blob: 245f6199224e811757668e9575fe15eb75e2e4cb [file] [log] [blame]
/*
* Copyright (c) 1995 Danny Gasparovski.
*
* Please read the file COPYRIGHT for the
* terms and conditions of the copyright.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "slirp.h"
#include "ip_icmp.h"
#ifdef __sun__
#include <sys/filio.h>
#endif
static void sofcantrcvmore(struct socket *so);
static void sofcantsendmore(struct socket *so);
struct socket *solookup(struct socket **last, struct socket *head,
struct sockaddr_storage *lhost,
struct sockaddr_storage *fhost)
{
struct socket *so = *last;
/* Optimisation */
if (so != head && sockaddr_equal(&(so->lhost.ss), lhost) &&
(!fhost || sockaddr_equal(&so->fhost.ss, fhost))) {
return so;
}
for (so = head->so_next; so != head; so = so->so_next) {
if (sockaddr_equal(&(so->lhost.ss), lhost) &&
(!fhost || sockaddr_equal(&so->fhost.ss, fhost))) {
*last = so;
return so;
}
}
return (struct socket *)NULL;
}
/*
* Create a new socket, initialise the fields
* It is the responsibility of the caller to
* insque() it into the correct linked-list
*/
struct socket *socreate(Slirp *slirp)
{
struct socket *so;
so = (struct socket *)malloc(sizeof(struct socket));
if (so) {
memset(so, 0, sizeof(struct socket));
so->so_state = SS_NOFDREF;
so->s = -1;
so->slirp = slirp;
so->pollfds_idx = -1;
}
return (so);
}
/*
* Remove references to so from the given message queue.
*/
static void soqfree(struct socket *so, struct quehead *qh)
{
struct mbuf *ifq;
for (ifq = (struct mbuf *)qh->qh_link; (struct quehead *)ifq != qh;
ifq = ifq->ifq_next) {
if (ifq->ifq_so == so) {
struct mbuf *ifm;
ifq->ifq_so = NULL;
for (ifm = ifq->ifs_next; ifm != ifq; ifm = ifm->ifs_next) {
ifm->ifq_so = NULL;
}
}
}
}
/*
* remque and free a socket, clobber cache
*/
void sofree(struct socket *so)
{
Slirp *slirp = so->slirp;
soqfree(so, &slirp->if_fastq);
soqfree(so, &slirp->if_batchq);
if (so->so_emu == EMU_RSH && so->extra) {
sofree(so->extra);
so->extra = NULL;
}
if (so == slirp->tcp_last_so) {
slirp->tcp_last_so = &slirp->tcb;
} else if (so == slirp->udp_last_so) {
slirp->udp_last_so = &slirp->udb;
} else if (so == slirp->icmp_last_so) {
slirp->icmp_last_so = &slirp->icmp;
}
m_free(so->so_m);
if (so->so_next && so->so_prev)
remque(so); /* crashes if so is not in a queue */
if (so->so_tcpcb) {
free(so->so_tcpcb);
}
free(so);
}
size_t sopreprbuf(struct socket *so, struct iovec *iov, int *np)
{
int n, lss, total;
struct sbuf *sb = &so->so_snd;
int len = sb->sb_datalen - sb->sb_cc;
int mss = so->so_tcpcb->t_maxseg;
DEBUG_CALL("sopreprbuf");
DEBUG_ARG("so = %p", so);
if (len <= 0)
return 0;
iov[0].iov_base = sb->sb_wptr;
iov[1].iov_base = NULL;
iov[1].iov_len = 0;
if (sb->sb_wptr < sb->sb_rptr) {
iov[0].iov_len = sb->sb_rptr - sb->sb_wptr;
/* Should never succeed, but... */
if (iov[0].iov_len > len)
iov[0].iov_len = len;
if (iov[0].iov_len > mss)
iov[0].iov_len -= iov[0].iov_len % mss;
