLOW) { |
| break; |
| } |
| } |
| |
| if (res != NO_ERROR) { |
| DEBUG_ERROR("Failed to get IPv6 DNS addresses due to error %lX", res); |
| goto failure; |
| } |
| |
| address = addresses; |
| for (address = addresses; address != NULL; address = address->Next) { |
| for (dns_server = address->FirstDnsServerAddress; |
| dns_server != NULL; |
| dns_server = dns_server->Next) { |
| |
| if (dns_server->Address.lpSockaddr->sa_family != AF_INET6) { |
| continue; |
| } |
| |
| dns_v6_addr = (struct sockaddr_in6 *)dns_server->Address.lpSockaddr; |
| if (is_site_local_dns_broadcast(&dns_v6_addr->sin6_addr) == 0) { |
| print_dns_v6_address(dns_v6_addr->sin6_addr); |
| *dns_server_address = dns_v6_addr->sin6_addr; |
| *scope_id = dns_v6_addr->sin6_scope_id; |
| |
| g_free(addresses); |
| return 0; |
| } |
| } |
| } |
| |
| DEBUG_ERROR("No IPv6 DNS servers found.\n"); |
| |
| failure: |
| g_free(addresses); |
| return -1; |
| } |
| |
| int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id) |
| { |
| if (!in6_zero(&dns6_addr) && (curtime - dns6_addr_time) < TIMEOUT_DEFAULT) { |
| *pdns6_addr = dns6_addr; |
| *scope_id = dns6_scope_id; |
| return 0; |
| } |
| |
| if (get_ipv6_dns_server(pdns6_addr, scope_id) == 0) { |
| dns6_addr = *pdns6_addr; |
| dns6_addr_time = curtime; |
| dns6_scope_id = *scope_id; |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| static void winsock_cleanup(void) |
| { |
| WSACleanup(); |
| } |
| |
| #elif defined(__APPLE__) |
| |
| #include <resolv.h> |
| |
| static int get_dns_addr_cached(void *pdns_addr, void *cached_addr, |
| socklen_t addrlen, unsigned *cached_time) |
| { |
| if (curtime - *cached_time < TIMEOUT_DEFAULT) { |
| memcpy(pdns_addr, cached_addr, addrlen); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int get_dns_addr_libresolv(int af, void *pdns_addr, void *cached_addr, |
| socklen_t addrlen, |
| uint32_t *scope_id, uint32_t *cached_scope_id, |
| unsigned *cached_time) |
| { |
| struct __res_state state; |
| union res_sockaddr_union servers[NI_MAXSERV]; |
| int count; |
| int found; |
| void *addr; |
| |
| // we only support IPv4 and IPv4, we assume it's one or the other |
| assert(af == AF_INET || af == AF_INET6); |
| |
| if (res_ninit(&state) != 0) { |
| return -1; |
| } |
| |
| count = res_getservers(&state, servers, NI_MAXSERV); |
| found = 0; |
| DEBUG_MISC("IP address of your DNS(s):"); |
| for (int i = 0; i < count; i++) { |
| if (af == servers[i].sin.sin_family) { |
| found++; |
| } |
| if (af == AF_INET) { |
| addr = &servers[i].sin.sin_addr; |
| } else { // af == AF_INET6 |
| addr = &servers[i].sin6.sin6_addr; |
| } |
| |
| // we use the first found entry |
| if (found == 1) { |
| memcpy(pdns_addr, addr, addrlen); |
| memcpy(cached_addr, addr, addrlen); |
| if (scope_id) { |
| *scope_id = 0; |
| } |
| if (cached_scope_id) { |
| *cached_scope_id = 0; |
| } |
| *cached_time = curtime; |
| } |
| |
| if (found > 3) { |
| DEBUG_MISC(" (more)"); |
| break; |
| } else if (slirp_debug & DBG_MISC) { |
| char s[INET6_ADDRSTRLEN]; |
| const char *res = inet_ntop(af, addr, s, sizeof(s)); |
| if (!res) { |
| res = " (string conversion error)"; |
| } |
| DEBUG_MISC(" %s", res); |
| } |
| } |
| |
| res_ndestroy(&state); |
| if (!found) |
| return -1; |
| return 0; |
| } |
| |
| int get_dns_addr(struct in_addr *pdns_addr) |
| { |
| if (dns_addr.s_addr != 0) { |
| int ret; |
| ret = get_dns_addr_cached(pdns_addr, &dns_addr, sizeof(dns_addr), |
| &dns_addr_time); |
| if (ret <= 0) { |
| return ret; |
| } |
| } |
| return get_dns_addr_libresolv(AF_INET, pdns_addr, &dns_addr, |
| sizeof(dns_addr), NULL, NULL, &dns_addr_time); |
| } |
| |
| int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id) |
| { |
| if (!in6_zero(&dns6_addr)) { |
| int ret; |
| ret = get_dns_addr_cached(pdns6_addr, &dns6_addr, sizeof(dns6_addr), |
| &dns6_addr_time); |
| if (ret == 0) { |
| *scope_id = dns6_scope_id; |
| } |
| if (ret <= 0) { |
| return ret; |
| } |
| } |
| return get_dns_addr_libresolv(AF_INET6, pdns6_addr, &dns6_addr, |
| sizeof(dns6_addr), |
| scope_id, &dns6_scope_id, &dns6_addr_time); |
| } |
| |
| #else // !defined(_WIN32) && !defined(__APPLE__) |
| |
| #if defined(__HAIKU__) |
| #define RESOLV_CONF_PATH "/boot/system/settings/network/resolv.conf" |
| #else |
| #define RESOLV_CONF_PATH "/etc/resolv.conf" |
| #endif |
| |
| static int get_dns_addr_cached(void *pdns_addr, void *cached_addr, |
| socklen_t addrlen, struct stat *cached_stat, |
| unsigned *cached_time) |
| { |
| struct stat old_stat; |
| if (curtime - *cached_time < TIMEOUT_DEFAULT) { |
