| /* |
| * Copyright (C) 2024 Michael Brown <mbrown@fensystems.co.uk>. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of the |
| * License, or any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA. |
| * |
| * You can also choose to distribute this program under the terms of |
| * the Unmodified Binary Distribution Licence (as given in the file |
| * COPYING.UBDL), provided that you have satisfied its requirements. |
| */ |
| |
| FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL ); |
| |
| /** @file |
| * |
| * Weierstrass elliptic curves |
| * |
| * The implementation is based upon Algorithm 1 from "Complete |
| * addition formulas for prime order elliptic curves" (Joost Renes, |
| * Craig Costello, and Lejla Batina), available from |
| * |
| * https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/complete-2.pdf |
| * |
| * The steps within the algorithm have been reordered and temporary |
| * variables shuffled to reduce stack usage, and calculations are |
| * carried out modulo small multiples of the field prime in order to |
| * elide reductions after intermediate addition and subtraction |
| * operations. |
| * |
| * The algorithm is encoded using a bytecode representation, since |
| * this substantially reduces the code size compared to direct |
| * implementation of the big integer operations. |
| */ |
| |
| #include <errno.h> |
| #include <ipxe/weierstrass.h> |
| |
| /** Big integer register names */ |
| enum weierstrass_register { |
| |
| /* |
| * Read-only registers |
| */ |
| |
| /* Curve constant "a" (for multiply), zero (for add/subtract) */ |
| WEIERSTRASS_a = 0, |
| /* Curve constant "3b" */ |
| WEIERSTRASS_3b, |
| /* Augend (x,y,z) co-ordinates */ |
| WEIERSTRASS_x1, |
| WEIERSTRASS_y1, |
| WEIERSTRASS_z1, |
| /* Addend (x,y,z) co-ordinates */ |
| WEIERSTRASS_x2, |
| WEIERSTRASS_y2, |
| WEIERSTRASS_z2, |
| |
| /* |
| * Read-write registers |
| */ |
| |
| /* Temporary working registers */ |
| WEIERSTRASS_Wt, |
| WEIERSTRASS_Wxy, |
| WEIERSTRASS_Wyz, |
| WEIERSTRASS_Wzx, |
| /* Low half of multiplication product */ |
| WEIERSTRASS_Wp, |
| /* Result (x,y,z) co-ordinates */ |
| WEIERSTRASS_x3, |
| WEIERSTRASS_y3, |
| WEIERSTRASS_z3, |
| |
| /* Number of registers */ |
| WEIERSTRASS_NUM_REGISTERS = 16 |
| }; |
| |
| /** Zero register (for add/subtract operations */ |
| #define WEIERSTRASS_zero WEIERSTRASS_a |
| |
| /** Construct big integer register index */ |
| #define WEIERSTRASS_REGISTER( name ) _C2 ( WEIERSTRASS_, name ) |
| |
| /** Bytecode operation codes */ |
| enum weierstrass_opcode { |
| /** Subtract big integers (and add nothing)*/ |
| WEIERSTRASS_OP_SUB_0N = 0, |
| /** Subtract big integers (and add 2N) */ |
| WEIERSTRASS_OP_SUB_2N = WEIERSTRASS_2N, |
| /** Subtract big integers (and add 4N) */ |
| WEIERSTRASS_OP_SUB_4N = WEIERSTRASS_4N, |
| /** Add big integers */ |
| WEIERSTRASS_OP_ADD, |
| /** Multiply big integers (and perform Montgomery reduction) */ |
| WEIERSTRASS_OP_MUL, |
| }; |
| |
| /** |
| * Define a bytecode operation |
| * |
| * @v opcode Operation code |
| * @v dest Destination big integer register name |
| * @v left Left source big integer register name |
| * @v right Right source big integer register name |
| */ |
| #define WEIERSTRASS_OP( opcode, dest, left, right ) \ |
| ( ( (opcode) << 12 ) | \ |
| ( WEIERSTRASS_REGISTER ( dest ) << 8 ) | \ |
| ( WEIERSTRASS_REGISTER ( left ) << 4 ) | \ |
| ( WEIERSTRASS_REGISTER ( right ) << 0 ) ) |
| |
| /** Extract bytecode operation code */ |
| #define WEIERSTRASS_OPCODE( op ) ( ( (op) >> 12 ) & 0xf ) |
| |
| /** Extract destination big integer register */ |
| #define WEIERSTRASS_DEST( op ) ( ( (op) >> 8 ) & 0xf ) |
| |
| /** Extract left source big integer register */ |