n = 1;
} else {
iov[0].iov_len = (sb->sb_data + sb->sb_datalen) - sb->sb_wptr;
/* Should never succeed, but... */
if (iov[0].iov_len > len)
iov[0].iov_len = len;
len -= iov[0].iov_len;
if (len) {
iov[1].iov_base = sb->sb_data;
iov[1].iov_len = sb->sb_rptr - sb->sb_data;
if (iov[1].iov_len > len)
iov[1].iov_len = len;
total = iov[0].iov_len + iov[1].iov_len;
if (total > mss) {
lss = total % mss;
if (iov[1].iov_len > lss) {
iov[1].iov_len -= lss;
n = 2;
} else {
lss -= iov[1].iov_len;
iov[0].iov_len -= lss;
n = 1;
}
} else
n = 2;
} else {
if (iov[0].iov_len > mss)
iov[0].iov_len -= iov[0].iov_len % mss;
n = 1;
}
}
if (np)
*np = n;
return iov[0].iov_len + (n - 1) * iov[1].iov_len;
}
/*
* Read from so's socket into sb_snd, updating all relevant sbuf fields
* NOTE: This will only be called if it is select()ed for reading, so
* a read() of 0 (or less) means it's disconnected
*/
int soread(struct socket *so)
{
int n, nn;
struct sbuf *sb = &so->so_snd;
struct iovec iov[2];
DEBUG_CALL("soread");
DEBUG_ARG("so = %p", so);
/*
* No need to check if there's enough room to read.
* soread wouldn't have been called if there weren't
*/
sopreprbuf(so, iov, &n);
#ifdef HAVE_READV
nn = readv(so->s, (struct iovec *)iov, n);
DEBUG_MISC((dfd, " ... read nn = %d bytes\n", nn));
#else
nn = qemu_recv(so->s, iov[0].iov_base, iov[0].iov_len, 0);
#endif
if (nn <= 0) {
if (nn < 0 && (errno == EINTR || errno == EAGAIN))
return 0;
else {
int err;
socklen_t slen = sizeof err;
err = errno;
if (nn == 0) {
getsockopt(so->s, SOL_SOCKET, SO_ERROR, &err, &slen);
}
DEBUG_MISC((dfd,
" --- soread() disconnected, nn = %d, errno = %d-%s\n",
nn, errno, strerror(errno)));
sofcantrcvmore(so);
if (err == ECONNRESET || err == ECONNREFUSED || err == ENOTCONN ||
err == EPIPE) {
tcp_drop(sototcpcb(so), err);
} else {
tcp_sockclosed(sototcpcb(so));
}
return -1;
}
}
#ifndef HAVE_READV
/*
* If there was no error, try and read the second time round
* We read again if n = 2 (ie, there's another part of the buffer)
* and we read as much as we could in the first read
* We don't test for <= 0 this time, because there legitimately
* might not be any more data (since the socket is non-blocking),
* a close will be detected on next iteration.
* A return of -1 won't (shouldn't) happen, since it didn't happen above
*/
if (n == 2 && nn == iov[0].iov_len) {
int ret;
ret = qemu_recv(so->s, iov[1].iov_base, iov[1].iov_len, 0);
if (ret > 0)
nn += ret;
}
DEBUG_MISC((dfd, " ... read nn = %d bytes\n", nn));
#endif
/* Update fields */
sb->sb_cc += nn;
sb->sb_wptr += nn;
if (sb->sb_wptr >= (sb->sb_data + sb->sb_datalen))
sb->sb_wptr -= sb->sb_datalen;
return nn;
}
int soreadbuf(struct socket *so, const char *buf, int size)
{
int n, nn, copy = size;
struct sbuf *sb = &so->so_snd;
struct iovec iov[2];
DEBUG_CALL("soreadbuf");
DEBUG_ARG("so = %p", so);
/*
* No need to check if there's enough room to read.
