blob: 0c96796df397b235dd201cdcf971f0e8480c362f [file] [log] [blame]
#ifdef ALLMULTI
#error multicast support is not yet implemented
#endif
/*
DAVICOM DM9009/DM9102/DM9102A Etherboot Driver V1.00
This driver was ported from Marty Connor's Tulip Etherboot driver.
Thanks Marty Connor (mdc@etherboot.org)
This davicom etherboot driver supports DM9009/DM9102/DM9102A/
DM9102A+DM9801/DM9102A+DM9802 NICs.
This software may be used and distributed according to the terms
of the GNU Public License, incorporated herein by reference.
*/
FILE_LICENCE ( GPL_ANY );
/*********************************************************************/
/* Revision History */
/*********************************************************************/
/*
19 OCT 2000 Sten 1.00
Different half and full duplex mode
Do the different programming for DM9801/DM9802
12 OCT 2000 Sten 0.90
This driver was ported from tulip driver and it
has the following difference.
Changed symbol tulip/TULIP to davicom/DAVICOM
Deleted some code that did not use in this driver.
Used chain-strcture to replace ring structure
for both TX/RX descriptor.
Allocated two tx descriptor.
According current media mode to set operating
register(CR6)
*/
/*********************************************************************/
/* