blob: 0c85df70864e995edbbf7defb8c8a6b2a08e477a [file] [log] [blame]
/*
* Copyright (C) 2007 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* You can also choose to distribute this program under the terms of
* the Unmodified Binary Distribution Licence (as given in the file
* COPYING.UBDL), provided that you have satisfied its requirements.
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
/**
* @file
*
* Multiboot image format
*
*/
#include <stdio.h>
#include <errno.h>
#include <assert.h>
#include <realmode.h>
#include <multiboot.h>
#include <ipxe/uaccess.h>
#include <ipxe/image.h>
#include <ipxe/segment.h>
#include <ipxe/io.h>
#include <ipxe/elf.h>
#include <ipxe/init.h>
#include <ipxe/features.h>
#include <ipxe/uri.h>
#include <ipxe/version.h>
FEATURE ( FEATURE_IMAGE, "MBOOT", DHCP_EB_FEATURE_MULTIBOOT, 1 );
/**
* Maximum number of modules we will allow for
*
* If this has bitten you: sorry. I did have a perfect scheme with a
* dynamically allocated list of modules on the protected-mode stack,
* but it was incompatible with some broken OSes that can only access
* low memory at boot time (even though we kindly set up 4GB flat
* physical addressing as per the multiboot specification.
*
*/
#define MAX_MODULES 8
/**
* Maximum combined length of command lines
*
* Again; sorry. Some broken OSes zero out any non-base memory that
* isn't part of the loaded module set, so we can't just use
* virt_to_phys(cmdline) to point to the command lines, even though
* this would comply with the Multiboot spec.
*/
#define MB_MAX_CMDLINE 512
/** Multiboot flags that we support */
#define MB_SUPPORTED_FLAGS ( MB_FLAG_PGALIGN | MB_FLAG_MEMMAP | \
MB_FLAG_VIDMODE | MB_FLAG_RAW )
/** Compulsory feature multiboot flags */
#define MB_COMPULSORY_FLAGS 0x0000ffff
/** Optional feature multiboot flags */
#define MB_OPTIONAL_FLAGS 0xffff0000
/**
* Multiboot flags that we don't support
*
* We only care about the compulsory feature flags (bits 0-15); we are
* allowed to ignore the optional feature flags.
*/
#define MB_UNSUPPORTED_FLAGS ( MB_COMPULSORY_FLAGS & ~MB_SUPPORTED_FLAGS )
/** A multiboot header descriptor */
struct multiboot_header_info {
/** The actual multiboot header */
struct multiboot_header mb;
/** Offset of header within the multiboot image */
size_t offset;
};
/** Multiboot module command lines */
static char __bss16_array ( mb_cmdlines, [MB_MAX_CMDLINE] );
#define mb_cmdlines __use_data16 ( mb_cmdlines )
/** Offset within module command lines */
static unsigned int mb_cmdline_offset;
/**
* Build multiboot memory map
*
* @v image Multiboot image
* @v mbinfo Multiboot information structure
* @v mbmemmap Multiboot memory map
* @v limit Maxmimum number of memory map entries
*/
static void multiboot_build_memmap ( struct image *image,
struct multiboot_info *mbinfo,
struct multiboot_memory_map *mbmemmap,
unsigned int limit ) {
struct memory_map memmap;
unsigned int i;
/* Get memory map */
get_memmap ( &memmap );
/* Translate into multiboot format */
memset ( mbmemmap, 0, sizeof ( *mbmemmap ) );
for ( i = 0 ; i < memmap.count ; i++ ) {
if ( i >= limit ) {
DBGC ( image, "MULTIBOOT %p limit of %d memmap "
"entries reached\n", image, limit );
break;
}
mbmemmap[i].size = ( sizeof ( mbmemmap[i] ) -
sizeof ( mbmemmap[i].size ) );
mbmemmap[i].base_addr = memmap.regions[i].start;
mbmemmap[i].length = ( memmap.regions[i].end -
memmap.regions[i].start );
mbmemmap[i].type = MBMEM_RAM;
mbinfo->mmap_length += sizeof ( mbmemmap[i] );
if ( memmap.regions[i].start == 0 )
mbinfo->mem_lower = ( memmap.regions[i].end / 1024 );
if ( memmap.regions[i].start == 0x100000 )