| memcpy(pdns_addr, cached_addr, addrlen); |
| return 0; |
| } |
| old_stat = *cached_stat; |
| if (stat(RESOLV_CONF_PATH, cached_stat) != 0) { |
| return -1; |
| } |
| if (cached_stat->st_dev == old_stat.st_dev && |
| cached_stat->st_ino == old_stat.st_ino && |
| cached_stat->st_size == old_stat.st_size && |
| cached_stat->st_mtime == old_stat.st_mtime) { |
| memcpy(pdns_addr, cached_addr, addrlen); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int get_dns_addr_resolv_conf(int af, void *pdns_addr, void *cached_addr, |
| socklen_t addrlen, |
| uint32_t *scope_id, uint32_t *cached_scope_id, |
| unsigned *cached_time) |
| { |
| char buff[512]; |
| char buff2[257]; |
| FILE *f; |
| int found = 0; |
| union { |
| struct in_addr dns_addr; |
| struct in6_addr dns6_addr; |
| } tmp_addr; |
| unsigned if_index; |
| |
| assert(sizeof(tmp_addr) >= addrlen); |
| f = fopen(RESOLV_CONF_PATH, "r"); |
| if (!f) |
| return -1; |
| |
| DEBUG_MISC("IP address of your DNS(s):"); |
| while (fgets(buff, 512, f) != NULL) { |
| if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) { |
| char *c = strchr(buff2, '%'); |
| if (c) { |
| if_index = if_nametoindex(c + 1); |
| *c = '\0'; |
| } else { |
| if_index = 0; |
| } |
| |
| if (!inet_pton(af, buff2, &tmp_addr)) { |
| continue; |
| } |
| /* If it's the first one, set it to dns_addr */ |
| if (!found) { |
| memcpy(pdns_addr, &tmp_addr, addrlen); |
| memcpy(cached_addr, &tmp_addr, addrlen); |
| if (scope_id) { |
| *scope_id = if_index; |
| } |
| if (cached_scope_id) { |
| *cached_scope_id = if_index; |
| } |
| *cached_time = curtime; |
| } |
| |
| if (++found > 3) { |
| DEBUG_MISC(" (more)"); |
| break; |
| } else if (slirp_debug & DBG_MISC) { |
| char s[INET6_ADDRSTRLEN]; |
| const char *res = inet_ntop(af, &tmp_addr, s, sizeof(s)); |
| if (!res) { |
| res = " (string conversion error)"; |
| } |
| DEBUG_MISC(" %s", res); |
| } |
| } |
| } |
| fclose(f); |
| if (!found) |
| return -1; |
| return 0; |
| } |
| |
| int get_dns_addr(struct in_addr *pdns_addr) |
| { |
| static struct stat dns_addr_stat; |
| |
| if (dns_addr.s_addr != 0) { |
| int ret; |
| ret = get_dns_addr_cached(pdns_addr, &dns_addr, sizeof(dns_addr), |
| &dns_addr_stat, &dns_addr_time); |
| if (ret <= 0) { |
| return ret; |
| } |
| } |
| return get_dns_addr_resolv_conf(AF_INET, pdns_addr, &dns_addr, |
| sizeof(dns_addr), |
| NULL, NULL, &dns_addr_time); |
| } |
| |
| int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id) |
| { |
| static struct stat dns6_addr_stat; |
| |
| if (!in6_zero(&dns6_addr)) { |
| int ret; |
| ret = get_dns_addr_cached(pdns6_addr, &dns6_addr, sizeof(dns6_addr), |
| &dns6_addr_stat, &dns6_addr_time); |
| if (ret == 0) { |
| *scope_id = dns6_scope_id; |
| } |
| if (ret <= 0) { |
| return ret; |
| } |
| } |
| return get_dns_addr_resolv_conf(AF_INET6, pdns6_addr, &dns6_addr, |
| sizeof(dns6_addr), |
| scope_id, &dns6_scope_id, &dns6_addr_time); |
| } |
| |
| #endif |
| |
| static void slirp_init_once(void) |
| { |
| static int initialized; |
| const char *debug; |
| #ifdef _WIN32 |
| WSADATA Data; |
| #endif |
| |
| if (initialized) { |
| return; |
| } |
| initialized = 1; |
| |
| #ifdef _WIN32 |
| WSAStartup(MAKEWORD(2, 0), &Data); |
| atexit(winsock_cleanup); |
| #endif |
| |
| loopback_addr.s_addr = htonl(INADDR_LOOPBACK); |
| loopback_mask = htonl(IN_CLASSA_NET); |
| |
| debug = g_getenv("SLIRP_DEBUG"); |
| if (debug) { |
| const GDebugKey keys[] = { |
| { "call", DBG_CALL }, |
| { "misc", DBG_MISC }, |
| { "error", DBG_ERROR }, |
| { "tftp", DBG_TFTP }, |
| { "verbose_call", DBG_VERBOSE_CALL }, |
| }; |
| slirp_debug = g_parse_debug_string(debug, keys, G_N_ELEMENTS(keys)); |
| } |
| } |
| |
| Slirp *slirp_new(const SlirpConfig *cfg, const SlirpCb *callbacks, void *opaque) |
| { |
| Slirp *slirp; |
| |
| g_return_val_if_fail(cfg != NULL, NULL); |
| g_return_val_if_fail(cfg->version >= SLIRP_CONFIG_VERSION_MIN, NULL); |
| g_return_val_if_fail(cfg->version <= SLIRP_CONFIG_VERSION_MAX, NULL); |
| g_return_val_if_fail(cfg->if_mtu >= IF_MTU_MIN || cfg->if_mtu == 0, NULL); |
| g_return_val_if_fail(cfg->if_mtu <= IF_MTU_MAX, NULL); |
| g_return_val_if_fail(cfg->if_mru >= IF_MRU_MIN || cfg->if_mru == 0, NULL); |
| g_return_val_if_fail(cfg->if_mru <= IF_MRU_MAX, NULL); |
| g_return_val_if_fail(!cfg->bootfile || |
| (strlen(cfg->bootfile) < |
| G_SIZEOF_MEMBER(struct bootp_t, bp_file)), NULL); |
| |
| slirp = g_malloc0(sizeof(Slirp)); |
| |
| slirp_init_once(); |
| |
| slirp->opaque = opaque; |
| slirp->cb = callbacks; |
| slirp->grand = g_rand_new(); |
