blob: c149c7b210a7a2a7418e4a37cc32b24d6a1a40dd [file] [log] [blame]
/*
* Copyright (C) 2024 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* You can also choose to distribute this program under the terms of
* the Unmodified Binary Distribution Licence (as given in the file
* COPYING.UBDL), provided that you have satisfied its requirements.
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
/** @file
*
* Weierstrass elliptic curves
*
* The implementation is based upon Algorithm 1 from "Complete
* addition formulas for prime order elliptic curves" (Joost Renes,
* Craig Costello, and Lejla Batina), available from
*
* https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/complete-2.pdf
*
* The steps within the algorithm have been reordered and temporary
* variables shuffled to reduce stack usage, and calculations are
* carried out modulo small multiples of the field prime in order to
* elide reductions after intermediate addition and subtraction
* operations.
*
* The algorithm is encoded using a bytecode representation, since
* this substantially reduces the code size compared to direct
* implementation of the big integer operations.
*/
#include <errno.h>
#include <ipxe/weierstrass.h>
/** Big integer register names */
enum weierstrass_register {
/*
* Read-only registers
*/
/* Curve constant "a" (for multiply), zero (for add/subtract) */
WEIERSTRASS_a = 0,
/* Curve constant "3b" */
WEIERSTRASS_3b,
/* Augend (x,y,z) co-ordinates */
WEIERSTRASS_x1,
WEIERSTRASS_y1,
WEIERSTRASS_z1,
/* Addend (x,y,z) co-ordinates */
WEIERSTRASS_x2,
WEIERSTRASS_y2,
WEIERSTRASS_z2,
/*
* Read-write registers
*/
/* Temporary working registers */
WEIERSTRASS_Wt,
WEIERSTRASS_Wxy,
WEIERSTRASS_Wyz,
WEIERSTRASS_Wzx,
/* Low half of multiplication product */
WEIERSTRASS_Wp,
/* Result (x,y,z) co-ordinates */
WEIERSTRASS_x3,
WEIERSTRASS_y3,
WEIERSTRASS_z3,
/* Number of registers */
WEIERSTRASS_NUM_REGISTERS = 16
};
/** Zero register (for add/subtract operations */
#define WEIERSTRASS_zero WEIERSTRASS_a
/** Construct big integer register index */
#define WEIERSTRASS_REGISTER( name ) _C2 ( WEIERSTRASS_, name )
/** Bytecode operation codes */
enum weierstrass_opcode {
/** Subtract big integers (and add nothing)*/
WEIERSTRASS_OP_SUB_0N = 0,
/** Subtract big integers (and add 2N) */
WEIERSTRASS_OP_SUB_2N = WEIERSTRASS_2N,
/** Subtract big integers (and add 4N) */
WEIERSTRASS_OP_SUB_4N = WEIERSTRASS_4N,
/** Add big integers */
WEIERSTRASS_OP_ADD,
/** Multiply big integers (and perform Montgomery reduction) */
WEIERSTRASS_OP_MUL,
};
/**
* Define a bytecode operation
*
* @v opcode Operation code
* @v dest Destination big integer register name
* @v left Left source big integer register name
* @v right Right source big integer register name
*/
#define WEIERSTRASS_OP( opcode, dest, left, right ) \
( ( (opcode) << 12 ) | \
( WEIERSTRASS_REGISTER ( dest ) << 8 ) | \
( WEIERSTRASS_REGISTER ( left ) << 4 ) | \
( WEIERSTRASS_REGISTER ( right ) << 0 ) )
/** Extract bytecode operation code */
#define WEIERSTRASS_OPCODE( op ) ( ( (op) >> 12 ) & 0xf )
/** Extract destination big integer register */
#define WEIERSTRASS_DEST( op ) ( ( (op) >> 8 ) & 0xf )
/** Extract left source big integer register */
#define WEIERSTRASS_LEFT( op ) ( ( (op) >> 4 ) & 0xf )
/** Extract right source big integer register */
#define WEIERSTRASS_RIGHT( op ) ( ( (op) >> 0 ) & 0xf )
/** Define a three-argument addition operation */
#define WEIERSTRASS_ADD3( dest, augend, addend ) \
WEIERSTRASS_OP ( WEIERSTRASS_OP_ADD, dest, augend, addend )
