blob: 9657eb7e8084ec8c63bddc210f2c74da90cc5be2 [file] [log] [blame]
/**************************************************************************
*
* GPL net driver for Level 5 Etherfabric network cards
*
* Written by Michael Brown <mbrown@fensystems.co.uk>
*
* Copyright Fen Systems Ltd. 2005
* Copyright Level 5 Networks Inc. 2005
*
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL), incorporated herein by
* reference. Drivers based on or derived from this code fall under
* the GPL and must retain the authorship, copyright and license
* notice. This file is not a complete program and may only be used
* when the entire operating system is licensed under the GPL.
*
**************************************************************************
*/
FILE_LICENCE ( GPL_ANY );
#ifndef EFAB_BITFIELD_H
#define EFAB_BITFIELD_H
/** @file
*
* Etherfabric bitfield access
*
* Etherfabric NICs make extensive use of bitfields up to 128 bits
* wide. Since there is no native 128-bit datatype on most systems,
* and since 64-bit datatypes are inefficient on 32-bit systems and
* vice versa, we wrap accesses in a way that uses the most efficient
* datatype.
*
* The NICs are PCI devices and therefore little-endian. Since most
* of the quantities that we deal with are DMAed to/from host memory,
* we define our datatypes (efab_oword_t, efab_qword_t and
* efab_dword_t) to be little-endian.
*
* In the less common case of using PIO for individual register
* writes, we construct the little-endian datatype in host memory and
* then use non-swapping equivalents of writel/writeq, rather than
* constructing a native-endian datatype and relying on the implicit
* byte-swapping done by writel/writeq. (We use a similar strategy
* for register reads.)
*/
/** Dummy field low bit number */
#define EFAB_DUMMY_FIELD_LBN 0
/** Dummy field width */
#define EFAB_DUMMY_FIELD_WIDTH 0
/** Dword 0 low bit number */
#define EFAB_DWORD_0_LBN 0
/** Dword 0 width */
#define EFAB_DWORD_0_WIDTH 32
/** Dword 1 low bit number */
#define EFAB_DWORD_1_LBN 32
/** Dword 1 width */
#define EFAB_DWORD_1_WIDTH 32
/** Dword 2 low bit number */
#define EFAB_DWORD_2_LBN 64
/** Dword 2 width */
#define EFAB_DWORD_2_WIDTH 32
/** Dword 3 low bit number */
#define EFAB_DWORD_3_LBN 96
/** Dword 3 width */
#define EFAB_DWORD_3_WIDTH 32
/** Specified attribute (e.g. LBN) of the specified field */
#define EFAB_VAL(field,attribute) field ## _ ## attribute
/** Low bit number of the specified field */
#define EFAB_LOW_BIT( field ) EFAB_VAL ( field, LBN )
/** Bit width of the specified field */
#define EFAB_WIDTH( field ) EFAB_VAL ( field, WIDTH )
/** High bit number of the specified field */
#define EFAB_HIGH_BIT(field) ( EFAB_LOW_BIT(field) + EFAB_WIDTH(field) - 1 )
/** Mask equal in width to the specified field.
*
* For example, a field with width 5 would have a mask of 0x1f.
*
* The maximum width mask that can be generated is 64 bits.
*/
#define EFAB_MASK64( field ) \
( EFAB_WIDTH(field) == 64 ? ~( ( uint64_t ) 0 ) : \
( ( ( ( ( uint64_t ) 1 ) << EFAB_WIDTH(field) ) ) - 1 ) )
/** Mask equal in width to the specified field.
*
* For example, a field with width 5 would have a mask of 0x1f.
*
* The maximum width mask that can be generated is 32 bits. Use
* EFAB_MASK64 for higher width fields.