| #define WEIERSTRASS_LEFT( op ) ( ( (op) >> 4 ) & 0xf ) |
| |
| /** Extract right source big integer register */ |
| #define WEIERSTRASS_RIGHT( op ) ( ( (op) >> 0 ) & 0xf ) |
| |
| /** Define a three-argument addition operation */ |
| #define WEIERSTRASS_ADD3( dest, augend, addend ) \ |
| WEIERSTRASS_OP ( WEIERSTRASS_OP_ADD, dest, augend, addend ) |
| |
| /** Define a two-argument addition operation */ |
| #define WEIERSTRASS_ADD2( augend, addend ) \ |
| WEIERSTRASS_ADD3 ( augend, augend, addend ) |
| |
| /** Define a move operation */ |
| #define WEIERSTRASS_MOV( dest, source ) \ |
| WEIERSTRASS_ADD3( dest, source, zero ) |
| |
| /** Define a three-argument subtraction operation */ |
| #define WEIERSTRASS_SUB3( dest, minuend, subtrahend, multiple ) \ |
| WEIERSTRASS_OP ( _C2 ( WEIERSTRASS_OP_SUB_, multiple ), \ |
| dest, minuend, subtrahend ) |
| |
| /** Define a two-argument subtraction operation */ |
| #define WEIERSTRASS_SUB2( minuend, subtrahend, multiple ) \ |
| WEIERSTRASS_SUB3 ( minuend, minuend, subtrahend, multiple ) |
| |
| /** Define a stop operation */ |
| #define WEIERSTRASS_STOP WEIERSTRASS_SUB2 ( zero, zero, 0N ) |
| |
| /** Define a three-argument multiplication operation */ |
| #define WEIERSTRASS_MUL3( dest, multiplicand, multiplier ) \ |
| WEIERSTRASS_OP ( WEIERSTRASS_OP_MUL, dest, multiplicand, multiplier ) |
| |
| /** Define a two-argument multiplication operation */ |
| #define WEIERSTRASS_MUL2( multiplicand, multiplier ) \ |
| WEIERSTRASS_MUL3 ( multiplicand, multiplicand, multiplier ) |
| |
| /** |
| * Initialise curve |
| * |
| * @v curve Weierstrass curve |
| */ |
| static void weierstrass_init ( struct weierstrass_curve *curve ) { |
| unsigned int size = curve->size; |
| bigint_t ( size ) __attribute__ (( may_alias )) *prime = |
| ( ( void * ) curve->prime[0] ); |
| bigint_t ( size ) __attribute__ (( may_alias )) *fermat = |
| ( ( void * ) curve->fermat ); |
| bigint_t ( size ) __attribute__ (( may_alias )) *square = |
| ( ( void * ) curve->square ); |
| bigint_t ( size ) __attribute__ (( may_alias )) *one = |
| ( ( void * ) curve->one ); |
| bigint_t ( size ) __attribute__ (( may_alias )) *a = |
| ( ( void * ) curve->a ); |
| bigint_t ( size ) __attribute__ (( may_alias )) *b3 = |
| ( ( void * ) curve->b3 ); |
| bigint_t ( size ) __attribute__ (( may_alias )) *mont = |
| ( ( void * ) curve->mont[0] ); |
| bigint_t ( size ) __attribute__ (( may_alias )) *temp = |
| ( ( void * ) curve->prime[1] ); |
| bigint_t ( size * 2 ) __attribute__ (( may_alias )) *product = |
| ( ( void * ) temp ); |
| bigint_t ( size ) __attribute__ (( may_alias )) *two = |
| ( ( void * ) temp ); |
| static const uint8_t one_raw[] = { 1 }; |
| static const uint8_t two_raw[] = { 2 }; |
| size_t len = curve->len; |
| unsigned int i; |
| |
| /* Initialise field prime */ |
| bigint_init ( prime, curve->prime_raw, len ); |
| DBGC ( curve, "WEIERSTRASS %s N = %s\n", |
| curve->name, bigint_ntoa ( prime ) ); |
| |
| /* Calculate Montgomery constant R^2 mod N */ |
| bigint_reduce ( prime, square ); |
| DBGC ( curve, "WEIERSTRASS %s R^2 = %s mod N\n", |
| curve->name, bigint_ntoa ( square ) ); |
| |
| /* Calculate constant "3b" */ |
| bigint_init ( b3, curve->b_raw, len ); |
| DBGC ( curve, "WEIERSTRASS %s b = %s\n", |
| curve->name, bigint_ntoa ( b3 ) ); |
| bigint_copy ( b3, a ); |
| bigint_add ( b3, b3 ); |
| bigint_add ( a, b3 ); |
| |
| /* Initialise "a" */ |
| bigint_init ( a, curve->a_raw, len ); |
| DBGC ( curve, "WEIERSTRASS %s a = %s\n", |
| curve->name, bigint_ntoa ( a ) ); |
| |
| /* Initialise "1" */ |
| bigint_init ( one, one_raw, sizeof ( one_raw ) ); |
| |
| /* Convert relevant constants to Montgomery form |
| * |
| * We rely on the fact that the prime multiples have not yet |
| * been calculated, and so can be used as a temporary buffer. |
| */ |
| for ( i = 0 ; i < WEIERSTRASS_NUM_MONT ; i++ ) { |
| static const char *names[] = { " ", " a", "3b" }; |
| bigint_multiply ( &mont[i], square, product ); |
| bigint_montgomery ( prime, product, &mont[i] ); |
| DBGC ( curve, "WEIERSTRASS %s %sR = %s mod N\n", |
| curve->name, names[i], bigint_ntoa ( &mont[i] ) ); |
| } |
| |
| /* Calculate constant "N-2" |
| * |
| * We rely on the fact that the prime multiples have not yet |
| * been calculated, and so can be used as a temporary buffer. |
| */ |
| bigint_copy ( prime, fermat ); |
| bigint_init ( two, two_raw, sizeof ( two_raw ) ); |
| bigint_subtract ( two, fermat ); |
| DBGC ( curve, "WEIERSTRASS %s N-2 = %s\n", |
| curve->name, bigint_ntoa ( fermat ) ); |
| |
| /* Calculate multiples of field prime */ |
| for ( i = 1 ; i < WEIERSTRASS_NUM_MULTIPLES ; i++ ) { |
| bigint_copy ( &prime[ i - 1 ], &prime[i] ); |
| bigint_add ( &prime[i], &prime[i] ); |
| DBGC ( curve, "WEIERSTRASS %s %dN = %s\n", |
| curve->name, ( 1 << i ), bigint_ntoa ( &prime[i] ) ); |
| } |
| } |
| |
| /** |
| * Execute bytecode instruction |
| * |
| * @v curve Weierstrass curve |
| * @v regs Registers |
| * @v size Big integer size |
| * @v op Operation |
| */ |
| static void weierstrass_exec ( const struct weierstrass_curve *curve, |
| void **regs, unsigned int size, |
| unsigned int op ) { |
| const bigint_t ( size ) __attribute__ (( may_alias )) |
| *prime = ( ( const void * ) curve->prime[0] ); |
| bigint_t ( size * 2 ) __attribute__ (( may_alias )) |
| *product = regs[WEIERSTRASS_Wp]; |
| bigint_t ( size ) __attribute__ (( may_alias )) *dest; |
| const bigint_t ( size ) __attribute__ (( may_alias )) *left; |
| const bigint_t ( size ) __attribute__ (( may_alias )) *right; |
| const bigint_t ( size ) __attribute__ (( may_alias )) *addend; |
| const bigint_t ( size ) __attribute__ (( may_alias )) *subtrahend; |
| unsigned int op_code; |
| unsigned int op_dest; |
| unsigned int op_left; |
| unsigned int op_right; |
| |
| /* Decode instruction */ |
| op_code = WEIERSTRASS_OPCODE ( op ); |
| op_dest = WEIERSTRASS_DEST ( op ); |
| op_left = WEIERSTRASS_LEFT ( op ); |
| op_right = WEIERSTRASS_RIGHT ( op ); |
| dest = regs[op_dest]; |
| left = regs[op_left]; |
| right = regs[op_right]; |
| |
| /* Check destination is a writable register */ |
| assert ( op_dest >= WEIERSTRASS_Wt ); |
| |
| /* Handle multiplications */ |
| if ( op_code == WEIERSTRASS_OP_MUL ) { |
| assert ( op_left != WEIERSTRASS_Wp ); |
| assert ( op_right != WEIERSTRASS_Wp ); |
| bigint_multiply ( left, right, product ); |
| bigint_montgomery_relaxed ( prime, product, dest ); |
| DBGCP ( curve, "WEIERSTRASS %s R%d := R%d x R%d = %s\n", |
| curve->name, op_dest, op_left, op_right, |
| bigint_ntoa ( dest ) ); |
| return; |
| } |
| |
| /* Copy left source, if required */ |
| if ( op_dest != op_left ) |
| bigint_copy ( left, dest ); |
| |
| /* Do nothing more if addend/subtrahend is zero */ |
| if ( ! op_right ) { |
| DBGCP ( curve, "WEIERSTRASS %s R%d := R%d = %s\n", |
| curve->name, op_dest, op_left, bigint_ntoa ( dest ) ); |
| return; |
| } |
| |
| /* Determine addend and subtrahend */ |
| addend = NULL; |
| subtrahend = NULL; |
| if ( op_code == WEIERSTRASS_OP_ADD ) { |
| DBGCP ( curve, "WEIERSTRASS %s R%d := R%d + R%d = ", |
| curve->name, op_dest, op_left, op_right ); |
| addend = ( ( const void * ) right ); |
| } else { |
| subtrahend = ( ( const void * ) right ); |
| if ( op_code > WEIERSTRASS_OP_SUB_0N ) { |
| DBGCP ( curve, "WEIERSTRASS %s R%d := R%d - R%d + " |
| "%dN = ", curve->name, op_dest, op_left, |
| op_right, ( 1 << op_code ) ); |
| addend = ( ( const void * ) curve->prime[op_code] ); |
| } else { |
| DBGCP ( curve, "WEIERSTRASS %s R%d := R%d - R%d = ", |
| curve->name, op_dest, op_left, op_right ); |
| } |
| } |
| |
| /* Perform addition and subtraction */ |
| if ( addend ) |
| bigint_add ( addend, dest ); |
| if ( subtrahend ) |
| bigint_subtract ( subtrahend, dest ); |
| DBGCP ( curve, "%s\n", bigint_ntoa ( dest ) ); |
| } |
| |
| /** |
| * Add points on curve |
| * |
| * @v curve Weierstrass curve |
| * @v augend0 Element 0 of point (x1,y1,z1) to be added |
| * @v addend0 Element 0 of point (x2,y2,z2) to be added |
| * @v result0 Element 0 of point (x3,y3,z3) to hold result |
| * |
| * Points are represented in projective coordinates, with all values |
| * in Montgomery form and in the range [0,4N) where N is the field |
| * prime. |
| * |
| * The augend may have the same value as the addend (i.e. this routine |
| * may be used to perform point doubling as well as point addition), |
| * and either or both may be the point at infinity. |
| * |
| * The result may overlap either input, since the inputs are fully |
| * consumed before the result is written. |
| */ |
| static void weierstrass_add_raw ( const struct weierstrass_curve *curve, |
| const bigint_element_t *augend0, |
| const bigint_element_t *addend0, |
| bigint_element_t *result0 ) { |
| unsigned int size = curve->size; |
| const bigint_t ( size ) __attribute__ (( may_alias )) |
| *prime = ( ( const void * ) curve->prime[0] ); |
| const bigint_t ( size ) __attribute__ (( may_alias )) |
| *a = ( ( const void * ) curve->a ); |
| const bigint_t ( size ) __attribute__ (( may_alias )) |
| *b3 = ( ( const void * ) curve->b3 ); |
| const weierstrass_t ( size ) __attribute__ (( may_alias )) |
| *augend = ( ( const void * ) augend0 ); |
| const weierstrass_t ( size ) __attribute__ (( may_alias )) |
| *addend = ( ( const void * ) addend0 ); |
| weierstrass_t ( size ) __attribute__ (( may_alias )) |
| *result = ( ( void * ) result0 ); |
| struct { |
| bigint_t ( size ) Wt; |
| bigint_t ( size ) Wxy; |
| bigint_t ( size ) Wyz; |
| bigint_t ( size ) Wzx; |
| bigint_t ( size * 2 ) Wp; |
| } temp; |
| void *regs[WEIERSTRASS_NUM_REGISTERS]; |
| unsigned int schedule; |
| const uint16_t *op; |
| unsigned int i; |
| |
| /* On entry, we assume that x1, x2, y1, y2, z1, z2 are all in |
| * the range [0,4N). Additions will extend the range. |
| * Subtractions will extend the range (and require an addition |
| * of a suitable multiple of the modulus to ensure that the |
| * result is a positive value). Relaxed Montgomery |
| * multiplications will reduce the range to [0,2N). The |
| * outputs x3, y3, z3 will be in the range [0,4N) and |
| * therefore usable as subsequent inputs. |
| */ |
| static const uint16_t ops[] = { |
| /* [Wxy] Qxy = (x1+y1)*(x2+y2) (mod 2N) */ |
| WEIERSTRASS_ADD3 ( Wt, x1, y1 ), |
| WEIERSTRASS_ADD3 ( Wxy, x2, y2 ), |
| WEIERSTRASS_MUL2 ( Wxy, Wt ), |
| /* [Wyz] Qyz = (y1+z1)*(y2+z2) (mod 2N) */ |
| WEIERSTRASS_ADD3 ( Wt, y1, z1 ), |
| WEIERSTRASS_ADD3 ( Wyz, y2, z2 ), |
| WEIERSTRASS_MUL2 ( Wyz, Wt ), |
| /* [Wzx] Qzx = (z1+x1)*(z2+x2) (mod 2N) */ |
| WEIERSTRASS_ADD3 ( Wt, z1, x1 ), |
| WEIERSTRASS_ADD3 ( Wzx, z2, x2 ), |
| WEIERSTRASS_MUL2 ( Wzx, Wt ), |
| /* [x3] Px = x1*x2 (mod 2N) */ |
| WEIERSTRASS_MUL3 ( x3, x1, x2 ), |
| /* [y3] Py = y1*y2 (mod 2N) */ |
| WEIERSTRASS_MUL3 ( y3, y1, y2 ), |
| /* [z3] Pz = z1*z2 (mod 2N) */ |
| WEIERSTRASS_MUL3 ( z3, z1, z2 ), |
| /* [Wxy] Rxy = Qxy - Px - Py (mod 6N) |
| * = (x1+y1)*(x2+y2) - x1*x2 - y1*y2 (mod 6N) |
| * = x1*y2 + x2*y1 (mod 6N) |
| */ |
| WEIERSTRASS_SUB2 ( Wxy, x3, 0N ), |
| WEIERSTRASS_SUB2 ( Wxy, y3, 4N ), |
| /* [Wyz] Ryz = Qyz - Py - Pz (mod 6N) |
| * = (y1+z1)*(y2+z2) - y1*y2 - z1*z2 (mod 6N) |
| * = y1*z2 + y2*z1 (mod 6N) |
| */ |