* soread wouldn't have been called if there weren't
*/
if (sopreprbuf(so, iov, &n) < size)
goto err;
nn = MIN(iov[0].iov_len, copy);
memcpy(iov[0].iov_base, buf, nn);
copy -= nn;
buf += nn;
if (copy == 0)
goto done;
memcpy(iov[1].iov_base, buf, copy);
done:
/* Update fields */
sb->sb_cc += size;
sb->sb_wptr += size;
if (sb->sb_wptr >= (sb->sb_data + sb->sb_datalen))
sb->sb_wptr -= sb->sb_datalen;
return size;
err:
sofcantrcvmore(so);
tcp_sockclosed(sototcpcb(so));
fprintf(stderr, "soreadbuf buffer to small");
return -1;
}
/*
* Get urgent data
*
* When the socket is created, we set it SO_OOBINLINE,
* so when OOB data arrives, we soread() it and everything
* in the send buffer is sent as urgent data
*/
int sorecvoob(struct socket *so)
{
struct tcpcb *tp = sototcpcb(so);
int ret;
DEBUG_CALL("sorecvoob");
DEBUG_ARG("so = %p", so);
/*
* We take a guess at how much urgent data has arrived.
* In most situations, when urgent data arrives, the next
* read() should get all the urgent data. This guess will
* be wrong however if more data arrives just after the
* urgent data, or the read() doesn't return all the
* urgent data.
*/
ret = soread(so);
if (ret > 0) {
tp->snd_up = tp->snd_una + so->so_snd.sb_cc;
tp->t_force = 1;
tcp_output(tp);
tp->t_force = 0;
}
return ret;
}
/*
* Send urgent data
* There's a lot duplicated code here, but...
*/
int sosendoob(struct socket *so)
{
struct sbuf *sb = &so->so_rcv;
char buff[2048]; /* XXX Shouldn't be sending more oob data than this */
int n, len;
DEBUG_CALL("sosendoob");
DEBUG_ARG("so = %p", so);
DEBUG_ARG("sb->sb_cc = %d", sb->sb_cc);
if (so->so_urgc > 2048)
so->so_urgc = 2048; /* XXXX */
if (sb->sb_rptr < sb->sb_wptr) {
/* We can send it directly */
n = slirp_send(so, sb->sb_rptr, so->so_urgc,
(MSG_OOB)); /* |MSG_DONTWAIT)); */
} else {
/*
* Since there's no sendv or sendtov like writev,
* we must copy all data to a linear buffer then
* send it all
*/
uint32_t urgc = so->so_urgc;
len = (sb->sb_data + sb->sb_datalen) - sb->sb_rptr;
if (len > urgc) {
len = urgc;
}
memcpy(buff, sb->sb_rptr, len);
urgc -= len;
if (urgc) {
n = sb->sb_wptr - sb->sb_data;
if (n > urgc) {
n = urgc;
}
memcpy((buff + len), sb->sb_data, n);
len += n;
}
n = slirp_send(so, buff, len, (MSG_OOB)); /* |MSG_DONTWAIT)); */
}
#ifdef DEBUG
if (n != len) {
DEBUG_ERROR((dfd, "Didn't send all data urgently XXXXX\n"));
}
#endif
if (n < 0) {
return n;
}
so->so_urgc -= n;
DEBUG_MISC((dfd, " ---2 sent %d bytes urgent data, %d urgent bytes left\n",
n, so->so_urgc));
sb->sb_cc -= n;
sb->sb_rptr += n;
if (sb->sb_rptr >= (sb->sb_data + sb->sb_datalen))
sb->sb_rptr -= sb->sb_datalen;
return n;
}
/*
* Write data from so_rcv to so's socket,
* updating all sbuf field as necessary
*/
int sowrite(struct socket *so)
{
int n, nn;
struct sbuf *sb = &so->so_rcv;
int len = sb->sb_cc;
struct iovec iov[2];
DEBUG_CALL("sowrite");
DEBUG_ARG("so = %p", so);
if (so->so_urgc) {
uint32_t expected = so->so_urgc;
if (sosendoob(so) < expected) {
/* Treat a short write as a fatal error too,
* rather than continuing on and sending the urgent
* data as if it were non-urgent and leaving the
* so_urgc count wrong.