mbinfo->mem_upper = ( ( memmap.regions[i].end -
0x100000 ) / 1024 );
}
}
/**
* Add command line in base memory
*
* @v image Image
* @ret physaddr Physical address of command line
*/
static physaddr_t multiboot_add_cmdline ( struct image *image ) {
char *mb_cmdline = ( mb_cmdlines + mb_cmdline_offset );
size_t remaining = ( sizeof ( mb_cmdlines ) - mb_cmdline_offset );
char *buf = mb_cmdline;
size_t len;
/* Copy image URI to base memory buffer as start of command line */
len = ( format_uri ( image->uri, buf, remaining ) + 1 /* NUL */ );
if ( len > remaining )
len = remaining;
mb_cmdline_offset += len;
buf += len;
remaining -= len;
/* Copy command line to base memory buffer, if present */
if ( image->cmdline ) {
mb_cmdline_offset--; /* Strip NUL */
buf--;
remaining++;
len = ( snprintf ( buf, remaining, " %s",
image->cmdline ) + 1 /* NUL */ );
if ( len > remaining )
len = remaining;
mb_cmdline_offset += len;
}
return virt_to_phys ( mb_cmdline );
}
/**
* Add multiboot modules
*
* @v image Multiboot image
* @v start Start address for modules
* @v mbinfo Multiboot information structure
* @v modules Multiboot module list
* @ret rc Return status code
*/
static int multiboot_add_modules ( struct image *image, physaddr_t start,
struct multiboot_info *mbinfo,
struct multiboot_module *modules,
unsigned int limit ) {
struct image *module_image;
struct multiboot_module *module;
int rc;
/* Add each image as a multiboot module */
for_each_image ( module_image ) {
if ( mbinfo->mods_count >= limit ) {
DBGC ( image, "MULTIBOOT %p limit of %d modules "
"reached\n", image, limit );
break;
}
/* Do not include kernel image itself as a module */
if ( module_image == image )
continue;
/* Page-align the module */
start = ( ( start + 0xfff ) & ~0xfff );
/* Prepare segment */
if ( ( rc = prep_segment ( phys_to_user ( start ),
module_image->len,
module_image->len ) ) != 0 ) {
DBGC ( image, "MULTIBOOT %p could not prepare module "
"%s: %s\n", image, module_image->name,
strerror ( rc ) );
return rc;
}
/* Copy module */
memcpy_user ( phys_to_user ( start ), 0,
module_image->data, 0, module_image->len );
/* Add module to list */
module = &modules[mbinfo->mods_count++];
module->mod_start = start;
module->mod_end = ( start + module_image->len );
module->string = multiboot_add_cmdline ( module_image );
module->reserved = 0;
DBGC ( image, "MULTIBOOT %p module %s is [%x,%x)\n",
image, module_image->name, module->mod_start,
module->mod_end );
start += module_image->len;
}
return 0;
}
/**
* The multiboot information structure
*
* Kept in base memory because some OSes won't find it elsewhere,
* along with the other structures belonging to the Multiboot
* information table.
*/
static struct multiboot_info __bss16 ( mbinfo );
#define mbinfo __use_data16 ( mbinfo )
/** The multiboot bootloader name */
static char __bss16_array ( mb_bootloader_name, [32] );
#define mb_bootloader_name __use_data16 ( mb_bootloader_name )
/** The multiboot memory map */
static struct multiboot_memory_map
__bss16_array ( mbmemmap, [MAX_MEMORY_REGIONS] );
#define mbmemmap __use_data16 ( mbmemmap )
/** The multiboot module list */
static struct multiboot_module __bss16_array ( mbmodules, [MAX_MODULES] );
#define mbmodules __use_data16 ( mbmodules )
/**
* Find multiboot header
*
* @v image Multiboot file
* @v hdr Multiboot header descriptor to fill in
* @ret rc Return status code
*/
static int multiboot_find_header ( struct image *image,
struct multiboot_header_info *hdr ) {
uint32_t buf[64];
size_t offset;
unsigned int buf_idx;
uint32_t checksum;
/* Scan through first 8kB of image file 256 bytes at a time.