| slirp->restricted = cfg->restricted; |
| |
| slirp->in_enabled = cfg->in_enabled; |
| slirp->in6_enabled = cfg->in6_enabled; |
| |
| if_init(slirp); |
| ip_init(slirp); |
| ip6_init(slirp); |
| |
| m_init(slirp); |
| |
| slirp->vnetwork_addr = cfg->vnetwork; |
| slirp->vnetwork_mask = cfg->vnetmask; |
| slirp->vhost_addr = cfg->vhost; |
| slirp->vprefix_addr6 = cfg->vprefix_addr6; |
| slirp->vprefix_len = cfg->vprefix_len; |
| slirp->vhost_addr6 = cfg->vhost6; |
| if (cfg->vhostname) { |
| slirp_pstrcpy(slirp->client_hostname, sizeof(slirp->client_hostname), |
| cfg->vhostname); |
| } |
| slirp->tftp_prefix = g_strdup(cfg->tftp_path); |
| slirp->bootp_filename = g_strdup(cfg->bootfile); |
| slirp->vdomainname = g_strdup(cfg->vdomainname); |
| slirp->vdhcp_startaddr = cfg->vdhcp_start; |
| slirp->vnameserver_addr = cfg->vnameserver; |
| slirp->vnameserver_addr6 = cfg->vnameserver6; |
| slirp->tftp_server_name = g_strdup(cfg->tftp_server_name); |
| |
| if (cfg->vdnssearch) { |
| translate_dnssearch(slirp, cfg->vdnssearch); |
| } |
| slirp->if_mtu = cfg->if_mtu == 0 ? IF_MTU_DEFAULT : cfg->if_mtu; |
| slirp->if_mru = cfg->if_mru == 0 ? IF_MRU_DEFAULT : cfg->if_mru; |
| slirp->disable_host_loopback = cfg->disable_host_loopback; |
| slirp->enable_emu = cfg->enable_emu; |
| |
| if (cfg->version >= 2) { |
| slirp->outbound_addr = cfg->outbound_addr; |
| slirp->outbound_addr6 = cfg->outbound_addr6; |
| } else { |
| slirp->outbound_addr = NULL; |
| slirp->outbound_addr6 = NULL; |
| } |
| |
| if (cfg->version >= 3) { |
| slirp->disable_dns = cfg->disable_dns; |
| } else { |
| slirp->disable_dns = false; |
| } |
| |
| if (cfg->version >= 4) { |
| slirp->disable_dhcp = cfg->disable_dhcp; |
| } else { |
| slirp->disable_dhcp = false; |
| } |
| |
| return slirp; |
| } |
| |
| Slirp *slirp_init(int restricted, bool in_enabled, struct in_addr vnetwork, |
| struct in_addr vnetmask, struct in_addr vhost, |
| bool in6_enabled, struct in6_addr vprefix_addr6, |
| uint8_t vprefix_len, struct in6_addr vhost6, |
| const char *vhostname, const char *tftp_server_name, |
| const char *tftp_path, const char *bootfile, |
| struct in_addr vdhcp_start, struct in_addr vnameserver, |
| struct in6_addr vnameserver6, const char **vdnssearch, |
| const char *vdomainname, const SlirpCb *callbacks, |
| void *opaque) |
| { |
| SlirpConfig cfg; |
| memset(&cfg, 0, sizeof(cfg)); |
| cfg.version = 1; |
| cfg.restricted = restricted; |
| cfg.in_enabled = in_enabled; |
| cfg.vnetwork = vnetwork; |
| cfg.vnetmask = vnetmask; |
| cfg.vhost = vhost; |
| cfg.in6_enabled = in6_enabled; |
| cfg.vprefix_addr6 = vprefix_addr6; |
| cfg.vprefix_len = vprefix_len; |
| cfg.vhost6 = vhost6; |
| cfg.vhostname = vhostname; |
| cfg.tftp_server_name = tftp_server_name; |
| cfg.tftp_path = tftp_path; |
| cfg.bootfile = bootfile; |
| cfg.vdhcp_start = vdhcp_start; |
| cfg.vnameserver = vnameserver; |
| cfg.vnameserver6 = vnameserver6; |
| cfg.vdnssearch = vdnssearch; |
| cfg.vdomainname = vdomainname; |
| return slirp_new(&cfg, callbacks, opaque); |
| } |
| |
| void slirp_cleanup(Slirp *slirp) |
| { |
| struct gfwd_list *e, *next; |
| |
| for (e = slirp->guestfwd_list; e; e = next) { |
| next = e->ex_next; |
| g_free(e->ex_exec); |
| g_free(e->ex_unix); |
| g_free(e); |
| } |
| |
| ip_cleanup(slirp); |
| ip6_cleanup(slirp); |
| m_cleanup(slirp); |
| |
| g_rand_free(slirp->grand); |
| |
| g_free(slirp->vdnssearch); |
| g_free(slirp->tftp_prefix); |
| g_free(slirp->bootp_filename); |
| g_free(slirp->vdomainname); |
| g_free(slirp); |
| } |
| |
| #define CONN_CANFSEND(so) \ |
| (((so)->so_state & (SS_FCANTSENDMORE | SS_ISFCONNECTED)) == SS_ISFCONNECTED) |
| #define CONN_CANFRCV(so) \ |
| (((so)->so_state & (SS_FCANTRCVMORE | SS_ISFCONNECTED)) == SS_ISFCONNECTED) |
| |
| static void slirp_update_timeout(Slirp *slirp, uint32_t *timeout) |
| { |
| uint32_t t; |
| |
| if (*timeout <= TIMEOUT_FAST) { |
| return; |
| } |
| |
| t = MIN(1000, *timeout); |
| |
| /* If we have tcp timeout with slirp, then we will fill @timeout with |
| * more precise value. |
| */ |
| if (slirp->time_fasttimo) { |
| *timeout = TIMEOUT_FAST; |
| return; |
| } |
| if (slirp->do_slowtimo) { |
| t = MIN(TIMEOUT_SLOW, t); |
| } |
| *timeout = t; |
| } |
| |
| void slirp_pollfds_fill(Slirp *slirp, uint32_t *timeout, |
| SlirpAddPollCb add_poll, void *opaque) |
| { |
| struct socket *so, *so_next; |
| |
| /* |
| * First, TCP sockets |
| */ |
| |
| /* |
| * *_slowtimo needs calling if there are IP fragments |
| * in the fragment queue, or there are TCP connections active |