*/
#define EFAB_MASK32( field ) \
( EFAB_WIDTH(field) == 32 ? ~( ( uint32_t ) 0 ) : \
( ( ( ( ( uint32_t ) 1 ) << EFAB_WIDTH(field) ) ) - 1 ) )
/** A doubleword (i.e. 4 byte) datatype
*
* This datatype is defined to be little-endian.
*/
typedef union efab_dword {
uint32_t u32[1];
uint32_t opaque; /* For bitwise operations between two efab_dwords */
} efab_dword_t;
/** A quadword (i.e. 8 byte) datatype
*
* This datatype is defined to be little-endian.
*/
typedef union efab_qword {
uint64_t u64[1];
uint32_t u32[2];
efab_dword_t dword[2];
} efab_qword_t;
/**
* An octword (eight-word, i.e. 16 byte) datatype
*
* This datatype is defined to be little-endian.
*/
typedef union efab_oword {
uint64_t u64[2];
efab_qword_t qword[2];
uint32_t u32[4];
efab_dword_t dword[4];
} efab_oword_t;
/** Format string for printing an efab_dword_t */
#define EFAB_DWORD_FMT "%08x"
/** Format string for printing an efab_qword_t */
#define EFAB_QWORD_FMT "%08x:%08x"
/** Format string for printing an efab_oword_t */
#define EFAB_OWORD_FMT "%08x:%08x:%08x:%08x"
/** printk parameters for printing an efab_dword_t */
#define EFAB_DWORD_VAL(dword) \
( ( unsigned int ) le32_to_cpu ( (dword).u32[0] ) )
/** printk parameters for printing an efab_qword_t */
#define EFAB_QWORD_VAL(qword) \
( ( unsigned int ) le32_to_cpu ( (qword).u32[1] ) ), \
( ( unsigned int ) le32_to_cpu ( (qword).u32[0] ) )
/** printk parameters for printing an efab_oword_t */
#define EFAB_OWORD_VAL(oword) \
( ( unsigned int ) le32_to_cpu ( (oword).u32[3] ) ), \
( ( unsigned int ) le32_to_cpu ( (oword).u32[2] ) ), \
( ( unsigned int ) le32_to_cpu ( (oword).u32[1] ) ), \
( ( unsigned int ) le32_to_cpu ( (oword).u32[0] ) )
/**
* Extract bit field portion [low,high) from the native-endian element
* which contains bits [min,max).
*
* For example, suppose "element" represents the high 32 bits of a
* 64-bit value, and we wish to extract the bits belonging to the bit
* field occupying bits 28-45 of this 64-bit value.
*
* Then EFAB_EXTRACT ( element, 32, 63, 28, 45 ) would give
*
* ( element ) << 4
*
* The result will contain the relevant bits filled in in the range
* [0,high-low), with garbage in bits [high-low+1,...).
*/
#define EFAB_EXTRACT_NATIVE( native_element, min ,max ,low ,high ) \
( ( ( low > max ) || ( high < min ) ) ? 0 : \
( ( low > min ) ? \
( (native_element) >> ( low - min ) ) : \
( (native_element) << ( min - low ) ) ) )
/**