/** Define a two-argument addition operation */
#define WEIERSTRASS_ADD2( augend, addend ) \
WEIERSTRASS_ADD3 ( augend, augend, addend )
/** Define a move operation */
#define WEIERSTRASS_MOV( dest, source ) \
WEIERSTRASS_ADD3( dest, source, zero )
/** Define a three-argument subtraction operation */
#define WEIERSTRASS_SUB3( dest, minuend, subtrahend, multiple ) \
WEIERSTRASS_OP ( _C2 ( WEIERSTRASS_OP_SUB_, multiple ), \
dest, minuend, subtrahend )
/** Define a two-argument subtraction operation */
#define WEIERSTRASS_SUB2( minuend, subtrahend, multiple ) \
WEIERSTRASS_SUB3 ( minuend, minuend, subtrahend, multiple )
/** Define a stop operation */
#define WEIERSTRASS_STOP WEIERSTRASS_SUB2 ( zero, zero, 0N )
/** Define a three-argument multiplication operation */
#define WEIERSTRASS_MUL3( dest, multiplicand, multiplier ) \
WEIERSTRASS_OP ( WEIERSTRASS_OP_MUL, dest, multiplicand, multiplier )
/** Define a two-argument multiplication operation */
#define WEIERSTRASS_MUL2( multiplicand, multiplier ) \
WEIERSTRASS_MUL3 ( multiplicand, multiplicand, multiplier )
/**
* Initialise curve
*
* @v curve Weierstrass curve
*/
static void weierstrass_init ( struct weierstrass_curve *curve ) {
unsigned int size = curve->size;
bigint_t ( size ) __attribute__ (( may_alias )) *prime =
( ( void * ) curve->prime[0] );
bigint_t ( size ) __attribute__ (( may_alias )) *fermat =
( ( void * ) curve->fermat );
bigint_t ( size ) __attribute__ (( may_alias )) *square =
( ( void * ) curve->square );
bigint_t ( size ) __attribute__ (( may_alias )) *one =
( ( void * ) curve->one );
bigint_t ( size ) __attribute__ (( may_alias )) *a =
( ( void * ) curve->a );
bigint_t ( size ) __attribute__ (( may_alias )) *b3 =
( ( void * ) curve->b3 );
bigint_t ( size ) __attribute__ (( may_alias )) *mont =
( ( void * ) curve->mont[0] );
bigint_t ( size ) __attribute__ (( may_alias )) *temp =
( ( void * ) curve->prime[1] );
bigint_t ( size * 2 ) __attribute__ (( may_alias )) *product =
( ( void * ) temp );
bigint_t ( size ) __attribute__ (( may_alias )) *two =
( ( void * ) temp );
static const uint8_t one_raw[] = { 1 };
static const uint8_t two_raw[] = { 2 };
size_t len = curve->len;
unsigned int i;
/* Initialise field prime */
bigint_init ( prime, curve->prime_raw, len );
DBGC ( curve, "WEIERSTRASS %s N = %s\n",
curve->name, bigint_ntoa ( prime ) );
/* Calculate Montgomery constant R^2 mod N */
bigint_reduce ( prime, square );
DBGC ( curve, "WEIERSTRASS %s R^2 = %s mod N\n",
curve->name, bigint_ntoa ( square ) );
/* Calculate constant "3b" */
bigint_init ( b3, curve->b_raw, len );
DBGC ( curve, "WEIERSTRASS %s b = %s\n",
curve->name, bigint_ntoa ( b3 ) );
bigint_copy ( b3, a );
bigint_add ( b3, b3 );
bigint_add ( a, b3 );
/* Initialise "a" */
bigint_init ( a, curve->a_raw, len );
DBGC ( curve, "WEIERSTRASS %s a = %s\n",
curve->name, bigint_ntoa ( a ) );
/* Initialise "1" */
bigint_init ( one, one_raw, sizeof ( one_raw ) );
/* Convert relevant constants to Montgomery form
*
* We rely on the fact that the prime multiples have not yet
* been calculated, and so can be used as a temporary buffer.
*/
for ( i = 0 ; i < WEIERSTRASS_NUM_MONT ; i++ ) {
static const char *names[] = { " ", " a", "3b" };
bigint_multiply ( &mont[i], square, product );
bigint_montgomery ( prime, product, &mont[i] );
DBGC ( curve, "WEIERSTRASS %s %sR = %s mod N\n",
curve->name, names[i], bigint_ntoa ( &mont[i] ) );
}
/* Calculate constant "N-2"
*
* We rely on the fact that the prime multiples have not yet
* been calculated, and so can be used as a temporary buffer.