| */ |
| slirp->do_slowtimo = ((slirp->tcb.so_next != &slirp->tcb) || |
| (&slirp->ipq.ip_link != slirp->ipq.ip_link.next)); |
| |
| for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so_next) { |
| int events = 0; |
| |
| so_next = so->so_next; |
| |
| so->pollfds_idx = -1; |
| |
| /* |
| * See if we need a tcp_fasttimo |
| */ |
| if (slirp->time_fasttimo == 0 && so->so_tcpcb->t_flags & TF_DELACK) { |
| slirp->time_fasttimo = curtime; /* Flag when want a fasttimo */ |
| } |
| |
| /* |
| * NOFDREF can include still connecting to local-host, |
| * newly socreated() sockets etc. Don't want to select these. |
| */ |
| if (so->so_state & SS_NOFDREF || so->s == -1) { |
| continue; |
| } |
| |
| /* |
| * Set for reading sockets which are accepting |
| */ |
| if (so->so_state & SS_FACCEPTCONN) { |
| so->pollfds_idx = add_poll( |
| so->s, SLIRP_POLL_IN | SLIRP_POLL_HUP | SLIRP_POLL_ERR, opaque); |
| continue; |
| } |
| |
| /* |
| * Set for writing sockets which are connecting |
| */ |
| if (so->so_state & SS_ISFCONNECTING) { |
| so->pollfds_idx = |
| add_poll(so->s, SLIRP_POLL_OUT | SLIRP_POLL_ERR, opaque); |
| continue; |
| } |
| |
| /* |
| * Set for writing if we are connected, can send more, and |
| * we have something to send |
| */ |
| if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) { |
| events |= SLIRP_POLL_OUT | SLIRP_POLL_ERR; |
| } |
| |
| /* |
| * Set for reading (and urgent data) if we are connected, can |
| * receive more, and we have room for it. |
| * |
| * If sb is already half full, we will wait for the guest to consume it, |
| * and notify again in sbdrop() when the sb becomes less than half full. |
| */ |
| if (CONN_CANFRCV(so) && |
| (so->so_snd.sb_cc < (so->so_snd.sb_datalen / 2))) { |
| events |= SLIRP_POLL_IN | SLIRP_POLL_HUP | SLIRP_POLL_ERR | |
| SLIRP_POLL_PRI; |
| } |
| |
| if (events) { |
| so->pollfds_idx = add_poll(so->s, events, opaque); |
| } |
| } |
| |
| /* |
| * UDP sockets |
| */ |
| for (so = slirp->udb.so_next; so != &slirp->udb; so = so_next) { |
| so_next = so->so_next; |
| |
| so->pollfds_idx = -1; |
| |
| /* |
| * See if it's timed out |
| */ |
| if (so->so_expire) { |
| if (so->so_expire <= curtime) { |
| udp_detach(so); |
| continue; |
| } else { |
| slirp->do_slowtimo = true; /* Let socket expire */ |
| } |
| } |
| |
| /* |
| * When UDP packets are received from over the |
| * link, they're sendto()'d straight away, so |
| * no need for setting for writing |
| * Limit the number of packets queued by this session |
| * to 4. Note that even though we try and limit this |
| * to 4 packets, the session could have more queued |
| * if the packets needed to be fragmented |
| * (XXX <= 4 ?) |
| */ |
| if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) { |
| so->pollfds_idx = add_poll( |
| so->s, SLIRP_POLL_IN | SLIRP_POLL_HUP | SLIRP_POLL_ERR, opaque); |
| } |
| } |
| |
| /* |
| * ICMP sockets |
| */ |
| for (so = slirp->icmp.so_next; so != &slirp->icmp; so = so_next) { |
| so_next = so->so_next; |
| |
| so->pollfds_idx = -1; |
| |
| /* |
| * See if it's timed out |
| */ |
| if (so->so_expire) { |
| if (so->so_expire <= curtime) { |
| icmp_detach(so); |
| continue; |
| } else { |
| slirp->do_slowtimo = true; /* Let socket expire */ |
| } |
| } |
| |
| if (so->so_state & SS_ISFCONNECTED) { |
| so->pollfds_idx = add_poll( |
| so->s, SLIRP_POLL_IN | SLIRP_POLL_HUP | SLIRP_POLL_ERR, opaque); |
| } |
| } |
| |
| slirp_update_timeout(slirp, timeout); |
| } |
| |
| void slirp_pollfds_poll(Slirp *slirp, int select_error, |
| SlirpGetREventsCb get_revents, void *opaque) |
| { |
| struct socket *so, *so_next; |
| int ret; |
| |
| curtime = slirp->cb->clock_get_ns(slirp->opaque) / SCALE_MS; |
| |
| /* |
| * See if anything has timed out |
| */ |
| if (slirp->time_fasttimo && |
| ((curtime - slirp->time_fasttimo) >= TIMEOUT_FAST)) { |
| tcp_fasttimo(slirp); |
| slirp->time_fasttimo = 0; |
| } |
| if (slirp->do_slowtimo && |
| ((curtime - slirp->last_slowtimo) >= TIMEOUT_SLOW)) { |
| ip_slowtimo(slirp); |
| tcp_slowtimo(slirp); |
| slirp->last_slowtimo = curtime; |
| } |
| |
| /* |
| * Check sockets |
| */ |
| if (!select_error) { |
| /* |
| * Check TCP sockets |
| */ |
| for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so_next) { |
| int revents; |
| |
| so_next = so->so_next; |
| |
| revents = 0; |
| if (so->pollfds_idx != -1) { |
| revents = get_revents(so->pollfds_idx, opaque); |
| } |
| |
| if (so->so_state & SS_NOFDREF || so->s == -1) { |
| continue; |
| } |
| |
| #ifndef __APPLE__ |
| /* |