*/
goto err_disconnected;
}
if (sb->sb_cc == 0)
return 0;
}
/*
* No need to check if there's something to write,
* sowrite wouldn't have been called otherwise
*/
iov[0].iov_base = sb->sb_rptr;
iov[1].iov_base = NULL;
iov[1].iov_len = 0;
if (sb->sb_rptr < sb->sb_wptr) {
iov[0].iov_len = sb->sb_wptr - sb->sb_rptr;
/* Should never succeed, but... */
if (iov[0].iov_len > len)
iov[0].iov_len = len;
n = 1;
} else {
iov[0].iov_len = (sb->sb_data + sb->sb_datalen) - sb->sb_rptr;
if (iov[0].iov_len > len)
iov[0].iov_len = len;
len -= iov[0].iov_len;
if (len) {
iov[1].iov_base = sb->sb_data;
iov[1].iov_len = sb->sb_wptr - sb->sb_data;
if (iov[1].iov_len > len)
iov[1].iov_len = len;
n = 2;
} else
n = 1;
}
/* Check if there's urgent data to send, and if so, send it */
#ifdef HAVE_READV
nn = writev(so->s, (const struct iovec *)iov, n);
DEBUG_MISC((dfd, " ... wrote nn = %d bytes\n", nn));
#else
nn = slirp_send(so, iov[0].iov_base, iov[0].iov_len, 0);
#endif
/* This should never happen, but people tell me it does *shrug* */
if (nn < 0 && (errno == EAGAIN || errno == EINTR))
return 0;
if (nn <= 0) {
goto err_disconnected;
}
#ifndef HAVE_READV
if (n == 2 && nn == iov[0].iov_len) {
int ret;
ret = slirp_send(so, iov[1].iov_base, iov[1].iov_len, 0);
if (ret > 0)
nn += ret;
}
DEBUG_MISC((dfd, " ... wrote nn = %d bytes\n", nn));
#endif
/* Update sbuf */
sb->sb_cc -= nn;
sb->sb_rptr += nn;
if (sb->sb_rptr >= (sb->sb_data + sb->sb_datalen))
sb->sb_rptr -= sb->sb_datalen;
/*
* If in DRAIN mode, and there's no more data, set
* it CANTSENDMORE
*/
if ((so->so_state & SS_FWDRAIN) && sb->sb_cc == 0)
sofcantsendmore(so);
return nn;
err_disconnected:
DEBUG_MISC((dfd,
" --- sowrite disconnected, so->so_state = %x, errno = %d\n",
so->so_state, errno));
sofcantsendmore(so);
tcp_sockclosed(sototcpcb(so));
return -1;
}
/*
* recvfrom() a UDP socket
*/
void sorecvfrom(struct socket *so)
{
struct sockaddr_storage addr;
struct sockaddr_storage saddr, daddr;
socklen_t addrlen = sizeof(struct sockaddr_storage);
DEBUG_CALL("sorecvfrom");
DEBUG_ARG("so = %p", so);
if (so->so_type == IPPROTO_ICMP) { /* This is a "ping" reply */
char buff[256];
int len;
len = recvfrom(so->s, buff, 256, 0, (struct sockaddr *)&addr, &addrlen);
/* XXX Check if reply is "correct"? */
if (len == -1 || len == 0) {
u_char code = ICMP_UNREACH_PORT;
if (errno == EHOSTUNREACH)
code = ICMP_UNREACH_HOST;
else if (errno == ENETUNREACH)
code = ICMP_UNREACH_NET;
DEBUG_MISC(
(dfd, " udp icmp rx errno = %d-%s\n", errno, strerror(errno)));
icmp_send_error(so->so_m, ICMP_UNREACH, code, 0, strerror(errno));
} else {
icmp_reflect(so->so_m);
so->so_m = NULL; /* Don't m_free() it again! */
}
/* No need for this socket anymore, udp_detach it */
udp_detach(so);
} else { /* A "normal" UDP packet */
struct mbuf *m;
int len;
#ifdef _WIN32
unsigned long n;
#else
int n;
#endif
m = m_get(so->slirp);
if (!m) {
return;
}
switch (so->so_ffamily) {
case AF_INET:
m->m_data += IF_MAXLINKHDR + sizeof(struct udpiphdr);
break;
case AF_INET6:
m->m_data +=
IF_MAXLINKHDR + sizeof(struct ip6) + sizeof(struct udphdr);
break;
default:
g_assert_not_reached();
break;
}
/*
* XXX Shouldn't FIONREAD packets destined for port 53,
* but I don't know the max packet size for DNS lookups
*/
len = M_FREEROOM(m);
/* if (so->so_fport != htons(53)) { */
