blob: 9d8bae824dc8d83f6169ed0dae773f7452153106 [file] [log] [blame]
/*
* Copyright (C) 2022 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* You can also choose to distribute this program under the terms of
* the Unmodified Binary Distribution Licence (as given in the file
* COPYING.UBDL), provided that you have satisfied its requirements.
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
/** @file
*
* Galois/Counter Mode (GCM)
*
* The GCM algorithm is specified in
*
* https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
* https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
*
*/
#include <stdint.h>
#include <string.h>
#include <byteswap.h>
#include <ipxe/crypto.h>
#include <ipxe/gcm.h>
/**
* Perform encryption
*
* This value is chosen to allow for ANDing with a fragment length.
*/
#define GCM_FL_ENCRYPT 0x00ff
/**
* Calculate hash over an initialisation vector value
*
* The hash calculation for a non 96-bit initialisation vector is
* identical to the calculation used for additional data, except that
* the non-additional data length counter is used.
*/
#define GCM_FL_IV 0x0100
/**
* GCM field polynomial
*
* GCM treats 128-bit blocks as polynomials in GF(2^128) with the
* field polynomial f(x) = 1 + x + x^2 + x^7 + x^128.
*
* In a somewhat bloody-minded interpretation of "big-endian", the
* constant term (with degree zero) is arbitrarily placed in the
* leftmost bit of the big-endian binary representation (i.e. the most
* significant bit of byte 0), thereby failing to correspond to the
* bit ordering in any CPU architecture in existence. This
* necessitates some wholly gratuitous byte reversals when
* constructing the multiplication tables, since all CPUs will treat
* bit 0 as being the least significant bit within a byte.
*
* The field polynomial maps to the 128-bit constant
* 0xe1000000000000000000000000000000 (with the x^128 term outside the
* 128-bit range), and can therefore be treated as a single-byte
* value.
*/
#define GCM_POLY 0xe1
/**
* Hash key for which multiplication tables are cached
*
* GCM operates much more efficiently with a cached multiplication
* table, which costs 4kB per hash key. Since this exceeds the
* available stack space, we place a single 4kB cache in .bss and
* recalculate the cached values as required. In the common case of a
* single HTTPS connection being used to download a (relatively) large
* file, the same key will be used repeatedly for almost all GCM
* operations, and so the overhead of recalculation is negligible.
*/
static const union gcm_block *gcm_cached_key;
/**
* Cached multiplication table (M0) for Shoup's method
*
* Each entry within this table represents the result of multiplying
* the cached hash key by an arbitrary 8-bit polynomial.
*/
static union gcm_block gcm_cached_mult[256];
/**
* Cached reduction table (R) for Shoup's method
*
* Each entry within this table represents the result of multiplying
* the fixed polynomial x^128 by an arbitrary 8-bit polynomial. Only
* the leftmost 16 bits are stored, since all other bits within the
* result will always be zero.
*/
static uint16_t gcm_cached_reduce[256];
/**
* Reverse bits in a byte
*
* @v byte Byte
* @ret etyb Bit-reversed byte
*/
static inline __attribute__ (( always_inline )) uint8_t
gcm_reverse ( const uint8_t byte ) {
uint8_t etyb = etyb;
uint8_t mask;
for ( mask = 1 ; mask ; mask <<= 1 ) {
etyb <<= 1;
if ( byte & mask )
etyb |= 1;
}
return etyb;
}
/**
* Update GCM counter
*
* @v ctr Counter
* @v delta Amount to add to counter
*/
static inline __attribute__ (( always_inline )) void
gcm_count ( union gcm_block *ctr, uint32_t delta ) {
uint32_t *value = &ctr->ctr.value;
/* Update counter modulo 2^32 */
*value = cpu_to_be32 ( be32_to_cpu ( *value ) + delta );
}
/**
* XOR partial data block
*
* @v src1 Source buffer 1
* @v src2 Source buffer 2
* @v dst Destination buffer
* @v len Length
*/
static inline void gcm_xor ( const void *src1, const void *src2, void *dst,
size_t len ) {
uint8_t *dst_bytes = dst;
const uint8_t *src1_bytes = src1;
const uint8_t *src2_bytes = src2;
/* XOR one byte at a time */
while ( len-- )
*(dst_bytes++) = ( *(src1_bytes++) ^ *(src2_bytes++) );
}
/**
* XOR whole data block in situ
*
* @v src Source block
* @v dst Destination block
*/
static inline void gcm_xor_block ( const union gcm_block *src,
union gcm_block *dst ) {
/* XOR whole dwords */
dst->dword[0] ^= src->dword[0];
dst->dword[1] ^= src->dword[1];
dst->dword[2] ^= src->dword[2];
dst->dword[3] ^= src->dword[3];
}
/**
* Multiply polynomial by (x)
*
* @v mult Multiplicand
* @v res Result
*/
static void gcm_multiply_x ( const union gcm_block *mult,
union gcm_block *res ) {
unsigned int i;
uint8_t byte;
uint8_t carry;
/* Multiply by (x) by shifting all bits rightward */
for ( i = 0, carry = 0 ; i < sizeof ( res->byte ) ; i++ ) {
byte = mult->byte[i];
res->byte[i] = ( ( carry << 7 ) | ( byte >> 1 ) );
carry = ( byte & 0x01 );
}
/* If result overflows, reduce modulo the field polynomial */
if ( carry )
res->byte[0] ^= GCM_POLY;
}
/**
* Construct cached tables
*
* @v key Hash key
* @v context Context
*/
static void gcm_cache ( const union gcm_block *key ) {
union gcm_block *mult;
uint16_t reduce;
unsigned int this;
unsigned int other;
unsigned int i;
/* Calculate M0[1..255] and R[1..255]
*
* The R[] values are independent of the key, but the overhead
* of recalculating them here is negligible and saves on
* overall code size since the calculations are related.
*/
for ( i = 1 ; i < 256 ; i++ ) {
/* Reverse bit order to compensate for poor life choices */
this = gcm_reverse ( i );
/* Construct entries */
mult = &gcm_cached_mult[this];
if ( this & 0x80 ) {
/* Odd number: entry[i] = entry[i - 1] + poly */
other = ( this & 0x7f ); /* bit-reversed (i - 1) */
gcm_xor ( key, &gcm_cached_mult[other], mult,
sizeof ( *mult ) );
reduce = gcm_cached_reduce[other];
reduce ^= be16_to_cpu ( GCM_POLY << 8 );
gcm_cached_reduce[this] = reduce;
} else {
/* Even number: entry[i] = entry[i/2] * (x) */
other = ( this << 1 ); /* bit-reversed (i / 2) */
gcm_multiply_x ( &gcm_cached_mult[other], mult );
reduce = be16_to_cpu ( gcm_cached_reduce[other] );
reduce >>= 1;
gcm_cached_reduce[this] = cpu_to_be16 ( reduce );
}
}
/* Record cached key */
gcm_cached_key = key;
}
/**
* Multiply polynomial by (x^8) in situ
*
* @v poly Multiplicand and result
*/
static void gcm_multiply_x_8 ( union gcm_block *poly ) {
uint8_t *byte;
uint8_t msb;
/* Reduction table must already have been calculated */
assert ( gcm_cached_key != NULL );
/* Record most significant byte */