| WEIERSTRASS_SUB2 ( Wyz, y3, 0N ), |
| WEIERSTRASS_SUB2 ( Wyz, z3, 4N ), |
| /* [Wzx] Rzx = Qzx - Pz - Px (mod 6N) |
| * = (z1+x1)*(z2+x2) - z1*z2 - x1*x2 (mod 6N) |
| * = x1*z2 + x2*z1 (mod 6N) |
| */ |
| WEIERSTRASS_SUB2 ( Wzx, z3, 0N ), |
| WEIERSTRASS_SUB2 ( Wzx, x3, 4N ), |
| /* [Wt] aRzx = a * Rzx (mod 2N) |
| * = a * (x1*z2 + x2*z1) (mod 2N) |
| */ |
| WEIERSTRASS_MUL3 ( Wt, a, Wzx ), |
| /* [Wp] 3bPz = 3b * Pz (mod 2N) |
| * = 3b*z1*z2 (mod 2N) |
| */ |
| WEIERSTRASS_MUL3 ( Wp, 3b, z3 ), |
| /* [Wp] Sy = aRzx + 3bPz (mod 4N) |
| * = a*(x1*z2 + x2*z1) + 3b*z1*z2 (mod 4N) |
| */ |
| WEIERSTRASS_ADD2 ( Wp, Wt ), |
| /* [Wt] Syz = Py + Sy (mod 6N) |
| * = y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2 (mod 6N) |
| */ |
| WEIERSTRASS_ADD3 ( Wt, y3, Wp ), |
| /* [y3] Sxy = Py - Sy (mod 6N) |
| * = y1*y2 - a*(x1*z2 + x2*z1) - 3b*z1*z2 (mod 6N) |
| */ |
| WEIERSTRASS_SUB2 ( y3, Wp, 4N ), |
| /* [z3] aPz = a * Pz (mod 2N) |
| * = a * z1*z2 (mod 2N) |
| */ |
| WEIERSTRASS_MUL2 ( z3, a ), |
| /* [Wzx] 3bRzx = 3b * Rzx (mod 2N) |
| * = 3b * (x1*z2 + x2*z1) (mod 2N) |
| */ |
| WEIERSTRASS_MUL2 ( Wzx, 3b ), |
| /* [x3] aPzx' = Px - aPz (mod 4N) |
| * = x1*x2 - a*z1*z2 (mod 4N) |
| */ |
| WEIERSTRASS_SUB2 ( x3, z3, 2N ), |
| /* [Wp] Szx = a * aPzx' (mod 2N) |
| * = a * (x1*x2 - a*z1*z2) (mod 2N) |
| * = a*x1*x2 - (a^2)*z1*z2 (mod 2N) |
| */ |
| WEIERSTRASS_MUL3 ( Wp, a, x3 ), |
| /* [x3] Px = aPzx' + aPz (mod 6N) |
| * = x1*x2 - a*z1*z2 + a*z1*z2 (mod 6N) |
| * = x1*x2 (mod 6N) |
| */ |
| WEIERSTRASS_ADD2 ( x3, z3 ), |
| /* [Wzx] Tzx = 3bRzx + Szx (mod 4N) |
| * = a*x1*x2 + 3b*(x1*z2 + x2*z1) - |
| * (a^2)*z1*z2 (mod 4N) |
| */ |
| WEIERSTRASS_ADD2 ( Wzx, Wp ), |
| /* [z3] aPzx = Px + aPz (mod 8N) |
| * = x1*x2 + a*z1*z2 (mod 8N) |
| */ |
| WEIERSTRASS_ADD2 ( z3, x3 ), |
| /* [x3] 2Px = Px + Px (mod 12N) |
| * = 2*x1*x2 (mod 12N) |
| */ |
| WEIERSTRASS_ADD2 ( x3, x3 ), |
| /* [x3] Tyz = 2Px + aPzx (mod 20N) |
| * = 2*x1*x2 + x1*x2 + a*z1*z2 (mod 20N) |
| * = 3*x1*x2 + a*z1*z2 (mod 20N) |
| */ |
| WEIERSTRASS_ADD2 ( x3, z3 ), |
| /* [z3] Syz = Syz (mod 6N) |
| * = y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2 (mod 6N) |
| */ |
| WEIERSTRASS_MOV ( z3, Wt ), |
| /* [Wt] Tyz = Tyz (mod 20N) |
| * = 3*x1*x2 + a*z1*z2 (mod 20N) |
| */ |
| WEIERSTRASS_MOV ( Wt, x3 ), |
| /* [x3] Ux = Rxy * Sxy (mod 2N) |
| * = (x1*y2 + x2*y1) * |
| * (y1*y2 - a*(x1*z2 + x2*z1) - 3b*z1*z2) (mod 2N) |
| */ |
| WEIERSTRASS_MUL3 ( x3, Wxy, y3 ), |
| /* [y3] Uy = Syz * Sxy (mod 2N) |
| * = (y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2) * |
| * (y1*y2 - a*(x1*z2 + x2*z1) - 3b*z1*z2) (mod 2N) |
| */ |
| WEIERSTRASS_MUL2 ( y3, z3 ), |
| /* [z3] Uz = Ryz * Syz (mod 2N) |
| * = (y1*z2 + y2*z1) * |
| * (y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2) (mod 2N) |
| */ |
| WEIERSTRASS_MUL2 ( z3, Wyz ), |
| /* [Wp] Vx = Ryz * Tzx (mod 2N) |
| * = (y1*z2 + y2*z1) * |
| * (a*x1*x2 + 3b*(x1*z2 + x2*z1) - (a^2)*z1*z2) |
| * (mod 2N) |
| */ |
| WEIERSTRASS_MUL3 ( Wp, Wyz, Wzx ), |
| /* [x3] x3 = Ux - Vx (mod 4N) |
| * = ((x1*y2 + x2*y1) * |
| * (y1*y2 - a*(x1*z2 + x2*z1) - 3b*z1*z2)) - |
| * ((y1*z2 + y2*z1) * |
| * (a*x1*x2 + 3b*(x1*z2 + x2*z1) - (a^2)*z1*z2)) |
| * (mod 4N) |
| */ |
| WEIERSTRASS_SUB2 ( x3, Wp, 2N ), |
| /* [Wp] Vy = Tyz * Tzx (mod 2N) |
| * = (3*x1*x2 + a*z1*z2) * |
| * (a*x1*x2 + 3b*(x1*z2 + x2*z1) - (a^2)*z1*z2) |
| * (mod 2N) |
| */ |
| WEIERSTRASS_MUL3 ( Wp, Wt, Wzx ), |
| /* [y3] y3 = Vy + Uy (mod 4N) |
| * = ((3*x1*x2 + a*z1*z2) * |
| * (a*x1*x2 + 3b*(x1*z2 + x2*z1) - (a^2)*z1*z2)) + |
| * ((y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2) * |
| * (y1*y2 - a*(x1*z2 + x2*z1) - 3b*z1*z2)) |
| * (mod 4N) |
| */ |
| WEIERSTRASS_ADD2 ( y3, Wp ), |
| /* [Wp] Vz = Rxy * Tyz (mod 2N) |