* (Use the buffering to avoid the overhead of a
* copy_from_user() for every dword.)
*/
for ( offset = 0 ; offset < 8192 ; offset += sizeof ( buf[0] ) ) {
/* Check for end of image */
if ( offset > image->len )
break;
/* Refill buffer if applicable */
buf_idx = ( ( offset % sizeof ( buf ) ) / sizeof ( buf[0] ) );
if ( buf_idx == 0 ) {
copy_from_user ( buf, image->data, offset,
sizeof ( buf ) );
}
/* Check signature */
if ( buf[buf_idx] != MULTIBOOT_HEADER_MAGIC )
continue;
/* Copy header and verify checksum */
copy_from_user ( &hdr->mb, image->data, offset,
sizeof ( hdr->mb ) );
checksum = ( hdr->mb.magic + hdr->mb.flags +
hdr->mb.checksum );
if ( checksum != 0 )
continue;
/* Record offset of multiboot header and return */
hdr->offset = offset;
return 0;
}
/* No multiboot header found */
return -ENOEXEC;
}
/**
* Load raw multiboot image into memory
*
* @v image Multiboot file
* @v hdr Multiboot header descriptor
* @ret entry Entry point
* @ret max Maximum used address
* @ret rc Return status code
*/
static int multiboot_load_raw ( struct image *image,
struct multiboot_header_info *hdr,
physaddr_t *entry, physaddr_t *max ) {
size_t offset;
size_t filesz;
size_t memsz;
userptr_t buffer;
int rc;
/* Sanity check */
if ( ! ( hdr->mb.flags & MB_FLAG_RAW ) ) {
DBGC ( image, "MULTIBOOT %p is not flagged as a raw image\n",
image );
return -EINVAL;
}
/* Verify and prepare segment */
offset = ( hdr->offset - hdr->mb.header_addr + hdr->mb.load_addr );
filesz = ( hdr->mb.load_end_addr ?
( hdr->mb.load_end_addr - hdr->mb.load_addr ) :
( image->len - offset ) );
memsz = ( hdr->mb.bss_end_addr ?
( hdr->mb.bss_end_addr - hdr->mb.load_addr ) : filesz );
buffer = phys_to_user ( hdr->mb.load_addr );
if ( ( rc = prep_segment ( buffer, filesz, memsz ) ) != 0 ) {
DBGC ( image, "MULTIBOOT %p could not prepare segment: %s\n",
image, strerror ( rc ) );
return rc;
}
/* Copy image to segment */
memcpy_user ( buffer, 0, image->data, offset, filesz );
/* Record execution entry point and maximum used address */
*entry = hdr->mb.entry_addr;
*max = ( hdr->mb.load_addr + memsz );
return 0;
}
/**
* Load ELF multiboot image into memory
*
* @v image Multiboot file
* @ret entry Entry point
* @ret max Maximum used address
* @ret rc Return status code
*/
static int multiboot_load_elf ( struct image *image, physaddr_t *entry,
physaddr_t *max ) {
int rc;
/* Load ELF image*/
if ( ( rc = elf_load ( image, entry, max ) ) != 0 ) {
DBGC ( image, "MULTIBOOT %p ELF image failed to load: %s\n",
image, strerror ( rc ) );
return rc;
}
return 0;
}
/**
* Execute multiboot image
*
* @v image Multiboot image
* @ret rc Return status code
*/
static int multiboot_exec ( struct image *image ) {
struct multiboot_header_info hdr;
physaddr_t entry;
physaddr_t max;
int rc;
/* Locate multiboot header, if present */
if ( ( rc = multiboot_find_header ( image, &hdr ) ) != 0 ) {
DBGC ( image, "MULTIBOOT %p has no multiboot header\n",
image );
return rc;
}
/* Abort if we detect flags that we cannot support */
if ( hdr.mb.flags & MB_UNSUPPORTED_FLAGS ) {
DBGC ( image, "MULTIBOOT %p flags %08x not supported\n",
image, ( hdr.mb.flags & MB_UNSUPPORTED_FLAGS ) );
return -ENOTSUP;
}
/* There is technically a bit MB_FLAG_RAW to indicate whether
* this is an ELF or a raw image. In practice, grub will use
* the ELF header if present, and Solaris relies on this
* behaviour.