byte = &poly->byte[ sizeof ( poly->byte ) - 1 ];
msb = *byte;
/* Multiply least significant bytes by shifting */
for ( ; byte > &poly->byte[0] ; byte-- )
*byte = *( byte - 1 );
*byte = 0;
/* Multiply most significant byte via reduction table */
poly->word[0] ^= gcm_cached_reduce[msb];
}
/**
* Multiply polynomial by hash key in situ
*
* @v key Hash key
* @v poly Multiplicand and result
*/
static void gcm_multiply_key ( const union gcm_block *key,
union gcm_block *poly ) {
union gcm_block res;
uint8_t *byte;
/* Construct tables, if necessary */
if ( gcm_cached_key != key )
gcm_cache ( key );
/* Multiply using Shoup's algorithm */
byte = &poly->byte[ sizeof ( poly->byte ) - 1 ];
memcpy ( &res, &gcm_cached_mult[ *byte ], sizeof ( res ) );
for ( byte-- ; byte >= &poly->byte[0] ; byte-- ) {
gcm_multiply_x_8 ( &res );
gcm_xor_block ( &gcm_cached_mult[ *byte ], &res );
}
/* Overwrite result */
memcpy ( poly, &res, sizeof ( *poly ) );
}
/**
* Encrypt/decrypt/authenticate data
*
* @v context Context
* @v src Input data
* @v dst Output data, or NULL to process additional data
* @v len Length of data
* @v flags Operation flags
*/
static void gcm_process ( struct gcm_context *context, const void *src,
void *dst, size_t len, unsigned int flags ) {
union gcm_block tmp;
uint64_t *total;
size_t frag_len;
unsigned int block;
/* Calculate block number (for debugging) */
block = ( ( ( context->len.len.add + 8 * sizeof ( tmp ) - 1 ) /
( 8 * sizeof ( tmp ) ) ) +
( ( context->len.len.data + 8 * sizeof ( tmp ) - 1 ) /
( 8 * sizeof ( tmp ) ) ) + 1 );
/* Update total length (in bits) */
total = ( ( dst || ( flags & GCM_FL_IV ) ) ?
&context->len.len.data : &context->len.len.add );
*total += ( len * 8 );
/* Process data */
for ( ; len ; src += frag_len, len -= frag_len, block++ ) {
/* Calculate fragment length */
frag_len = len;
if ( frag_len > sizeof ( tmp ) )
frag_len = sizeof ( tmp );
/* Update hash with input data */
gcm_xor ( src, &context->hash, &context->hash, frag_len );
/* Encrypt/decrypt block, if applicable */
if ( dst ) {
/* Increment counter */
gcm_count ( &context->ctr, 1 );
/* Encrypt counter */
DBGC2 ( context, "GCM %p Y[%d]:\n", context, block );
DBGC2_HDA ( context, 0, &context->ctr,
sizeof ( context->ctr ) );
cipher_encrypt ( context->raw_cipher, &context->raw_ctx,
&context->ctr, &tmp, sizeof ( tmp ) );
DBGC2 ( context, "GCM %p E(K,Y[%d]):\n",
context, block );
DBGC2_HDA ( context, 0, &tmp, sizeof ( tmp ) );
/* Encrypt/decrypt data */
gcm_xor ( src, &tmp, dst, frag_len );
dst += frag_len;
/* Update hash with encrypted data, if applicable */
gcm_xor ( &tmp, &context->hash, &context->hash,
( frag_len & flags ) );
}
/* Update hash */
gcm_multiply_key ( &context->key, &context->hash );
DBGC2 ( context, "GCM %p X[%d]:\n", context, block );
DBGC2_HDA ( context, 0, &context->hash,
sizeof ( context->hash ) );
}
}
/**
* Construct hash
*
* @v context Context
* @v hash Hash to fill in
*/
static void gcm_hash ( struct gcm_context *context, union gcm_block *hash ) {
/* Construct big-endian lengths block */
hash->len.add = cpu_to_be64 ( context->len.len.add );
hash->len.data = cpu_to_be64 ( context->len.len.data );
DBGC2 ( context, "GCM %p len(A)||len(C):\n", context );
DBGC2_HDA ( context, 0, hash, sizeof ( *hash ) );
/* Update hash */
gcm_xor_block ( &context->hash, hash );
gcm_multiply_key ( &context->key, hash );
DBGC2 ( context, "GCM %p GHASH(H,A,C):\n", context );
DBGC2_HDA ( context, 0, hash, sizeof ( *hash ) );
}
/**
* Construct tag
*