*/
bigint_copy ( prime, fermat );
bigint_init ( two, two_raw, sizeof ( two_raw ) );
bigint_subtract ( two, fermat );
DBGC ( curve, "WEIERSTRASS %s N-2 = %s\n",
curve->name, bigint_ntoa ( fermat ) );
/* Calculate multiples of field prime */
for ( i = 1 ; i < WEIERSTRASS_NUM_MULTIPLES ; i++ ) {
bigint_copy ( &prime[ i - 1 ], &prime[i] );
bigint_add ( &prime[i], &prime[i] );
DBGC ( curve, "WEIERSTRASS %s %dN = %s\n",
curve->name, ( 1 << i ), bigint_ntoa ( &prime[i] ) );
}
}
/**
* Execute bytecode instruction
*
* @v curve Weierstrass curve
* @v regs Registers
* @v size Big integer size
* @v op Operation
*/
static void weierstrass_exec ( const struct weierstrass_curve *curve,
void **regs, unsigned int size,
unsigned int op ) {
const bigint_t ( size ) __attribute__ (( may_alias ))
*prime = ( ( const void * ) curve->prime[0] );
bigint_t ( size * 2 ) __attribute__ (( may_alias ))
*product = regs[WEIERSTRASS_Wp];
bigint_t ( size ) __attribute__ (( may_alias )) *dest;
const bigint_t ( size ) __attribute__ (( may_alias )) *left;
const bigint_t ( size ) __attribute__ (( may_alias )) *right;
const bigint_t ( size ) __attribute__ (( may_alias )) *addend;
const bigint_t ( size ) __attribute__ (( may_alias )) *subtrahend;
unsigned int op_code;
unsigned int op_dest;
unsigned int op_left;
unsigned int op_right;
/* Decode instruction */
op_code = WEIERSTRASS_OPCODE ( op );
op_dest = WEIERSTRASS_DEST ( op );
op_left = WEIERSTRASS_LEFT ( op );
op_right = WEIERSTRASS_RIGHT ( op );
dest = regs[op_dest];
left = regs[op_left];
right = regs[op_right];
/* Check destination is a writable register */
assert ( op_dest >= WEIERSTRASS_Wt );
/* Handle multiplications */
if ( op_code == WEIERSTRASS_OP_MUL ) {
assert ( op_left != WEIERSTRASS_Wp );
assert ( op_right != WEIERSTRASS_Wp );
bigint_multiply ( left, right, product );
bigint_montgomery_relaxed ( prime, product, dest );
DBGCP ( curve, "WEIERSTRASS %s R%d := R%d x R%d = %s\n",
curve->name, op_dest, op_left, op_right,
bigint_ntoa ( dest ) );
return;
}
/* Copy left source, if required */
if ( op_dest != op_left )
bigint_copy ( left, dest );
/* Do nothing more if addend/subtrahend is zero */
if ( ! op_right ) {
DBGCP ( curve, "WEIERSTRASS %s R%d := R%d = %s\n",
curve->name, op_dest, op_left, bigint_ntoa ( dest ) );
return;
}
/* Determine addend and subtrahend */
addend = NULL;
subtrahend = NULL;
if ( op_code == WEIERSTRASS_OP_ADD ) {
DBGCP ( curve, "WEIERSTRASS %s R%d := R%d + R%d = ",
curve->name, op_dest, op_left, op_right );
addend = ( ( const void * ) right );
} else {
subtrahend = ( ( const void * ) right );
if ( op_code > WEIERSTRASS_OP_SUB_0N ) {
DBGCP ( curve, "WEIERSTRASS %s R%d := R%d - R%d + "
"%dN = ", curve->name, op_dest, op_left,
op_right, ( 1 << op_code ) );
addend = ( ( const void * ) curve->prime[op_code] );
} else {
DBGCP ( curve, "WEIERSTRASS %s R%d := R%d - R%d = ",
curve->name, op_dest, op_left, op_right );
}
}
/* Perform addition and subtraction */
if ( addend )
bigint_add ( addend, dest );
if ( subtrahend )
bigint_subtract ( subtrahend, dest );
DBGCP ( curve, "%s\n", bigint_ntoa ( dest ) );
}
/**
* Add points on curve
*
* @v curve Weierstrass curve
* @v augend0 Element 0 of point (x1,y1,z1) to be added
* @v addend0 Element 0 of point (x2,y2,z2) to be added
* @v result0 Element 0 of point (x3,y3,z3) to hold result
*
* Points are represented in projective coordinates, with all values
* in Montgomery form and in the range [0,4N) where N is the field
* prime.
*
* The augend may have the same value as the addend (i.e. this routine
* may be used to perform point doubling as well as point addition),
* and either or both may be the point at infinity.
*
* The result may overlap either input, since the inputs are fully
* consumed before the result is written.