ioctlsocket(so->s, FIONREAD, &n);
if (n > len) {
n = (m->m_data - m->m_dat) + m->m_len + n + 1;
m_inc(m, n);
len = M_FREEROOM(m);
}
/* } */
m->m_len = recvfrom(so->s, m->m_data, len, 0, (struct sockaddr *)&addr,
&addrlen);
DEBUG_MISC((dfd, " did recvfrom %d, errno = %d-%s\n", m->m_len, errno,
strerror(errno)));
if (m->m_len < 0) {
/* Report error as ICMP */
switch (so->so_lfamily) {
uint8_t code;
case AF_INET:
code = ICMP_UNREACH_PORT;
if (errno == EHOSTUNREACH) {
code = ICMP_UNREACH_HOST;
} else if (errno == ENETUNREACH) {
code = ICMP_UNREACH_NET;
}
DEBUG_MISC((dfd, " rx error, tx icmp ICMP_UNREACH:%i\n", code));
icmp_send_error(so->so_m, ICMP_UNREACH, code, 0,
strerror(errno));
break;
case AF_INET6:
code = ICMP6_UNREACH_PORT;
if (errno == EHOSTUNREACH) {
code = ICMP6_UNREACH_ADDRESS;
} else if (errno == ENETUNREACH) {
code = ICMP6_UNREACH_NO_ROUTE;
}
DEBUG_MISC(
(dfd, " rx error, tx icmp6 ICMP_UNREACH:%i\n", code));
icmp6_send_error(so->so_m, ICMP6_UNREACH, code);
break;
default:
g_assert_not_reached();
break;
}
m_free(m);
} else {
/*
* Hack: domain name lookup will be used the most for UDP,
* and since they'll only be used once there's no need
* for the 4 minute (or whatever) timeout... So we time them
* out much quicker (10 seconds for now...)
*/
if (so->so_expire) {
if (so->so_fport == htons(53))
so->so_expire = curtime + SO_EXPIREFAST;
else
so->so_expire = curtime + SO_EXPIRE;
}
/*
* If this packet was destined for CTL_ADDR,
* make it look like that's where it came from
*/
saddr = addr;
sotranslate_in(so, &saddr);
daddr = so->lhost.ss;
switch (so->so_ffamily) {
case AF_INET:
udp_output(so, m, (struct sockaddr_in *)&saddr,
(struct sockaddr_in *)&daddr, so->so_iptos);
break;
case AF_INET6:
udp6_output(so, m, (struct sockaddr_in6 *)&saddr,
(struct sockaddr_in6 *)&daddr);
break;
default:
g_assert_not_reached();
break;
}
} /* rx error */
} /* if ping packet */
}
/*
* sendto() a socket
*/
int sosendto(struct socket *so, struct mbuf *m)
{
int ret;
struct sockaddr_storage addr;
DEBUG_CALL("sosendto");
DEBUG_ARG("so = %p", so);
DEBUG_ARG("m = %p", m);
addr = so->fhost.ss;
DEBUG_CALL(" sendto()ing)");
sotranslate_out(so, &addr);
/* Don't care what port we get */
ret = sendto(so->s, m->m_data, m->m_len, 0, (struct sockaddr *)&addr,
sockaddr_size(&addr));
if (ret < 0)
return -1;
/*
* Kill the socket if there's no reply in 4 minutes,
* but only if it's an expirable socket
*/
if (so->so_expire)
so->so_expire = curtime + SO_EXPIRE;
so->so_state &= SS_PERSISTENT_MASK;
so->so_state |= SS_ISFCONNECTED; /* So that it gets select()ed */
return 0;
}
/*
* Listen for incoming TCP connections
*/
struct socket *tcp_listen(Slirp *slirp, uint32_t haddr, u_int hport,
uint32_t laddr, u_int lport, int flags)
{
struct sockaddr_in addr;
struct socket *so;
int s, opt = 1;
socklen_t addrlen = sizeof(addr);
memset(&addr, 0, addrlen);
DEBUG_CALL("tcp_listen");
DEBUG_ARG("haddr = %x", haddr);
DEBUG_ARG("hport = %d", hport);
DEBUG_ARG("laddr = %x", laddr);
DEBUG_ARG("lport = %d", lport);
DEBUG_ARG("flags = %x", flags);
so = socreate(slirp);
if (!so) {
return NULL;
}
/* Don't tcp_attach... we don't need so_snd nor so_rcv */
if ((so->so_tcpcb = tcp_newtcpcb(so)) == NULL) {
free(so);
return NULL;
}
insque(so, &slirp->tcb);
/*
* SS_FACCEPTONCE sockets must time out.