* @v context Context
* @v tag Tag
*/
void gcm_tag ( struct gcm_context *context, union gcm_block *tag ) {
union gcm_block tmp;
uint32_t offset;
/* Construct hash */
gcm_hash ( context, tag );
/* Construct encrypted initial counter value */
memcpy ( &tmp, &context->ctr, sizeof ( tmp ) );
offset = ( ( -context->len.len.data ) / ( 8 * sizeof ( tmp ) ) );
gcm_count ( &tmp, offset );
cipher_encrypt ( context->raw_cipher, &context->raw_ctx, &tmp,
&tmp, sizeof ( tmp ) );
DBGC2 ( context, "GCM %p E(K,Y[0]):\n", context );
DBGC2_HDA ( context, 0, &tmp, sizeof ( tmp ) );
/* Construct tag */
gcm_xor_block ( &tmp, tag );
DBGC2 ( context, "GCM %p T:\n", context );
DBGC2_HDA ( context, 0, tag, sizeof ( *tag ) );
}
/**
* Set key
*
* @v context Context
* @v key Key
* @v keylen Key length
* @v raw_cipher Underlying cipher
* @ret rc Return status code
*/
int gcm_setkey ( struct gcm_context *context, const void *key, size_t keylen,
struct cipher_algorithm *raw_cipher ) {
int rc;
/* Initialise GCM context */
memset ( context, 0, sizeof ( *context ) );
context->raw_cipher = raw_cipher;
/* Set underlying block cipher key */
if ( ( rc = cipher_setkey ( raw_cipher, context->raw_ctx, key,
keylen ) ) != 0 )
return rc;
/* Construct GCM hash key */
cipher_encrypt ( raw_cipher, context->raw_ctx, &context->ctr,
&context->key, sizeof ( context->key ) );
DBGC2 ( context, "GCM %p H:\n", context );
DBGC2_HDA ( context, 0, &context->key, sizeof ( context->key ) );
/* Reset counter */
context->ctr.ctr.value = cpu_to_be32 ( 1 );
/* Construct cached tables */
gcm_cache ( &context->key );
return 0;
}
/**
* Set initialisation vector
*
* @v ctx Context
* @v iv Initialisation vector
* @v ivlen Initialisation vector length
*/
void gcm_setiv ( struct gcm_context *context, const void *iv, size_t ivlen ) {
union gcm_block *check = ( ( void * ) context );
/* Sanity checks */
linker_assert ( &context->hash == check, gcm_bad_layout );
linker_assert ( &context->len == check + 1, gcm_bad_layout );
linker_assert ( &context->ctr == check + 2, gcm_bad_layout );
linker_assert ( &context->key == check + 3, gcm_bad_layout );
/* Reset non-key state */
memset ( context, 0, offsetof ( typeof ( *context ), key ) );
/* Reset counter */
context->ctr.ctr.value = cpu_to_be32 ( 1 );
/* Process initialisation vector */
if ( ivlen == sizeof ( context->ctr.ctr.iv ) ) {
/* Initialisation vector is exactly 96 bits, use it as-is */
memcpy ( context->ctr.ctr.iv, iv, ivlen );
} else {
/* Calculate hash over initialisation vector */
gcm_process ( context, iv, NULL, ivlen, GCM_FL_IV );
gcm_hash ( context, &context->ctr );
assert ( context->len.len.add == 0 );
/* Reset non-key, non-counter state */
memset ( context, 0, offsetof ( typeof ( *context ), ctr ) );
}
DBGC2 ( context, "GCM %p Y[0]:\n", context );
DBGC2_HDA ( context, 0, &context->ctr, sizeof ( context->ctr ) );
}
/**
* Encrypt data
*
* @v context Context
* @v src Data to encrypt
* @v dst Buffer for encrypted data, or NULL for additional data
* @v len Length of data
*/
void gcm_encrypt ( struct gcm_context *context, const void *src, void *dst,
size_t len ) {
/* Process data */
gcm_process ( context, src, dst, len, GCM_FL_ENCRYPT );
}
/**
* Decrypt data
*
* @v context Context
* @v src Data to decrypt
* @v dst Buffer for decrypted data, or NULL for additional data
* @v len Length of data
*/
void gcm_decrypt ( struct gcm_context *context, const void *src, void *dst,
size_t len ) {
/* Process data */
gcm_process ( context, src, dst, len, 0 );
}