*/
if ( ( ( rc = multiboot_load_elf ( image, &entry, &max ) ) != 0 ) &&
( ( rc = multiboot_load_raw ( image, &hdr, &entry, &max ) ) != 0 ))
return rc;
/* Populate multiboot information structure */
memset ( &mbinfo, 0, sizeof ( mbinfo ) );
mbinfo.flags = ( MBI_FLAG_LOADER | MBI_FLAG_MEM | MBI_FLAG_MMAP |
MBI_FLAG_CMDLINE | MBI_FLAG_MODS );
mb_cmdline_offset = 0;
mbinfo.cmdline = multiboot_add_cmdline ( image );
mbinfo.mods_addr = virt_to_phys ( mbmodules );
mbinfo.mmap_addr = virt_to_phys ( mbmemmap );
snprintf ( mb_bootloader_name, sizeof ( mb_bootloader_name ),
"iPXE %s", product_version );
mbinfo.boot_loader_name = virt_to_phys ( mb_bootloader_name );
if ( ( rc = multiboot_add_modules ( image, max, &mbinfo, mbmodules,
( sizeof ( mbmodules ) /
sizeof ( mbmodules[0] ) ) ) ) !=0)
return rc;
/* Multiboot images may not return and have no callback
* interface, so shut everything down prior to booting the OS.
*/
shutdown_boot();
/* Build memory map after unhiding bootloader memory regions as part of
* shutting everything down.
*/
multiboot_build_memmap ( image, &mbinfo, mbmemmap,
( sizeof(mbmemmap) / sizeof(mbmemmap[0]) ) );
/* Jump to OS with flat physical addressing */
DBGC ( image, "MULTIBOOT %p starting execution at %lx\n",
image, entry );
__asm__ __volatile__ ( PHYS_CODE ( "pushl %%ebp\n\t"
"call *%%edi\n\t"
"popl %%ebp\n\t" )
: : "a" ( MULTIBOOT_BOOTLOADER_MAGIC ),
"b" ( virt_to_phys ( &mbinfo ) ),
"D" ( entry )
: "ecx", "edx", "esi", "memory" );
DBGC ( image, "MULTIBOOT %p returned\n", image );
/* It isn't safe to continue after calling shutdown() */
while ( 1 ) {}
return -ECANCELED; /* -EIMPOSSIBLE, anyone? */
}
/**
* Probe multiboot image
*
* @v image Multiboot file
* @ret rc Return status code
*/
static int multiboot_probe ( struct image *image ) {
struct multiboot_header_info hdr;
int rc;
/* Locate multiboot header, if present */
if ( ( rc = multiboot_find_header ( image, &hdr ) ) != 0 ) {
DBGC ( image, "MULTIBOOT %p has no multiboot header\n",
image );
return rc;
}
DBGC ( image, "MULTIBOOT %p found header with flags %08x\n",
image, hdr.mb.flags );
return 0;
}
/** Multiboot image type */
struct image_type multiboot_image_type __image_type ( PROBE_MULTIBOOT ) = {
.name = "Multiboot",
.probe = multiboot_probe,
.exec = multiboot_exec,
};