*/
if (flags & SS_FACCEPTONCE)
so->so_tcpcb->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT * 2;
so->so_state &= SS_PERSISTENT_MASK;
so->so_state |= (SS_FACCEPTCONN | flags);
so->so_lfamily = AF_INET;
so->so_lport = lport; /* Kept in network format */
so->so_laddr.s_addr = laddr; /* Ditto */
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = haddr;
addr.sin_port = hport;
if (((s = qemu_socket(AF_INET, SOCK_STREAM, 0)) < 0) ||
(socket_set_fast_reuse(s) < 0) ||
(bind(s, (struct sockaddr *)&addr, sizeof(addr)) < 0) ||
(listen(s, 1) < 0)) {
int tmperrno = errno; /* Don't clobber the real reason we failed */
if (s >= 0) {
closesocket(s);
}
sofree(so);
/* Restore the real errno */
#ifdef _WIN32
WSASetLastError(tmperrno);
#else
errno = tmperrno;
#endif
return NULL;
}
qemu_setsockopt(s, SOL_SOCKET, SO_OOBINLINE, &opt, sizeof(int));
getsockname(s, (struct sockaddr *)&addr, &addrlen);
so->so_ffamily = AF_INET;
so->so_fport = addr.sin_port;
if (addr.sin_addr.s_addr == 0 ||
addr.sin_addr.s_addr == loopback_addr.s_addr)
so->so_faddr = slirp->vhost_addr;
else
so->so_faddr = addr.sin_addr;
so->s = s;
return so;
}
/*
* Various session state calls
* XXX Should be #define's
* The socket state stuff needs work, these often get call 2 or 3
* times each when only 1 was needed
*/
void soisfconnecting(struct socket *so)
{
so->so_state &= ~(SS_NOFDREF | SS_ISFCONNECTED | SS_FCANTRCVMORE |
SS_FCANTSENDMORE | SS_FWDRAIN);
so->so_state |= SS_ISFCONNECTING; /* Clobber other states */
}
void soisfconnected(struct socket *so)
{
so->so_state &= ~(SS_ISFCONNECTING | SS_FWDRAIN | SS_NOFDREF);
so->so_state |= SS_ISFCONNECTED; /* Clobber other states */
}
static void sofcantrcvmore(struct socket *so)
{
if ((so->so_state & SS_NOFDREF) == 0) {
shutdown(so->s, 0);
}
so->so_state &= ~(SS_ISFCONNECTING);
if (so->so_state & SS_FCANTSENDMORE) {
so->so_state &= SS_PERSISTENT_MASK;
so->so_state |= SS_NOFDREF; /* Don't select it */
} else {
so->so_state |= SS_FCANTRCVMORE;
}
}
static void sofcantsendmore(struct socket *so)
{
if ((so->so_state & SS_NOFDREF) == 0) {
shutdown(so->s, 1); /* send FIN to fhost */
}
so->so_state &= ~(SS_ISFCONNECTING);
if (so->so_state & SS_FCANTRCVMORE) {
so->so_state &= SS_PERSISTENT_MASK;
so->so_state |= SS_NOFDREF; /* as above */
} else {
so->so_state |= SS_FCANTSENDMORE;
}
}
/*
* Set write drain mode
* Set CANTSENDMORE once all data has been write()n
*/
void sofwdrain(struct socket *so)
{
if (so->so_rcv.sb_cc)
so->so_state |= SS_FWDRAIN;
else
sofcantsendmore(so);
}
/*