| * = (x1*y2 + x2*y1) * (3*x1*x2 + a*z1*z2) (mod 2N) |
| */ |
| WEIERSTRASS_MUL3 ( Wp, Wxy, Wt ), |
| /* [z3] z3 = Uz + Vz (mod 4N) |
| * = ((y1*z2 + y2*z1) * |
| * (y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2)) + |
| * ((x1*y2 + x2*y1) * (3*x1*x2 + a*z1*z2)) |
| * (mod 4N) |
| */ |
| WEIERSTRASS_ADD2 ( z3, Wp ), |
| /* Stop */ |
| WEIERSTRASS_STOP |
| }; |
| |
| /* Initialise register list */ |
| regs[WEIERSTRASS_a] = ( ( void * ) a ); |
| regs[WEIERSTRASS_3b] = ( ( void * ) b3 ); |
| regs[WEIERSTRASS_x1] = ( ( void * ) &augend->x ); |
| regs[WEIERSTRASS_x2] = ( ( void * ) &addend->x ); |
| regs[WEIERSTRASS_x3] = ( ( void * ) &result->x ); |
| regs[WEIERSTRASS_Wt] = &temp; |
| schedule = ( ( ( 1 << WEIERSTRASS_NUM_REGISTERS ) - 1 ) |
| - ( 1 << WEIERSTRASS_a ) |
| - ( 1 << WEIERSTRASS_3b ) |
| - ( 1 << WEIERSTRASS_x1 ) |
| - ( 1 << WEIERSTRASS_x2 ) |
| - ( 1 << WEIERSTRASS_x3 ) |
| - ( 1 << WEIERSTRASS_Wt ) ); |
| for ( i = 0 ; schedule ; i++, schedule >>= 1 ) { |
| if ( schedule & 1 ) |
| regs[i] = ( regs[ i - 1 ] + sizeof ( *prime ) ); |
| } |
| DBGC2 ( curve, "WEIERSTRASS %s augend (%s,", |
| curve->name, bigint_ntoa ( &augend->x ) ); |
| DBGC2 ( curve, "%s,", bigint_ntoa ( &augend->y ) ); |
| DBGC2 ( curve, "%s)\n", bigint_ntoa ( &augend->z ) ); |
| DBGC2 ( curve, "WEIERSTRASS %s addend (%s,", |
| curve->name, bigint_ntoa ( &addend->x ) ); |
| DBGC2 ( curve, "%s,", bigint_ntoa ( &addend->y ) ); |
| DBGC2 ( curve, "%s)\n", bigint_ntoa ( &addend->z ) ); |
| |
| /* Sanity checks */ |
| assert ( regs[WEIERSTRASS_a] == a ); |
| assert ( regs[WEIERSTRASS_3b] == b3 ); |
| assert ( regs[WEIERSTRASS_x1] == &augend->x ); |
| assert ( regs[WEIERSTRASS_y1] == &augend->y ); |
| assert ( regs[WEIERSTRASS_z1] == &augend->z ); |
| assert ( regs[WEIERSTRASS_x2] == &addend->x ); |
| assert ( regs[WEIERSTRASS_y2] == &addend->y ); |
| assert ( regs[WEIERSTRASS_z2] == &addend->z ); |
| assert ( regs[WEIERSTRASS_x3] == &result->x ); |
| assert ( regs[WEIERSTRASS_y3] == &result->y ); |
| assert ( regs[WEIERSTRASS_z3] == &result->z ); |
| assert ( regs[WEIERSTRASS_Wt] == &temp.Wt ); |
| assert ( regs[WEIERSTRASS_Wxy] == &temp.Wxy ); |
| assert ( regs[WEIERSTRASS_Wyz] == &temp.Wyz ); |
| assert ( regs[WEIERSTRASS_Wzx] == &temp.Wzx ); |
| assert ( regs[WEIERSTRASS_Wp] == &temp.Wp ); |
| |
| /* Execute bytecode instruction sequence */ |
| for ( op = ops ; *op != WEIERSTRASS_STOP ; op++ ) |
| weierstrass_exec ( curve, regs, size, *op ); |
| DBGC2 ( curve, "WEIERSTRASS %s result (%s,", |
| curve->name, bigint_ntoa ( &result->x ) ); |
| DBGC2 ( curve, "%s,", bigint_ntoa ( &result->y ) ); |
| DBGC2 ( curve, "%s)\n", bigint_ntoa ( &result->z ) ); |
| } |
| |
| /** |
| * Add points on curve |
| * |
| * @v curve Weierstrass curve |
| * @v augend Point (x1,y1,z1) to be added |
| * @v addend Point (x2,y2,z2) to be added |
| * @v result0 Point (x3,y3,z3) to hold result |
| */ |
| #define weierstrass_add( curve, augend, addend, result ) do { \ |
| weierstrass_add_raw ( (curve), (augend)->all.element, \ |
| (addend)->all.element, \ |
| (result)->all.element ); \ |
| } while ( 0 ) |
| |
| /** |
| * Add points on curve as part of a Montgomery ladder |
| * |
| * @v operand Element 0 of first input operand (may overlap result) |
| * @v result Element 0 of second input operand and result |
| * @v size Number of elements in operands and result |
| * @v ctx Operation context |
| * @v tmp Temporary working space (not used) |
| */ |
| static void weierstrass_add_ladder ( const bigint_element_t *operand0, |
| bigint_element_t *result0, |
| unsigned int size, const void *ctx, |
| void *tmp __unused ) { |
| const struct weierstrass_curve *curve = ctx; |
| const weierstrass_t ( curve->size ) __attribute__ (( may_alias )) |