* Extract bit field portion [low,high) from the 64-bit little-endian
* element which contains bits [min,max)
*/
#define EFAB_EXTRACT64( element, min, max, low, high ) \
EFAB_EXTRACT_NATIVE ( le64_to_cpu(element), min, max, low, high )
/**
* Extract bit field portion [low,high) from the 32-bit little-endian
* element which contains bits [min,max)
*/
#define EFAB_EXTRACT32( element, min, max, low, high ) \
EFAB_EXTRACT_NATIVE ( le32_to_cpu(element), min, max, low, high )
#define EFAB_EXTRACT_OWORD64( oword, low, high ) \
( EFAB_EXTRACT64 ( (oword).u64[0], 0, 63, low, high ) | \
EFAB_EXTRACT64 ( (oword).u64[1], 64, 127, low, high ) )
#define EFAB_EXTRACT_QWORD64( qword, low, high ) \
( EFAB_EXTRACT64 ( (qword).u64[0], 0, 63, low, high ) )
#define EFAB_EXTRACT_OWORD32( oword, low, high ) \
( EFAB_EXTRACT32 ( (oword).u32[0], 0, 31, low, high ) | \
EFAB_EXTRACT32 ( (oword).u32[1], 32, 63, low, high ) | \
EFAB_EXTRACT32 ( (oword).u32[2], 64, 95, low, high ) | \
EFAB_EXTRACT32 ( (oword).u32[3], 96, 127, low, high ) )
#define EFAB_EXTRACT_QWORD32( qword, low, high ) \
( EFAB_EXTRACT32 ( (qword).u32[0], 0, 31, low, high ) | \
EFAB_EXTRACT32 ( (qword).u32[1], 32, 63, low, high ) )
#define EFAB_EXTRACT_DWORD( dword, low, high ) \
( EFAB_EXTRACT32 ( (dword).u32[0], 0, 31, low, high ) )
#define EFAB_OWORD_FIELD64( oword, field ) \
( EFAB_EXTRACT_OWORD64 ( oword, EFAB_LOW_BIT ( field ), \
EFAB_HIGH_BIT ( field ) ) & \
EFAB_MASK64 ( field ) )
#define EFAB_QWORD_FIELD64( qword, field ) \
( EFAB_EXTRACT_QWORD64 ( qword, EFAB_LOW_BIT ( field ), \
EFAB_HIGH_BIT ( field ) ) & \
EFAB_MASK64 ( field ) )
#define EFAB_OWORD_FIELD32( oword, field ) \
( EFAB_EXTRACT_OWORD32 ( oword, EFAB_LOW_BIT ( field ), \
EFAB_HIGH_BIT ( field ) ) & \
EFAB_MASK32 ( field ) )
#define EFAB_QWORD_FIELD32( qword, field ) \
( EFAB_EXTRACT_QWORD32 ( qword, EFAB_LOW_BIT ( field ), \
EFAB_HIGH_BIT ( field ) ) & \
EFAB_MASK32 ( field ) )
#define EFAB_DWORD_FIELD( dword, field ) \
( EFAB_EXTRACT_DWORD ( dword, EFAB_LOW_BIT ( field ), \
EFAB_HIGH_BIT ( field ) ) & \
EFAB_MASK32 ( field ) )
#define EFAB_OWORD_IS_ZERO64( oword ) \
( ! ( (oword).u64[0] || (oword).u64[1] ) )
#define EFAB_QWORD_IS_ZERO64( qword ) \
( ! ( (qword).u64[0] ) )
#define EFAB_OWORD_IS_ZERO32( oword ) \
( ! ( (oword).u32[0] || (oword).u32[1] || \
(oword).u32[2] || (oword).u32[3] ) )
#define EFAB_QWORD_IS_ZERO32( qword ) \
( ! ( (qword).u32[0] || (qword).u32[1] ) )