| * Check for URG data |
| * This will soread as well, so no need to |
| * test for SLIRP_POLL_IN below if this succeeds. |
| * |
| * This is however disabled on MacOS, which apparently always |
| * reports data as PRI when it is the last data of the |
| * connection. We would then report it out of band, which the guest |
| * would most probably not be ready for. |
| */ |
| if (revents & SLIRP_POLL_PRI) { |
| ret = sorecvoob(so); |
| if (ret < 0) { |
| /* Socket error might have resulted in the socket being |
| * removed, do not try to do anything more with it. */ |
| continue; |
| } |
| } |
| /* |
| * Check sockets for reading |
| */ |
| else |
| #endif |
| if (revents & |
| (SLIRP_POLL_IN | SLIRP_POLL_HUP | SLIRP_POLL_ERR | SLIRP_POLL_PRI)) { |
| /* |
| * Check for incoming connections |
| */ |
| if (so->so_state & SS_FACCEPTCONN) { |
| tcp_connect(so); |
| continue; |
| } /* else */ |
| ret = soread(so); |
| |
| /* Output it if we read something */ |
| if (ret > 0) { |
| tcp_output(sototcpcb(so)); |
| } |
| if (ret < 0) { |
| /* Socket error might have resulted in the socket being |
| * removed, do not try to do anything more with it. */ |
| continue; |
| } |
| } |
| |
| /* |
| * Check sockets for writing |
| */ |
| if (!(so->so_state & SS_NOFDREF) && |
| (revents & (SLIRP_POLL_OUT | SLIRP_POLL_ERR))) { |
| /* |
| * Check for non-blocking, still-connecting sockets |
| */ |
| if (so->so_state & SS_ISFCONNECTING) { |
| /* Connected */ |
| so->so_state &= ~SS_ISFCONNECTING; |
| |
| ret = send(so->s, (const void *)&ret, 0, 0); |
| if (ret < 0) { |
| /* XXXXX Must fix, zero bytes is a NOP */ |
| if (errno == EAGAIN || errno == EWOULDBLOCK || |
| errno == EINPROGRESS || errno == ENOTCONN) { |
| continue; |
| } |
| |
| /* else failed */ |
| so->so_state &= SS_PERSISTENT_MASK; |
| so->so_state |= SS_NOFDREF; |
| } |
| /* else so->so_state &= ~SS_ISFCONNECTING; */ |
| |
| /* |
| * Continue tcp_input |
| */ |
| tcp_input((struct mbuf *)NULL, sizeof(struct ip), so, |
| so->so_ffamily); |
| /* continue; */ |
| } else { |
| ret = sowrite(so); |
| if (ret > 0) { |
| /* Call tcp_output in case we need to send a window |
| * update to the guest, otherwise it will be stuck |
| * until it sends a window probe. */ |
| tcp_output(sototcpcb(so)); |
| } |
| } |
| } |
| } |
| |
| /* |
| * Now UDP sockets. |
| * Incoming packets are sent straight away, they're not buffered. |
| * Incoming UDP data isn't buffered either. |
| */ |
| for (so = slirp->udb.so_next; so != &slirp->udb; so = so_next) { |
| int revents; |
| |
| so_next = so->so_next; |
| |
| revents = 0; |
| if (so->pollfds_idx != -1) { |
| revents = get_revents(so->pollfds_idx, opaque); |
| } |
| |
| if (so->s != -1 && |
| (revents & (SLIRP_POLL_IN | SLIRP_POLL_HUP | SLIRP_POLL_ERR))) { |
| sorecvfrom(so); |
| } |
| } |
| |
| /* |
| * Check incoming ICMP relies. |
| */ |
| for (so = slirp->icmp.so_next; so != &slirp->icmp; so = so_next) { |
| int revents; |
| |
| so_next = so->so_next; |
| |
| revents = 0; |
| if (so->pollfds_idx != -1) { |
| revents = get_revents(so->pollfds_idx, opaque); |
| } |
| |
| if (so->s != -1 && |
| (revents & (SLIRP_POLL_IN | SLIRP_POLL_HUP | SLIRP_POLL_ERR))) { |
| icmp_receive(so); |
| } |
| } |
| } |
| |
| if_start(slirp); |
| } |
| |
| static void arp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len) |
| { |
| const struct slirp_arphdr *ah = |
| (const struct slirp_arphdr *)(pkt + ETH_HLEN); |
| uint8_t arp_reply[MAX(ETH_HLEN + sizeof(struct slirp_arphdr), 64)]; |
| struct ethhdr *reh = (struct ethhdr *)arp_reply; |
| struct slirp_arphdr *rah = (struct slirp_arphdr *)(arp_reply + ETH_HLEN); |
| int ar_op; |
| struct gfwd_list *ex_ptr; |
| |
| if (!slirp->in_enabled) { |
| return; |
| } |
| |
| if (pkt_len < ETH_HLEN + sizeof(struct slirp_arphdr)) { |
| return; /* packet too short */ |
| } |
| |
| ar_op = ntohs(ah->ar_op); |
| switch (ar_op) { |
| case ARPOP_REQUEST: |
| if (ah->ar_tip == ah->ar_sip) { |
| /* Gratuitous ARP */ |
| arp_table_add(slirp, ah->ar_sip, ah->ar_sha); |
| return; |
| } |
| |
| if ((ah->ar_tip & slirp->vnetwork_mask.s_addr) == |
| slirp->vnetwork_addr.s_addr) { |
| if (ah->ar_tip == slirp->vnameserver_addr.s_addr || |
| ah->ar_tip == slirp->vhost_addr.s_addr) |
| goto arp_ok; |
| /* TODO: IPv6 */ |
| for (ex_ptr = slirp->guestfwd_list; ex_ptr; |
| ex_ptr = ex_ptr->ex_next) { |
| if (ex_ptr->ex_addr.s_addr == ah->ar_tip) |
| goto arp_ok; |
| } |
| return; |
| arp_ok: |
| memset(arp_reply, 0, sizeof(arp_reply)); |
| |
| arp_table_add(slirp, ah->ar_sip, ah->ar_sha); |
| |