| *operand = ( ( const void * ) operand0 ); |
| weierstrass_t ( curve->size ) __attribute__ (( may_alias )) |
| *result = ( ( void * ) result0 ); |
| |
| /* Add curve points */ |
| assert ( size == bigint_size ( &operand->all ) ); |
| assert ( size == bigint_size ( &result->all ) ); |
| weierstrass_add ( curve, operand, result, result ); |
| } |
| |
| /** |
| * Verify point is on curve |
| * |
| * @v curve Weierstrass curve |
| * @v point0 Element 0 of point (x,y,z) to be verified |
| * @ret rc Return status code |
| * |
| * As with point addition, points are represented in projective |
| * coordinates, with all values in Montgomery form and in the range |
| * [0,4N) where N is the field prime. |
| */ |
| static int weierstrass_verify_raw ( const struct weierstrass_curve *curve, |
| const bigint_element_t *point0 ) { |
| unsigned int size = curve->size; |
| const bigint_t ( size ) __attribute__ (( may_alias )) |
| *prime = ( ( const void * ) curve->prime[0] ); |
| const bigint_t ( size ) __attribute__ (( may_alias )) |
| *a = ( ( const void * ) curve->a ); |
| const bigint_t ( size ) __attribute__ (( may_alias )) |
| *b3 = ( ( const void * ) curve->b3 ); |
| const weierstrass_t ( size ) __attribute__ (( may_alias )) |
| *point = ( ( const void * ) point0 ); |
| struct { |
| bigint_t ( size ) Wt; |
| bigint_t ( size * 2 ) Wp; |
| } temp; |
| void *regs[WEIERSTRASS_NUM_REGISTERS]; |
| const uint16_t *op; |
| |
| /* Calculate 3*(x^3 + a*x + b - y^2) */ |
| static const uint16_t ops[] = { |
| /* [Wt] Tx = x^2 (mod 2N) */ |
| WEIERSTRASS_MUL3 ( Wt, x1, x1 ), |
| /* [Wt] Txa = Tx + a (mod 3N) |
| * = x^2 + a (mod 3N) |
| */ |
| WEIERSTRASS_MOV ( Wp, a ), |
| WEIERSTRASS_ADD2 ( Wt, Wp ), |
| /* [Wt] Txax = Txa * x (mod 2N) |
| * = (x^2 + a)*x (mod 2N) |
| * = x^3 + a*x (mod 2N) |
| */ |
| WEIERSTRASS_MUL2 ( Wt, x1 ), |
| /* [Wp] Ty = y^2 (mod 2N) */ |
| WEIERSTRASS_MUL3 ( Wp, y1, y1 ), |
| /* [Wt] Txaxy = Txax - Ty (mod 4N) |
| * = x^3 + a*x - y^2 (mod 4N) |
| */ |
| WEIERSTRASS_SUB2 ( Wt, Wp, 2N ), |
| /* [Wp] 2Txaxy = Txaxy + Txaxy (mod 8N) |
| * = 2*(x^3 + a*x - y^2) (mod 8N) |
| */ |
| WEIERSTRASS_ADD3 ( Wp, Wt, Wt ), |
| /* [Wt] 3Txaxy = 2Txaxy + Txaxy (mod 12N) |
| * = 3*(x^3 + a*x - y^2) (mod 12N) |
| */ |
| WEIERSTRASS_ADD2 ( Wt, Wp ), |
| /* [Wt] 3Txaxyb = 3Txaxy + 3b (mod 13N) |
| * = 3*(x^3 + a*x - y^2) + 3b (mod 13N) |
| * = 3*(x^3 + a*x + b - y^2) (mod 13N) |
| */ |
| WEIERSTRASS_ADD2 ( Wt, 3b ), |
| /* Stop */ |
| WEIERSTRASS_STOP |
| }; |
| |
| /* Initialise register list */ |
| regs[WEIERSTRASS_a] = ( ( void * ) a ); |
| regs[WEIERSTRASS_3b] = ( ( void * ) b3 ); |
| regs[WEIERSTRASS_x1] = ( ( void * ) &point->x ); |
| regs[WEIERSTRASS_y1] = ( ( void * ) &point->y ); |
| regs[WEIERSTRASS_Wt] = &temp.Wt; |
| regs[WEIERSTRASS_Wp] = &temp.Wp; |
| |
| /* Execute bytecode instruction sequence */ |
| for ( op = ops ; *op != WEIERSTRASS_STOP ; op++ ) |
| weierstrass_exec ( curve, regs, size, *op ); |
| |
| /* Check that result is zero (modulo the field prime) */ |
| bigint_grow ( &temp.Wt, &temp.Wp ); |
| bigint_montgomery ( prime, &temp.Wp, &temp.Wt ); |
| if ( ! bigint_is_zero ( &temp.Wt ) ) { |
| DBGC ( curve, "WEIERSTRASS %s base point is not on curve\n", |
| curve->name ); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Verify point is on curve |
| * |
| * @v curve Weierstrass curve |
| * @v point Point (x,y,z) to be verified |
| * @ret rc Return status code |
| */ |
| #define weierstrass_verify( curve, point ) ( { \ |
| weierstrass_verify_raw ( (curve), (point)->all.element ); \ |
| } ) |
| |
| /** |
| * Multiply curve point by scalar |
| * |
| * @v curve Weierstrass curve |
| * @v base Base point (or NULL to use generator) |
| * @v scalar Scalar multiple |