*/
static void weierstrass_add_raw ( const struct weierstrass_curve *curve,
const bigint_element_t *augend0,
const bigint_element_t *addend0,
bigint_element_t *result0 ) {
unsigned int size = curve->size;
const bigint_t ( size ) __attribute__ (( may_alias ))
*prime = ( ( const void * ) curve->prime[0] );
const bigint_t ( size ) __attribute__ (( may_alias ))
*a = ( ( const void * ) curve->a );
const bigint_t ( size ) __attribute__ (( may_alias ))
*b3 = ( ( const void * ) curve->b3 );
const weierstrass_t ( size ) __attribute__ (( may_alias ))
*augend = ( ( const void * ) augend0 );
const weierstrass_t ( size ) __attribute__ (( may_alias ))
*addend = ( ( const void * ) addend0 );
weierstrass_t ( size ) __attribute__ (( may_alias ))
*result = ( ( void * ) result0 );
struct {
bigint_t ( size ) Wt;
bigint_t ( size ) Wxy;
bigint_t ( size ) Wyz;
bigint_t ( size ) Wzx;
bigint_t ( size * 2 ) Wp;
} temp;
void *regs[WEIERSTRASS_NUM_REGISTERS];
unsigned int schedule;
const uint16_t *op;
unsigned int i;
/* On entry, we assume that x1, x2, y1, y2, z1, z2 are all in
* the range [0,4N). Additions will extend the range.
* Subtractions will extend the range (and require an addition
* of a suitable multiple of the modulus to ensure that the
* result is a positive value). Relaxed Montgomery
* multiplications will reduce the range to [0,2N). The
* outputs x3, y3, z3 will be in the range [0,4N) and
* therefore usable as subsequent inputs.
*/
static const uint16_t ops[] = {
/* [Wxy] Qxy = (x1+y1)*(x2+y2) (mod 2N) */
WEIERSTRASS_ADD3 ( Wt, x1, y1 ),
WEIERSTRASS_ADD3 ( Wxy, x2, y2 ),
WEIERSTRASS_MUL2 ( Wxy, Wt ),
/* [Wyz] Qyz = (y1+z1)*(y2+z2) (mod 2N) */
WEIERSTRASS_ADD3 ( Wt, y1, z1 ),
WEIERSTRASS_ADD3 ( Wyz, y2, z2 ),
WEIERSTRASS_MUL2 ( Wyz, Wt ),
/* [Wzx] Qzx = (z1+x1)*(z2+x2) (mod 2N) */
WEIERSTRASS_ADD3 ( Wt, z1, x1 ),
WEIERSTRASS_ADD3 ( Wzx, z2, x2 ),
WEIERSTRASS_MUL2 ( Wzx, Wt ),
/* [x3] Px = x1*x2 (mod 2N) */
WEIERSTRASS_MUL3 ( x3, x1, x2 ),
/* [y3] Py = y1*y2 (mod 2N) */
WEIERSTRASS_MUL3 ( y3, y1, y2 ),
/* [z3] Pz = z1*z2 (mod 2N) */
WEIERSTRASS_MUL3 ( z3, z1, z2 ),
/* [Wxy] Rxy = Qxy - Px - Py (mod 6N)
* = (x1+y1)*(x2+y2) - x1*x2 - y1*y2 (mod 6N)
* = x1*y2 + x2*y1 (mod 6N)
*/
WEIERSTRASS_SUB2 ( Wxy, x3, 0N ),
WEIERSTRASS_SUB2 ( Wxy, y3, 4N ),
/* [Wyz] Ryz = Qyz - Py - Pz (mod 6N)
* = (y1+z1)*(y2+z2) - y1*y2 - z1*z2 (mod 6N)
* = y1*z2 + y2*z1 (mod 6N)
*/
WEIERSTRASS_SUB2 ( Wyz, y3, 0N ),
WEIERSTRASS_SUB2 ( Wyz, z3, 4N ),
/* [Wzx] Rzx = Qzx - Pz - Px (mod 6N)
* = (z1+x1)*(z2+x2) - z1*z2 - x1*x2 (mod 6N)
* = x1*z2 + x2*z1 (mod 6N)
*/
WEIERSTRASS_SUB2 ( Wzx, z3, 0N ),
WEIERSTRASS_SUB2 ( Wzx, x3, 4N ),
/* [Wt] aRzx = a * Rzx (mod 2N)
* = a * (x1*z2 + x2*z1) (mod 2N)
*/
WEIERSTRASS_MUL3 ( Wt, a, Wzx ),
/* [Wp] 3bPz = 3b * Pz (mod 2N)
* = 3b*z1*z2 (mod 2N)
*/
WEIERSTRASS_MUL3 ( Wp, 3b, z3 ),
/* [Wp] Sy = aRzx + 3bPz (mod 4N)
* = a*(x1*z2 + x2*z1) + 3b*z1*z2 (mod 4N)
*/
WEIERSTRASS_ADD2 ( Wp, Wt ),
/* [Wt] Syz = Py + Sy (mod 6N)
* = y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2 (mod 6N)
*/
WEIERSTRASS_ADD3 ( Wt, y3, Wp ),
/* [y3] Sxy = Py - Sy (mod 6N)
* = y1*y2 - a*(x1*z2 + x2*z1) - 3b*z1*z2 (mod 6N)
*/
WEIERSTRASS_SUB2 ( y3, Wp, 4N ),
/* [z3] aPz = a * Pz (mod 2N)