#define EFAB_DWORD_IS_ZERO( dword ) \
( ! ( (dword).u32[0] ) )
#define EFAB_OWORD_IS_ALL_ONES64( oword ) \
( ( (oword).u64[0] & (oword).u64[1] ) == ~( ( uint64_t ) 0 ) )
#define EFAB_QWORD_IS_ALL_ONES64( qword ) \
( (qword).u64[0] == ~( ( uint64_t ) 0 ) )
#define EFAB_OWORD_IS_ALL_ONES32( oword ) \
( ( (oword).u32[0] & (oword).u32[1] & \
(oword).u32[2] & (oword).u32[3] ) == ~( ( uint32_t ) 0 ) )
#define EFAB_QWORD_IS_ALL_ONES32( qword ) \
( ( (qword).u32[0] & (qword).u32[1] ) == ~( ( uint32_t ) 0 ) )
#define EFAB_DWORD_IS_ALL_ONES( dword ) \
( (dword).u32[0] == ~( ( uint32_t ) 0 ) )
#if ( BITS_PER_LONG == 64 )
#define EFAB_OWORD_FIELD EFAB_OWORD_FIELD64
#define EFAB_QWORD_FIELD EFAB_QWORD_FIELD64
#define EFAB_OWORD_IS_ZERO EFAB_OWORD_IS_ZERO64
#define EFAB_QWORD_IS_ZERO EFAB_QWORD_IS_ZERO64
#define EFAB_OWORD_IS_ALL_ONES EFAB_OWORD_IS_ALL_ONES64
#define EFAB_QWORD_IS_ALL_ONES EFAB_QWORD_IS_ALL_ONES64
#else
#define EFAB_OWORD_FIELD EFAB_OWORD_FIELD32
#define EFAB_QWORD_FIELD EFAB_QWORD_FIELD32
#define EFAB_OWORD_IS_ZERO EFAB_OWORD_IS_ZERO32
#define EFAB_QWORD_IS_ZERO EFAB_QWORD_IS_ZERO32
#define EFAB_OWORD_IS_ALL_ONES EFAB_OWORD_IS_ALL_ONES32
#define EFAB_QWORD_IS_ALL_ONES EFAB_QWORD_IS_ALL_ONES32
#endif
/**
* Construct bit field portion
*
* Creates the portion of the bit field [low,high) that lies within
* the range [min,max).
*/
#define EFAB_INSERT_NATIVE64( min, max, low, high, value ) \
( ( ( low > max ) || ( high < min ) ) ? 0 : \
( ( low > min ) ? \
( ( ( uint64_t ) (value) ) << ( low - min ) ) : \
( ( ( uint64_t ) (value) ) >> ( min - low ) ) ) )
#define EFAB_INSERT_NATIVE32( min, max, low, high, value ) \
( ( ( low > max ) || ( high < min ) ) ? 0 : \
( ( low > min ) ? \
( ( ( uint32_t ) (value) ) << ( low - min ) ) : \
( ( ( uint32_t ) (value) ) >> ( min - low ) ) ) )
#define EFAB_INSERT_NATIVE( min, max, low, high, value ) \
( ( ( ( max - min ) >= 32 ) || \
( ( high - low ) >= 32 ) ) \
? EFAB_INSERT_NATIVE64 ( min, max, low, high, value ) \
: EFAB_INSERT_NATIVE32 ( min, max, low, high, value ) )
/**
* Construct bit field portion
*
* Creates the portion of the named bit field that lies within the
* range [min,max).
*/
#define EFAB_INSERT_FIELD_NATIVE( min, max, field, value ) \
EFAB_INSERT_NATIVE ( min, max, EFAB_LOW_BIT ( field ), \
EFAB_HIGH_BIT ( field ), value )
/**
* Construct bit field
*
* Creates the portion of the named bit fields that lie within the
* range [min,max).