* Translate addr in host addr when it is a virtual address
*/
void sotranslate_out(struct socket *so, struct sockaddr_storage *addr)
{
Slirp *slirp = so->slirp;
struct sockaddr_in *sin = (struct sockaddr_in *)addr;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
switch (addr->ss_family) {
case AF_INET:
if ((so->so_faddr.s_addr & slirp->vnetwork_mask.s_addr) ==
slirp->vnetwork_addr.s_addr) {
/* It's an alias */
if (so->so_faddr.s_addr == slirp->vnameserver_addr.s_addr) {
if (get_dns_addr(&sin->sin_addr) < 0) {
sin->sin_addr = loopback_addr;
}
} else {
sin->sin_addr = loopback_addr;
}
}
DEBUG_MISC((dfd,
" addr.sin_port=%d, "
"addr.sin_addr.s_addr=%.16s\n",
ntohs(sin->sin_port), inet_ntoa(sin->sin_addr)));
break;
case AF_INET6:
if (in6_equal_net(&so->so_faddr6, &slirp->vprefix_addr6,
slirp->vprefix_len)) {
if (in6_equal(&so->so_faddr6, &slirp->vnameserver_addr6)) {
uint32_t scope_id;
if (get_dns6_addr(&sin6->sin6_addr, &scope_id) >= 0) {
sin6->sin6_scope_id = scope_id;
} else {
sin6->sin6_addr = in6addr_loopback;
}
} else {
sin6->sin6_addr = in6addr_loopback;
}
}
break;
default:
break;
}
}
void sotranslate_in(struct socket *so, struct sockaddr_storage *addr)
{
Slirp *slirp = so->slirp;
struct sockaddr_in *sin = (struct sockaddr_in *)addr;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
switch (addr->ss_family) {
case AF_INET:
if ((so->so_faddr.s_addr & slirp->vnetwork_mask.s_addr) ==
slirp->vnetwork_addr.s_addr) {
uint32_t inv_mask = ~slirp->vnetwork_mask.s_addr;
if ((so->so_faddr.s_addr & inv_mask) == inv_mask) {
sin->sin_addr = slirp->vhost_addr;
} else if (sin->sin_addr.s_addr == loopback_addr.s_addr ||
so->so_faddr.s_addr != slirp->vhost_addr.s_addr) {
sin->sin_addr = so->so_faddr;
}
}
break;
case AF_INET6:
if (in6_equal_net(&so->so_faddr6, &slirp->vprefix_addr6,
slirp->vprefix_len)) {
if (in6_equal(&sin6->sin6_addr, &in6addr_loopback) ||
!in6_equal(&so->so_faddr6, &slirp->vhost_addr6)) {
sin6->sin6_addr = so->so_faddr6;
}
}
break;
default:
break;
}
}
/*
* Translate connections from localhost to the real hostname
*/
void sotranslate_accept(struct socket *so)
{
Slirp *slirp = so->slirp;
switch (so->so_ffamily) {
case AF_INET:
if (so->so_faddr.s_addr == INADDR_ANY ||
(so->so_faddr.s_addr & loopback_mask) ==
(loopback_addr.s_addr & loopback_mask)) {
so->so_faddr = slirp->vhost_addr;
}
break;
case AF_INET6:
if (in6_equal(&so->so_faddr6, &in6addr_any) ||
in6_equal(&so->so_faddr6, &in6addr_loopback)) {
so->so_faddr6 = slirp->vhost_addr6;
}
break;
default:
break;
}
}