* = a * z1*z2 (mod 2N)
*/
WEIERSTRASS_MUL2 ( z3, a ),
/* [Wzx] 3bRzx = 3b * Rzx (mod 2N)
* = 3b * (x1*z2 + x2*z1) (mod 2N)
*/
WEIERSTRASS_MUL2 ( Wzx, 3b ),
/* [x3] aPzx' = Px - aPz (mod 4N)
* = x1*x2 - a*z1*z2 (mod 4N)
*/
WEIERSTRASS_SUB2 ( x3, z3, 2N ),
/* [Wp] Szx = a * aPzx' (mod 2N)
* = a * (x1*x2 - a*z1*z2) (mod 2N)
* = a*x1*x2 - (a^2)*z1*z2 (mod 2N)
*/
WEIERSTRASS_MUL3 ( Wp, a, x3 ),
/* [x3] Px = aPzx' + aPz (mod 6N)
* = x1*x2 - a*z1*z2 + a*z1*z2 (mod 6N)
* = x1*x2 (mod 6N)
*/
WEIERSTRASS_ADD2 ( x3, z3 ),
/* [Wzx] Tzx = 3bRzx + Szx (mod 4N)
* = a*x1*x2 + 3b*(x1*z2 + x2*z1) -
* (a^2)*z1*z2 (mod 4N)
*/
WEIERSTRASS_ADD2 ( Wzx, Wp ),
/* [z3] aPzx = Px + aPz (mod 8N)
* = x1*x2 + a*z1*z2 (mod 8N)
*/
WEIERSTRASS_ADD2 ( z3, x3 ),
/* [x3] 2Px = Px + Px (mod 12N)
* = 2*x1*x2 (mod 12N)
*/
WEIERSTRASS_ADD2 ( x3, x3 ),
/* [x3] Tyz = 2Px + aPzx (mod 20N)
* = 2*x1*x2 + x1*x2 + a*z1*z2 (mod 20N)
* = 3*x1*x2 + a*z1*z2 (mod 20N)
*/
WEIERSTRASS_ADD2 ( x3, z3 ),
/* [z3] Syz = Syz (mod 6N)
* = y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2 (mod 6N)
*/
WEIERSTRASS_MOV ( z3, Wt ),
/* [Wt] Tyz = Tyz (mod 20N)
* = 3*x1*x2 + a*z1*z2 (mod 20N)
*/
WEIERSTRASS_MOV ( Wt, x3 ),
/* [x3] Ux = Rxy * Sxy (mod 2N)
* = (x1*y2 + x2*y1) *
* (y1*y2 - a*(x1*z2 + x2*z1) - 3b*z1*z2) (mod 2N)
*/
WEIERSTRASS_MUL3 ( x3, Wxy, y3 ),
/* [y3] Uy = Syz * Sxy (mod 2N)
* = (y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2) *
* (y1*y2 - a*(x1*z2 + x2*z1) - 3b*z1*z2) (mod 2N)
*/
WEIERSTRASS_MUL2 ( y3, z3 ),
/* [z3] Uz = Ryz * Syz (mod 2N)
* = (y1*z2 + y2*z1) *
* (y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2) (mod 2N)
*/
WEIERSTRASS_MUL2 ( z3, Wyz ),
/* [Wp] Vx = Ryz * Tzx (mod 2N)
* = (y1*z2 + y2*z1) *
* (a*x1*x2 + 3b*(x1*z2 + x2*z1) - (a^2)*z1*z2)
* (mod 2N)
*/
WEIERSTRASS_MUL3 ( Wp, Wyz, Wzx ),
/* [x3] x3 = Ux - Vx (mod 4N)
* = ((x1*y2 + x2*y1) *
* (y1*y2 - a*(x1*z2 + x2*z1) - 3b*z1*z2)) -
* ((y1*z2 + y2*z1) *
* (a*x1*x2 + 3b*(x1*z2 + x2*z1) - (a^2)*z1*z2))
* (mod 4N)
*/
WEIERSTRASS_SUB2 ( x3, Wp, 2N ),
/* [Wp] Vy = Tyz * Tzx (mod 2N)
* = (3*x1*x2 + a*z1*z2) *
* (a*x1*x2 + 3b*(x1*z2 + x2*z1) - (a^2)*z1*z2)
* (mod 2N)
*/
WEIERSTRASS_MUL3 ( Wp, Wt, Wzx ),
/* [y3] y3 = Vy + Uy (mod 4N)
* = ((3*x1*x2 + a*z1*z2) *
* (a*x1*x2 + 3b*(x1*z2 + x2*z1) - (a^2)*z1*z2)) +
* ((y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2) *
* (y1*y2 - a*(x1*z2 + x2*z1) - 3b*z1*z2))
* (mod 4N)
*/
WEIERSTRASS_ADD2 ( y3, Wp ),
/* [Wp] Vz = Rxy * Tyz (mod 2N)
* = (x1*y2 + x2*y1) * (3*x1*x2 + a*z1*z2) (mod 2N)
*/
WEIERSTRASS_MUL3 ( Wp, Wxy, Wt ),
/* [z3] z3 = Uz + Vz (mod 4N)
* = ((y1*z2 + y2*z1) *
* (y1*y2 + a*(x1*z2 + x2*z1) + 3b*z1*z2)) +
* ((x1*y2 + x2*y1) * (3*x1*x2 + a*z1*z2))
* (mod 4N)
*/
WEIERSTRASS_ADD2 ( z3, Wp ),
/* Stop */
WEIERSTRASS_STOP
};
/* Initialise register list */
regs[WEIERSTRASS_a] = ( ( void * ) a );
regs[WEIERSTRASS_3b] = ( ( void * ) b3 );
regs[WEIERSTRASS_x1] = ( ( void * ) &augend->x );
regs[WEIERSTRASS_x2] = ( ( void * ) &addend->x );
regs[WEIERSTRASS_x3] = ( ( void * ) &result->x );
regs[WEIERSTRASS_Wt] = &temp;
schedule = ( ( ( 1 << WEIERSTRASS_NUM_REGISTERS ) - 1 )
- ( 1 << WEIERSTRASS_a )
- ( 1 << WEIERSTRASS_3b )
- ( 1 << WEIERSTRASS_x1 )
- ( 1 << WEIERSTRASS_x2 )