| /* ARP request for alias/dns mac address */ |
| memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN); |
| memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4); |
| memcpy(&reh->h_source[2], &ah->ar_tip, 4); |
| reh->h_proto = htons(ETH_P_ARP); |
| |
| rah->ar_hrd = htons(1); |
| rah->ar_pro = htons(ETH_P_IP); |
| rah->ar_hln = ETH_ALEN; |
| rah->ar_pln = 4; |
| rah->ar_op = htons(ARPOP_REPLY); |
| memcpy(rah->ar_sha, reh->h_source, ETH_ALEN); |
| rah->ar_sip = ah->ar_tip; |
| memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN); |
| rah->ar_tip = ah->ar_sip; |
| slirp_send_packet_all(slirp, arp_reply, sizeof(arp_reply)); |
| } |
| break; |
| case ARPOP_REPLY: |
| arp_table_add(slirp, ah->ar_sip, ah->ar_sha); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| void slirp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len) |
| { |
| struct mbuf *m; |
| int proto; |
| |
| if (pkt_len < ETH_HLEN) |
| return; |
| |
| proto = (((uint16_t)pkt[12]) << 8) + pkt[13]; |
| switch (proto) { |
| case ETH_P_ARP: |
| arp_input(slirp, pkt, pkt_len); |
| break; |
| case ETH_P_IP: |
| case ETH_P_IPV6: |
| m = m_get(slirp); |
| if (!m) |
| return; |
| /* Note: we add 2 to align the IP header on 4 bytes, |
| * and add the margin for the tcpiphdr overhead */ |
| if (M_FREEROOM(m) < pkt_len + TCPIPHDR_DELTA + 2) { |
| m_inc(m, pkt_len + TCPIPHDR_DELTA + 2); |
| } |
| m->m_len = pkt_len + TCPIPHDR_DELTA + 2; |
| memcpy(m->m_data + TCPIPHDR_DELTA + 2, pkt, pkt_len); |
| |
| m->m_data += TCPIPHDR_DELTA + 2 + ETH_HLEN; |
| m->m_len -= TCPIPHDR_DELTA + 2 + ETH_HLEN; |
| |
| if (proto == ETH_P_IP) { |
| ip_input(m); |
| } else if (proto == ETH_P_IPV6) { |
| ip6_input(m); |
| } |
| break; |
| |
| case ETH_P_NCSI: |
| ncsi_input(slirp, pkt, pkt_len); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Prepare the IPv4 packet to be sent to the ethernet device. Returns 1 if no |
| * packet should be sent, 0 if the packet must be re-queued, 2 if the packet |
| * is ready to go. |
| */ |
| static int if_encap4(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh, |
| uint8_t ethaddr[ETH_ALEN]) |
| { |
| const struct ip *iph = (const struct ip *)ifm->m_data; |
| |
| if (!arp_table_search(slirp, iph->ip_dst.s_addr, ethaddr)) { |
| uint8_t arp_req[ETH_HLEN + sizeof(struct slirp_arphdr)]; |
| struct ethhdr *reh = (struct ethhdr *)arp_req; |
| struct slirp_arphdr *rah = (struct slirp_arphdr *)(arp_req + ETH_HLEN); |
| |
| if (!ifm->resolution_requested) { |
| /* If the client addr is not known, send an ARP request */ |
| memset(reh->h_dest, 0xff, ETH_ALEN); |
| memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4); |
| memcpy(&reh->h_source[2], &slirp->vhost_addr, 4); |
| reh->h_proto = htons(ETH_P_ARP); |
| rah->ar_hrd = htons(1); |
| rah->ar_pro = htons(ETH_P_IP); |
| rah->ar_hln = ETH_ALEN; |
| rah->ar_pln = 4; |
| rah->ar_op = htons(ARPOP_REQUEST); |
| |
| /* source hw addr */ |
| memcpy(rah->ar_sha, special_ethaddr, ETH_ALEN - 4); |
| memcpy(&rah->ar_sha[2], &slirp->vhost_addr, 4); |
| |
| /* source IP */ |
| rah->ar_sip = slirp->vhost_addr.s_addr; |
| |
| /* target hw addr (none) */ |
| memset(rah->ar_tha, 0, ETH_ALEN); |
| |
| /* target IP */ |
| rah->ar_tip = iph->ip_dst.s_addr; |
| slirp->client_ipaddr = iph->ip_dst; |
| slirp_send_packet_all(slirp, arp_req, sizeof(arp_req)); |
| ifm->resolution_requested = true; |
| |
| /* Expire request and drop outgoing packet after 1 second */ |
| ifm->expiration_date = |
| slirp->cb->clock_get_ns(slirp->opaque) + 1000000000ULL; |
| } |
| return 0; |
| } else { |
| memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 4); |
| /* XXX: not correct */ |
| memcpy(&eh->h_source[2], &slirp->vhost_addr, 4); |
| eh->h_proto = htons(ETH_P_IP); |
| |
| /* Send this */ |
| return 2; |
| } |
| } |
| |
| /* Prepare the IPv6 packet to be sent to the ethernet device. Returns 1 if no |
| * packet should be sent, 0 if the packet must be re-queued, 2 if the packet |
| * is ready to go. |
| */ |
| static int if_encap6(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh, |
| uint8_t ethaddr[ETH_ALEN]) |
| { |
| const struct ip6 *ip6h = mtod(ifm, const struct ip6 *); |
| if (!ndp_table_search(slirp, ip6h->ip_dst, ethaddr)) { |
| if (!ifm->resolution_requested) { |
| ndp_send_ns(slirp, ip6h->ip_dst); |
| ifm->resolution_requested = true; |
| ifm->expiration_date = |
| slirp->cb->clock_get_ns(slirp->opaque) + 1000000000ULL; |
| } |
| return 0; |
| } else { |
| eh->h_proto = htons(ETH_P_IPV6); |
| in6_compute_ethaddr(ip6h->ip_src, eh->h_source); |