*/
#define EFAB_INSERT_FIELDS_NATIVE( min, max, \
field1, value1, \
field2, value2, \
field3, value3, \
field4, value4, \
field5, value5, \
field6, value6, \
field7, value7, \
field8, value8, \
field9, value9, \
field10, value10 ) \
( EFAB_INSERT_FIELD_NATIVE ( min, max, field1, value1 ) | \
EFAB_INSERT_FIELD_NATIVE ( min, max, field2, value2 ) | \
EFAB_INSERT_FIELD_NATIVE ( min, max, field3, value3 ) | \
EFAB_INSERT_FIELD_NATIVE ( min, max, field4, value4 ) | \
EFAB_INSERT_FIELD_NATIVE ( min, max, field5, value5 ) | \
EFAB_INSERT_FIELD_NATIVE ( min, max, field6, value6 ) | \
EFAB_INSERT_FIELD_NATIVE ( min, max, field7, value7 ) | \
EFAB_INSERT_FIELD_NATIVE ( min, max, field8, value8 ) | \
EFAB_INSERT_FIELD_NATIVE ( min, max, field9, value9 ) | \
EFAB_INSERT_FIELD_NATIVE ( min, max, field10, value10 ) )
#define EFAB_INSERT_FIELDS64( ... ) \
cpu_to_le64 ( EFAB_INSERT_FIELDS_NATIVE ( __VA_ARGS__ ) )
#define EFAB_INSERT_FIELDS32( ... ) \
cpu_to_le32 ( EFAB_INSERT_FIELDS_NATIVE ( __VA_ARGS__ ) )
#define EFAB_POPULATE_OWORD64( oword, ... ) do { \
(oword).u64[0] = EFAB_INSERT_FIELDS64 ( 0, 63, __VA_ARGS__ );\
(oword).u64[1] = EFAB_INSERT_FIELDS64 ( 64, 127, __VA_ARGS__ );\
} while ( 0 )
#define EFAB_POPULATE_QWORD64( qword, ... ) do { \
(qword).u64[0] = EFAB_INSERT_FIELDS64 ( 0, 63, __VA_ARGS__ );\
} while ( 0 )
#define EFAB_POPULATE_OWORD32( oword, ... ) do { \
(oword).u32[0] = EFAB_INSERT_FIELDS32 ( 0, 31, __VA_ARGS__ );\
(oword).u32[1] = EFAB_INSERT_FIELDS32 ( 32, 63, __VA_ARGS__ );\
(oword).u32[2] = EFAB_INSERT_FIELDS32 ( 64, 95, __VA_ARGS__ );\
(oword).u32[3] = EFAB_INSERT_FIELDS32 ( 96, 127, __VA_ARGS__ );\
} while ( 0 )
#define EFAB_POPULATE_QWORD32( qword, ... ) do { \
(qword).u32[0] = EFAB_INSERT_FIELDS32 ( 0, 31, __VA_ARGS__ );\
(qword).u32[1] = EFAB_INSERT_FIELDS32 ( 32, 63, __VA_ARGS__ );\
} while ( 0 )
#define EFAB_POPULATE_DWORD( dword, ... ) do { \
(dword).u32[0] = EFAB_INSERT_FIELDS32 ( 0, 31, __VA_ARGS__ );\
} while ( 0 )
#if ( BITS_PER_LONG == 64 )
#define EFAB_POPULATE_OWORD EFAB_POPULATE_OWORD64
#define EFAB_POPULATE_QWORD EFAB_POPULATE_QWORD64
#else
#define EFAB_POPULATE_OWORD EFAB_POPULATE_OWORD32
#define EFAB_POPULATE_QWORD EFAB_POPULATE_QWORD32
#endif
/* Populate an octword field with various numbers of arguments */
#define EFAB_POPULATE_OWORD_10 EFAB_POPULATE_OWORD
#define EFAB_POPULATE_OWORD_9( oword, ... ) \
EFAB_POPULATE_OWORD_10 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_8( oword, ... ) \
EFAB_POPULATE_OWORD_9 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_7( oword, ... ) \
EFAB_POPULATE_OWORD_8 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_6( oword, ... ) \
EFAB_POPULATE_OWORD_7 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_5( oword, ... ) \
EFAB_POPULATE_OWORD_6 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_4( oword, ... ) \
EFAB_POPULATE_OWORD_5 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_3( oword, ... ) \