- ( 1 << WEIERSTRASS_x3 )
- ( 1 << WEIERSTRASS_Wt ) );
for ( i = 0 ; schedule ; i++, schedule >>= 1 ) {
if ( schedule & 1 )
regs[i] = ( regs[ i - 1 ] + sizeof ( *prime ) );
}
DBGC2 ( curve, "WEIERSTRASS %s augend (%s,",
curve->name, bigint_ntoa ( &augend->x ) );
DBGC2 ( curve, "%s,", bigint_ntoa ( &augend->y ) );
DBGC2 ( curve, "%s)\n", bigint_ntoa ( &augend->z ) );
DBGC2 ( curve, "WEIERSTRASS %s addend (%s,",
curve->name, bigint_ntoa ( &addend->x ) );
DBGC2 ( curve, "%s,", bigint_ntoa ( &addend->y ) );
DBGC2 ( curve, "%s)\n", bigint_ntoa ( &addend->z ) );
/* Sanity checks */
assert ( regs[WEIERSTRASS_a] == a );
assert ( regs[WEIERSTRASS_3b] == b3 );
assert ( regs[WEIERSTRASS_x1] == &augend->x );
assert ( regs[WEIERSTRASS_y1] == &augend->y );
assert ( regs[WEIERSTRASS_z1] == &augend->z );
assert ( regs[WEIERSTRASS_x2] == &addend->x );
assert ( regs[WEIERSTRASS_y2] == &addend->y );
assert ( regs[WEIERSTRASS_z2] == &addend->z );
assert ( regs[WEIERSTRASS_x3] == &result->x );
assert ( regs[WEIERSTRASS_y3] == &result->y );
assert ( regs[WEIERSTRASS_z3] == &result->z );
assert ( regs[WEIERSTRASS_Wt] == &temp.Wt );
assert ( regs[WEIERSTRASS_Wxy] == &temp.Wxy );
assert ( regs[WEIERSTRASS_Wyz] == &temp.Wyz );
assert ( regs[WEIERSTRASS_Wzx] == &temp.Wzx );
assert ( regs[WEIERSTRASS_Wp] == &temp.Wp );
/* Execute bytecode instruction sequence */
for ( op = ops ; *op != WEIERSTRASS_STOP ; op++ )
weierstrass_exec ( curve, regs, size, *op );
DBGC2 ( curve, "WEIERSTRASS %s result (%s,",
curve->name, bigint_ntoa ( &result->x ) );
DBGC2 ( curve, "%s,", bigint_ntoa ( &result->y ) );
DBGC2 ( curve, "%s)\n", bigint_ntoa ( &result->z ) );
}
/**
* Add points on curve
*
* @v curve Weierstrass curve
* @v augend Point (x1,y1,z1) to be added
* @v addend Point (x2,y2,z2) to be added
* @v result0 Point (x3,y3,z3) to hold result
*/
#define weierstrass_add( curve, augend, addend, result ) do { \
weierstrass_add_raw ( (curve), (augend)->all.element, \
(addend)->all.element, \
(result)->all.element ); \
} while ( 0 )
/**
* Add points on curve as part of a Montgomery ladder
*
* @v operand Element 0 of first input operand (may overlap result)
* @v result Element 0 of second input operand and result
* @v size Number of elements in operands and result
* @v ctx Operation context
* @v tmp Temporary working space (not used)
*/
static void weierstrass_add_ladder ( const bigint_element_t *operand0,
bigint_element_t *result0,
unsigned int size, const void *ctx,
void *tmp __unused ) {
const struct weierstrass_curve *curve = ctx;
const weierstrass_t ( curve->size ) __attribute__ (( may_alias ))
*operand = ( ( const void * ) operand0 );
weierstrass_t ( curve->size ) __attribute__ (( may_alias ))
*result = ( ( void * ) result0 );
/* Add curve points */
assert ( size == bigint_size ( &operand->all ) );
assert ( size == bigint_size ( &result->all ) );
weierstrass_add ( curve, operand, result, result );
}
/**
* Verify point is on curve
*
* @v curve Weierstrass curve
* @v point0 Element 0 of point (x,y,z) to be verified
* @ret rc Return status code
*
* As with point addition, points are represented in projective
* coordinates, with all values in Montgomery form and in the range
* [0,4N) where N is the field prime.