| |
| /* Send this */ |
| return 2; |
| } |
| } |
| |
| /* Output the IP packet to the ethernet device. Returns 0 if the packet must be |
| * re-queued. |
| */ |
| int if_encap(Slirp *slirp, struct mbuf *ifm) |
| { |
| uint8_t buf[IF_MTU_MAX + 100]; |
| struct ethhdr *eh = (struct ethhdr *)buf; |
| uint8_t ethaddr[ETH_ALEN]; |
| const struct ip *iph = (const struct ip *)ifm->m_data; |
| int ret; |
| char ethaddr_str[ETH_ADDRSTRLEN]; |
| |
| if (ifm->m_len + ETH_HLEN > sizeof(buf)) { |
| return 1; |
| } |
| |
| switch (iph->ip_v) { |
| case IPVERSION: |
| ret = if_encap4(slirp, ifm, eh, ethaddr); |
| if (ret < 2) { |
| return ret; |
| } |
| break; |
| |
| case IP6VERSION: |
| ret = if_encap6(slirp, ifm, eh, ethaddr); |
| if (ret < 2) { |
| return ret; |
| } |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| |
| memcpy(eh->h_dest, ethaddr, ETH_ALEN); |
| DEBUG_ARG("src = %s", slirp_ether_ntoa(eh->h_source, ethaddr_str, |
| sizeof(ethaddr_str))); |
| DEBUG_ARG("dst = %s", slirp_ether_ntoa(eh->h_dest, ethaddr_str, |
| sizeof(ethaddr_str))); |
| memcpy(buf + sizeof(struct ethhdr), ifm->m_data, ifm->m_len); |
| slirp_send_packet_all(slirp, buf, ifm->m_len + ETH_HLEN); |
| return 1; |
| } |
| |
| /* Drop host forwarding rule, return 0 if found. */ |
| int slirp_remove_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr, |
| int host_port) |
| { |
| struct socket *so; |
| struct socket *head = (is_udp ? &slirp->udb : &slirp->tcb); |
| struct sockaddr_in addr; |
| int port = htons(host_port); |
| socklen_t addr_len; |
| |
| for (so = head->so_next; so != head; so = so->so_next) { |
| addr_len = sizeof(addr); |
| if ((so->so_state & SS_HOSTFWD) && |
| getsockname(so->s, (struct sockaddr *)&addr, &addr_len) == 0 && |
| addr_len == sizeof(addr) && |
| addr.sin_family == AF_INET && |
| addr.sin_addr.s_addr == host_addr.s_addr && |
| addr.sin_port == port) { |
| so->slirp->cb->unregister_poll_fd(so->s, so->slirp->opaque); |
| closesocket(so->s); |
| sofree(so); |
| return 0; |
| } |
| } |
| |
| return -1; |
| } |
| |
| int slirp_add_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr, |
| int host_port, struct in_addr guest_addr, int guest_port) |
| { |
| if (!guest_addr.s_addr) { |
| guest_addr = slirp->vdhcp_startaddr; |
| } |
| if (is_udp) { |
| if (!udp_listen(slirp, host_addr.s_addr, htons(host_port), |
| guest_addr.s_addr, htons(guest_port), SS_HOSTFWD)) |
| return -1; |
| } else { |
| if (!tcp_listen(slirp, host_addr.s_addr, htons(host_port), |
| guest_addr.s_addr, htons(guest_port), SS_HOSTFWD)) |
| return -1; |
| } |
| return 0; |
| } |
| |
| int slirp_remove_hostxfwd(Slirp *slirp, |
| const struct sockaddr *haddr, socklen_t haddrlen, |
| int flags) |
| { |
| struct socket *so; |
| struct socket *head = (flags & SLIRP_HOSTFWD_UDP ? &slirp->udb : &slirp->tcb); |
| struct sockaddr_storage addr; |
| socklen_t addr_len; |
| |
| for (so = head->so_next; so != head; so = so->so_next) { |
| addr_len = sizeof(addr); |
| if ((so->so_state & SS_HOSTFWD) && |
| getsockname(so->s, (struct sockaddr *)&addr, &addr_len) == 0 && |
| sockaddr_equal(&addr, (const struct sockaddr_storage *) haddr)) { |
| so->slirp->cb->unregister_poll_fd(so->s, so->slirp->opaque); |
| closesocket(so->s); |
| sofree(so); |
| return 0; |
| } |
| } |
| |
| return -1; |
| } |
| |
| int slirp_add_hostxfwd(Slirp *slirp, |
| const struct sockaddr *haddr, socklen_t haddrlen, |
| const struct sockaddr *gaddr, socklen_t gaddrlen, |
| int flags) |
| { |
| struct sockaddr_in gdhcp_addr; |
| int fwd_flags = SS_HOSTFWD; |
| |
| if (flags & SLIRP_HOSTFWD_V6ONLY) |
| fwd_flags |= SS_HOSTFWD_V6ONLY; |
| |
| if (gaddr->sa_family == AF_INET) { |
| const struct sockaddr_in *gaddr_in = (const struct sockaddr_in *) gaddr; |
| |
| if (gaddrlen < sizeof(struct sockaddr_in)) { |
| errno = EINVAL; |
| return -1; |
| } |
| |
| if (!gaddr_in->sin_addr.s_addr) { |
| gdhcp_addr = *gaddr_in; |
| gdhcp_addr.sin_addr = slirp->vdhcp_startaddr; |
| gaddr = (struct sockaddr *) &gdhcp_addr; |
| gaddrlen = sizeof(gdhcp_addr); |
| } |
| } else { |
| if (gaddrlen < sizeof(struct sockaddr_in6)) { |
| errno = EINVAL; |
| return -1; |
| } |
| |
| /* |
| * Libslirp currently only provides a stateless DHCPv6 server, thus |
| * we can't translate "addr-any" to the guest here. Instead, we defer |
| * performing the translation to when it's needed. See |
| * soassign_guest_addr_if_needed(). |
| */ |
| } |
| |
| if (flags & SLIRP_HOSTFWD_UDP) { |
| if (!udpx_listen(slirp, haddr, haddrlen, |
| gaddr, gaddrlen, |
| fwd_flags)) |
| return -1; |