EFAB_POPULATE_OWORD_4 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_2( oword, ... ) \
EFAB_POPULATE_OWORD_3 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_OWORD_1( oword, ... ) \
EFAB_POPULATE_OWORD_2 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_ZERO_OWORD( oword ) \
EFAB_POPULATE_OWORD_1 ( oword, EFAB_DUMMY_FIELD, 0 )
#define EFAB_SET_OWORD( oword ) \
EFAB_POPULATE_OWORD_4 ( oword, \
EFAB_DWORD_0, 0xffffffff, \
EFAB_DWORD_1, 0xffffffff, \
EFAB_DWORD_2, 0xffffffff, \
EFAB_DWORD_3, 0xffffffff )
/* Populate a quadword field with various numbers of arguments */
#define EFAB_POPULATE_QWORD_10 EFAB_POPULATE_QWORD
#define EFAB_POPULATE_QWORD_9( qword, ... ) \
EFAB_POPULATE_QWORD_10 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_8( qword, ... ) \
EFAB_POPULATE_QWORD_9 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_7( qword, ... ) \
EFAB_POPULATE_QWORD_8 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_6( qword, ... ) \
EFAB_POPULATE_QWORD_7 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_5( qword, ... ) \
EFAB_POPULATE_QWORD_6 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_4( qword, ... ) \
EFAB_POPULATE_QWORD_5 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_3( qword, ... ) \
EFAB_POPULATE_QWORD_4 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_2( qword, ... ) \
EFAB_POPULATE_QWORD_3 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_QWORD_1( qword, ... ) \
EFAB_POPULATE_QWORD_2 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_ZERO_QWORD( qword ) \
EFAB_POPULATE_QWORD_1 ( qword, EFAB_DUMMY_FIELD, 0 )
#define EFAB_SET_QWORD( qword ) \
EFAB_POPULATE_QWORD_2 ( qword, \
EFAB_DWORD_0, 0xffffffff, \
EFAB_DWORD_1, 0xffffffff )
/* Populate a dword field with various numbers of arguments */
#define EFAB_POPULATE_DWORD_10 EFAB_POPULATE_DWORD
#define EFAB_POPULATE_DWORD_9( dword, ... ) \
EFAB_POPULATE_DWORD_10 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_8( dword, ... ) \
EFAB_POPULATE_DWORD_9 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_7( dword, ... ) \
EFAB_POPULATE_DWORD_8 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_6( dword, ... ) \
EFAB_POPULATE_DWORD_7 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_5( dword, ... ) \
EFAB_POPULATE_DWORD_6 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_4( dword, ... ) \
EFAB_POPULATE_DWORD_5 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_3( dword, ... ) \
EFAB_POPULATE_DWORD_4 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_2( dword, ... ) \
EFAB_POPULATE_DWORD_3 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_POPULATE_DWORD_1( dword, ... ) \
EFAB_POPULATE_DWORD_2 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ )
#define EFAB_ZERO_DWORD( dword ) \
EFAB_POPULATE_DWORD_1 ( dword, EFAB_DUMMY_FIELD, 0 )
#define EFAB_SET_DWORD( dword ) \
EFAB_POPULATE_DWORD_1 ( dword, EFAB_DWORD_0, 0xffffffff )
/*
* Modify a named field within an already-populated structure. Used
* for read-modify-write operations.