*/
static int weierstrass_verify_raw ( const struct weierstrass_curve *curve,
const bigint_element_t *point0 ) {
unsigned int size = curve->size;
const bigint_t ( size ) __attribute__ (( may_alias ))
*prime = ( ( const void * ) curve->prime[0] );
const bigint_t ( size ) __attribute__ (( may_alias ))
*a = ( ( const void * ) curve->a );
const bigint_t ( size ) __attribute__ (( may_alias ))
*b3 = ( ( const void * ) curve->b3 );
const weierstrass_t ( size ) __attribute__ (( may_alias ))
*point = ( ( const void * ) point0 );
struct {
bigint_t ( size ) Wt;
bigint_t ( size * 2 ) Wp;
} temp;
void *regs[WEIERSTRASS_NUM_REGISTERS];
const uint16_t *op;
/* Calculate 3*(x^3 + a*x + b - y^2) */
static const uint16_t ops[] = {
/* [Wt] Tx = x^2 (mod 2N) */
WEIERSTRASS_MUL3 ( Wt, x1, x1 ),
/* [Wt] Txa = Tx + a (mod 3N)
* = x^2 + a (mod 3N)
*/
WEIERSTRASS_MOV ( Wp, a ),
WEIERSTRASS_ADD2 ( Wt, Wp ),
/* [Wt] Txax = Txa * x (mod 2N)
* = (x^2 + a)*x (mod 2N)
* = x^3 + a*x (mod 2N)
*/
WEIERSTRASS_MUL2 ( Wt, x1 ),
/* [Wp] Ty = y^2 (mod 2N) */
WEIERSTRASS_MUL3 ( Wp, y1, y1 ),
/* [Wt] Txaxy = Txax - Ty (mod 4N)
* = x^3 + a*x - y^2 (mod 4N)
*/
WEIERSTRASS_SUB2 ( Wt, Wp, 2N ),
/* [Wp] 2Txaxy = Txaxy + Txaxy (mod 8N)
* = 2*(x^3 + a*x - y^2) (mod 8N)
*/
WEIERSTRASS_ADD3 ( Wp, Wt, Wt ),
/* [Wt] 3Txaxy = 2Txaxy + Txaxy (mod 12N)
* = 3*(x^3 + a*x - y^2) (mod 12N)
*/
WEIERSTRASS_ADD2 ( Wt, Wp ),
/* [Wt] 3Txaxyb = 3Txaxy + 3b (mod 13N)
* = 3*(x^3 + a*x - y^2) + 3b (mod 13N)
* = 3*(x^3 + a*x + b - y^2) (mod 13N)
*/
WEIERSTRASS_ADD2 ( Wt, 3b ),
/* Stop */
WEIERSTRASS_STOP
};
/* Initialise register list */
regs[WEIERSTRASS_a] = ( ( void * ) a );
regs[WEIERSTRASS_3b] = ( ( void * ) b3 );
regs[WEIERSTRASS_x1] = ( ( void * ) &point->x );
regs[WEIERSTRASS_y1] = ( ( void * ) &point->y );
regs[WEIERSTRASS_Wt] = &temp.Wt;
regs[WEIERSTRASS_Wp] = &temp.Wp;
/* Execute bytecode instruction sequence */
for ( op = ops ; *op != WEIERSTRASS_STOP ; op++ )
weierstrass_exec ( curve, regs, size, *op );
/* Check that result is zero (modulo the field prime) */
bigint_grow ( &temp.Wt, &temp.Wp );
bigint_montgomery ( prime, &temp.Wp, &temp.Wt );
if ( ! bigint_is_zero ( &temp.Wt ) ) {
DBGC ( curve, "WEIERSTRASS %s base point is not on curve\n",
curve->name );
return -EINVAL;
}
return 0;
}
/**
* Verify point is on curve
*
* @v curve Weierstrass curve
* @v point Point (x,y,z) to be verified
* @ret rc Return status code
*/
#define weierstrass_verify( curve, point ) ( { \
weierstrass_verify_raw ( (curve), (point)->all.element ); \
} )
/**
* Multiply curve point by scalar
*
* @v curve Weierstrass curve
* @v base Base point (or NULL to use generator)
* @v scalar Scalar multiple
* @v result Result point to fill in
* @ret rc Return status code
*/
int weierstrass_multiply ( struct weierstrass_curve *curve, const void *base,
const void *scalar, void *result ) {
unsigned int size = curve->size;
size_t len = curve->len;
const bigint_t ( size ) __attribute__ (( may_alias )) *prime =
( ( const void * ) curve->prime[0] );