| } else { |
| if (!tcpx_listen(slirp, haddr, haddrlen, |
| gaddr, gaddrlen, |
| fwd_flags)) |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* TODO: IPv6 */ |
| static bool check_guestfwd(Slirp *slirp, struct in_addr *guest_addr, |
| int guest_port) |
| { |
| struct gfwd_list *tmp_ptr; |
| |
| if (!guest_addr->s_addr) { |
| guest_addr->s_addr = slirp->vnetwork_addr.s_addr | |
| (htonl(0x0204) & ~slirp->vnetwork_mask.s_addr); |
| } |
| if ((guest_addr->s_addr & slirp->vnetwork_mask.s_addr) != |
| slirp->vnetwork_addr.s_addr || |
| guest_addr->s_addr == slirp->vhost_addr.s_addr || |
| guest_addr->s_addr == slirp->vnameserver_addr.s_addr) { |
| return false; |
| } |
| |
| /* check if the port is "bound" */ |
| for (tmp_ptr = slirp->guestfwd_list; tmp_ptr; tmp_ptr = tmp_ptr->ex_next) { |
| if (guest_port == tmp_ptr->ex_fport && |
| guest_addr->s_addr == tmp_ptr->ex_addr.s_addr) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| int slirp_add_exec(Slirp *slirp, const char *cmdline, |
| struct in_addr *guest_addr, int guest_port) |
| { |
| if (!check_guestfwd(slirp, guest_addr, guest_port)) { |
| return -1; |
| } |
| |
| add_exec(&slirp->guestfwd_list, cmdline, *guest_addr, htons(guest_port)); |
| return 0; |
| } |
| |
| int slirp_add_unix(Slirp *slirp, const char *unixsock, |
| struct in_addr *guest_addr, int guest_port) |
| { |
| #ifdef G_OS_UNIX |
| if (!check_guestfwd(slirp, guest_addr, guest_port)) { |
| return -1; |
| } |
| |
| add_unix(&slirp->guestfwd_list, unixsock, *guest_addr, htons(guest_port)); |
| return 0; |
| #else |
| g_warn_if_reached(); |
| return -1; |
| #endif |
| } |
| |
| int slirp_add_guestfwd(Slirp *slirp, SlirpWriteCb write_cb, void *opaque, |
| struct in_addr *guest_addr, int guest_port) |
| { |
| if (!check_guestfwd(slirp, guest_addr, guest_port)) { |
| return -1; |
| } |
| |
| add_guestfwd(&slirp->guestfwd_list, write_cb, opaque, *guest_addr, |
| htons(guest_port)); |
| return 0; |
| } |
| |
| int slirp_remove_guestfwd(Slirp *slirp, struct in_addr guest_addr, |
| int guest_port) |
| { |
| return remove_guestfwd(&slirp->guestfwd_list, guest_addr, |
| htons(guest_port)); |
| } |
| |
| ssize_t slirp_send(struct socket *so, const void *buf, size_t len, int flags) |
| { |
| if (so->s == -1 && so->guestfwd) { |
| /* XXX this blocks entire thread. Rewrite to use |
| * qemu_chr_fe_write and background I/O callbacks */ |
| so->guestfwd->write_cb(buf, len, so->guestfwd->opaque); |
| return len; |
| } |
| |
| if (so->s == -1) { |
| /* |
| * This should in theory not happen but it is hard to be |
| * sure because some code paths will end up with so->s == -1 |
| * on a failure but don't dispose of the struct socket. |
| * Check specifically, so we don't pass -1 to send(). |
| */ |
| errno = EBADF; |
| return -1; |
| } |
| |
| return send(so->s, buf, len, flags); |
| } |
| |
| struct socket *slirp_find_ctl_socket(Slirp *slirp, struct in_addr guest_addr, |
| int guest_port) |
| { |
| struct socket *so; |
| |
| /* TODO: IPv6 */ |
| for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so->so_next) { |
| if (so->so_faddr.s_addr == guest_addr.s_addr && |
| htons(so->so_fport) == guest_port) { |
| return so; |
| } |
| } |
| return NULL; |
| } |
| |
| size_t slirp_socket_can_recv(Slirp *slirp, struct in_addr guest_addr, |
| int guest_port) |
| { |
| struct iovec iov[2]; |
| struct socket *so; |
| |
| so = slirp_find_ctl_socket(slirp, guest_addr, guest_port); |
| |
| if (!so || so->so_state & SS_NOFDREF) { |
| return 0; |
| } |
| |
| if (!CONN_CANFRCV(so) || so->so_snd.sb_cc >= (so->so_snd.sb_datalen / 2)) { |
| /* If the sb is already half full, we will wait for the guest to consume it, |
| * and notify again in sbdrop() when the sb becomes less than half full. */ |
| return 0; |
| } |
| |
| return sopreprbuf(so, iov, NULL); |
| } |
| |
| void slirp_socket_recv(Slirp *slirp, struct in_addr guest_addr, int guest_port, |
| const uint8_t *buf, int size) |
| { |
| int ret; |
| struct socket *so = slirp_find_ctl_socket(slirp, guest_addr, guest_port); |
| |
| if (!so) |
| return; |
| |
| ret = soreadbuf(so, (const char *)buf, size); |
| |
| if (ret > 0) |
| tcp_output(sototcpcb(so)); |
| } |
| |
| void slirp_send_packet_all(Slirp *slirp, const void *buf, size_t len) |
| { |
| ssize_t ret = slirp->cb->send_packet(buf, len, slirp->opaque); |
| |
| if (ret < 0) { |
| g_critical("Failed to send packet, ret: %ld", (long)ret); |
| } else if (ret < len) { |
| DEBUG_ERROR("send_packet() didn't send all data: %ld < %lu", (long)ret, |
| (unsigned long)len); |
| } |
| } |