*
*/
#define EFAB_INSERT_FIELD64( ... ) \
cpu_to_le64 ( EFAB_INSERT_FIELD_NATIVE ( __VA_ARGS__ ) )
#define EFAB_INSERT_FIELD32( ... ) \
cpu_to_le32 ( EFAB_INSERT_FIELD_NATIVE ( __VA_ARGS__ ) )
#define EFAB_INPLACE_MASK64( min, max, field ) \
EFAB_INSERT_FIELD64 ( min, max, field, EFAB_MASK64 ( field ) )
#define EFAB_INPLACE_MASK32( min, max, field ) \
EFAB_INSERT_FIELD32 ( min, max, field, EFAB_MASK32 ( field ) )
#define EFAB_SET_OWORD_FIELD64( oword, field, value ) do { \
(oword).u64[0] = ( ( (oword).u64[0] \
& ~EFAB_INPLACE_MASK64 ( 0, 63, field ) ) \
| EFAB_INSERT_FIELD64 ( 0, 63, field, value ) ); \
(oword).u64[1] = ( ( (oword).u64[1] \
& ~EFAB_INPLACE_MASK64 ( 64, 127, field ) ) \
| EFAB_INSERT_FIELD64 ( 64, 127, field, value ) ); \
} while ( 0 )
#define EFAB_SET_QWORD_FIELD64( qword, field, value ) do { \
(qword).u64[0] = ( ( (qword).u64[0] \
& ~EFAB_INPLACE_MASK64 ( 0, 63, field ) ) \
| EFAB_INSERT_FIELD64 ( 0, 63, field, value ) ); \
} while ( 0 )
#define EFAB_SET_OWORD_FIELD32( oword, field, value ) do { \
(oword).u32[0] = ( ( (oword).u32[0] \
& ~EFAB_INPLACE_MASK32 ( 0, 31, field ) ) \
| EFAB_INSERT_FIELD32 ( 0, 31, field, value ) ); \
(oword).u32[1] = ( ( (oword).u32[1] \
& ~EFAB_INPLACE_MASK32 ( 32, 63, field ) ) \
| EFAB_INSERT_FIELD32 ( 32, 63, field, value ) ); \
(oword).u32[2] = ( ( (oword).u32[2] \
& ~EFAB_INPLACE_MASK32 ( 64, 95, field ) ) \
| EFAB_INSERT_FIELD32 ( 64, 95, field, value ) ); \
(oword).u32[3] = ( ( (oword).u32[3] \
& ~EFAB_INPLACE_MASK32 ( 96, 127, field ) ) \
| EFAB_INSERT_FIELD32 ( 96, 127, field, value ) ); \
} while ( 0 )
#define EFAB_SET_QWORD_FIELD32( qword, field, value ) do { \
(qword).u32[0] = ( ( (qword).u32[0] \
& ~EFAB_INPLACE_MASK32 ( 0, 31, field ) ) \
| EFAB_INSERT_FIELD32 ( 0, 31, field, value ) ); \
(qword).u32[1] = ( ( (qword).u32[1] \
& ~EFAB_INPLACE_MASK32 ( 32, 63, field ) ) \
| EFAB_INSERT_FIELD32 ( 32, 63, field, value ) ); \
} while ( 0 )
#define EFAB_SET_DWORD_FIELD( dword, field, value ) do { \
(dword).u32[0] = ( ( (dword).u32[0] \
& ~EFAB_INPLACE_MASK32 ( 0, 31, field ) ) \
| EFAB_INSERT_FIELD32 ( 0, 31, field, value ) ); \
} while ( 0 )
#if ( BITS_PER_LONG == 64 )
#define EFAB_SET_OWORD_FIELD EFAB_SET_OWORD_FIELD64
#define EFAB_SET_QWORD_FIELD EFAB_SET_QWORD_FIELD64
#else
#define EFAB_SET_OWORD_FIELD EFAB_SET_OWORD_FIELD32
#define EFAB_SET_QWORD_FIELD EFAB_SET_QWORD_FIELD32
#endif
/* Used to avoid compiler warnings about shift range exceeding width
* of the data types when dma_addr_t is only 32 bits wide.
*/
#define DMA_ADDR_T_WIDTH ( 8 * sizeof ( dma_addr_t ) )
#define EFAB_DMA_TYPE_WIDTH( width ) \
( ( (width) < DMA_ADDR_T_WIDTH ) ? (width) : DMA_ADDR_T_WIDTH )
#define EFAB_DMA_MAX_MASK ( ( DMA_ADDR_T_WIDTH == 64 ) ? \
~( ( uint64_t ) 0 ) : ~( ( uint32_t ) 0 ) )
#define EFAB_DMA_MASK(mask) ( (mask) & EFAB_DMA_MAX_MASK )
#endif /* EFAB_BITFIELD_H */
/*
* Local variables:
* c-basic-offset: 8
* c-indent-level: 8
* tab-width: 8
* End:
*/