| * @v result Result point to fill in |
| * @ret rc Return status code |
| */ |
| int weierstrass_multiply ( struct weierstrass_curve *curve, const void *base, |
| const void *scalar, void *result ) { |
| unsigned int size = curve->size; |
| size_t len = curve->len; |
| const bigint_t ( size ) __attribute__ (( may_alias )) *prime = |
| ( ( const void * ) curve->prime[0] ); |
| const bigint_t ( size ) __attribute__ (( may_alias )) *prime2 = |
| ( ( const void * ) curve->prime[WEIERSTRASS_2N] ); |
| const bigint_t ( size ) __attribute__ (( may_alias )) *fermat = |
| ( ( const void * ) curve->fermat ); |
| const bigint_t ( size ) __attribute__ (( may_alias )) *square = |
| ( ( const void * ) curve->square ); |
| const bigint_t ( size ) __attribute__ (( may_alias )) *one = |
| ( ( const void * ) curve->one ); |
| struct { |
| union { |
| weierstrass_t ( size ) result; |
| bigint_t ( size * 2 ) product_in; |
| }; |
| union { |
| weierstrass_t ( size ) multiple; |
| bigint_t ( size * 2 ) product_out; |
| }; |
| bigint_t ( bigint_required_size ( len ) ) scalar; |
| } temp; |
| size_t offset; |
| unsigned int i; |
| int rc; |
| |
| /* Initialise curve, if not already done |
| * |
| * The least significant element of the field prime must be |
| * odd, and so the least significant element of the |
| * (initialised) first multiple of the field prime must be |
| * non-zero. |
| */ |
| if ( ! prime2->element[0] ) |
| weierstrass_init ( curve ); |
| |
| /* Use generator if applicable */ |
| if ( ! base ) |
| base = curve->base; |
| |
| /* Convert input to projective coordinates in Montgomery form */ |
| DBGC ( curve, "WEIERSTRASS %s base (", curve->name ); |
| for ( i = 0, offset = 0 ; i < WEIERSTRASS_AXES ; i++, offset += len ) { |
| bigint_init ( &temp.multiple.axis[i], ( base + offset ), len ); |
| DBGC ( curve, "%s%s", ( i ? "," : "" ), |
| bigint_ntoa ( &temp.multiple.axis[i] ) ); |
| bigint_multiply ( &temp.multiple.axis[i], square, |
| &temp.product_in ); |
| bigint_montgomery_relaxed ( prime, &temp.product_in, |
| &temp.multiple.axis[i] ); |
| } |
| bigint_copy ( one, &temp.multiple.z ); |
| DBGC ( curve, ")\n" ); |
| |
| /* Verify point is on curve */ |
| if ( ( rc = weierstrass_verify ( curve, &temp.multiple ) ) != 0 ) |
| return rc; |
| |
| /* Construct identity element (the point at infinity) */ |
| memset ( &temp.result, 0, sizeof ( temp.result ) ); |
| bigint_copy ( one, &temp.result.y ); |
| |
| /* Initialise scalar */ |
| bigint_init ( &temp.scalar, scalar, len ); |
| DBGC ( curve, "WEIERSTRASS %s scalar %s\n", |
| curve->name, bigint_ntoa ( &temp.scalar ) ); |
| |
| /* Perform multiplication via Montgomery ladder */ |
| bigint_ladder ( &temp.result.all, &temp.multiple.all, &temp.scalar, |
| weierstrass_add_ladder, curve, NULL ); |
| |
| /* Invert result Z co-ordinate (via Fermat's little theorem) */ |
| bigint_copy ( one, &temp.multiple.z ); |
| bigint_ladder ( &temp.multiple.z, &temp.result.z, fermat, |
| bigint_mod_exp_ladder, prime, &temp.product_out ); |
| |
| /* Convert result back to affine co-ordinates */ |
| DBGC ( curve, "WEIERSTRASS %s result (", curve->name ); |
| for ( i = 0, offset = 0 ; i < WEIERSTRASS_AXES ; i++, offset += len ) { |
| bigint_multiply ( &temp.result.axis[i], &temp.multiple.z, |
| &temp.product_out ); |
| bigint_montgomery_relaxed ( prime, &temp.product_out, |
| &temp.result.axis[i] ); |
| bigint_grow ( &temp.result.axis[i], &temp.product_out ); |
| bigint_montgomery ( prime, &temp.product_out, |
| &temp.result.axis[i] ); |
| DBGC ( curve, "%s%s", ( i ? "," : "" ), |
| bigint_ntoa ( &temp.result.axis[i] ) ); |
| bigint_done ( &temp.result.axis[i], ( result + offset ), len ); |
| } |
| DBGC ( curve, ")\n" ); |
| |
| return 0; |
| } |