const bigint_t ( size ) __attribute__ (( may_alias )) *prime2 =
( ( const void * ) curve->prime[WEIERSTRASS_2N] );
const bigint_t ( size ) __attribute__ (( may_alias )) *fermat =
( ( const void * ) curve->fermat );
const bigint_t ( size ) __attribute__ (( may_alias )) *square =
( ( const void * ) curve->square );
const bigint_t ( size ) __attribute__ (( may_alias )) *one =
( ( const void * ) curve->one );
struct {
union {
weierstrass_t ( size ) result;
bigint_t ( size * 2 ) product_in;
};
union {
weierstrass_t ( size ) multiple;
bigint_t ( size * 2 ) product_out;
};
bigint_t ( bigint_required_size ( len ) ) scalar;
} temp;
size_t offset;
unsigned int i;
int rc;
/* Initialise curve, if not already done
*
* The least significant element of the field prime must be
* odd, and so the least significant element of the
* (initialised) first multiple of the field prime must be
* non-zero.
*/
if ( ! prime2->element[0] )
weierstrass_init ( curve );
/* Use generator if applicable */
if ( ! base )
base = curve->base;
/* Convert input to projective coordinates in Montgomery form */
DBGC ( curve, "WEIERSTRASS %s base (", curve->name );
for ( i = 0, offset = 0 ; i < WEIERSTRASS_AXES ; i++, offset += len ) {
bigint_init ( &temp.multiple.axis[i], ( base + offset ), len );
DBGC ( curve, "%s%s", ( i ? "," : "" ),
bigint_ntoa ( &temp.multiple.axis[i] ) );
bigint_multiply ( &temp.multiple.axis[i], square,
&temp.product_in );
bigint_montgomery_relaxed ( prime, &temp.product_in,
&temp.multiple.axis[i] );
}
bigint_copy ( one, &temp.multiple.z );
DBGC ( curve, ")\n" );
/* Verify point is on curve */
if ( ( rc = weierstrass_verify ( curve, &temp.multiple ) ) != 0 )
return rc;
/* Construct identity element (the point at infinity) */
memset ( &temp.result, 0, sizeof ( temp.result ) );
bigint_copy ( one, &temp.result.y );
/* Initialise scalar */
bigint_init ( &temp.scalar, scalar, len );
DBGC ( curve, "WEIERSTRASS %s scalar %s\n",
curve->name, bigint_ntoa ( &temp.scalar ) );
/* Perform multiplication via Montgomery ladder */
bigint_ladder ( &temp.result.all, &temp.multiple.all, &temp.scalar,
weierstrass_add_ladder, curve, NULL );
/* Invert result Z co-ordinate (via Fermat's little theorem) */
bigint_copy ( one, &temp.multiple.z );
bigint_ladder ( &temp.multiple.z, &temp.result.z, fermat,
bigint_mod_exp_ladder, prime, &temp.product_out );
/* Convert result back to affine co-ordinates */
DBGC ( curve, "WEIERSTRASS %s result (", curve->name );
for ( i = 0, offset = 0 ; i < WEIERSTRASS_AXES ; i++, offset += len ) {
bigint_multiply ( &temp.result.axis[i], &temp.multiple.z,
&temp.product_out );
bigint_montgomery_relaxed ( prime, &temp.product_out,
&temp.result.axis[i] );
bigint_grow ( &temp.result.axis[i], &temp.product_out );
bigint_montgomery ( prime, &temp.product_out,
&temp.result.axis[i] );
DBGC ( curve, "%s%s", ( i ? "," : "" ),
bigint_ntoa ( &temp.result.axis[i] ) );
bigint_done ( &temp.result.axis[i], ( result + offset ), len );
}
DBGC ( curve, ")\n" );
return 0;
}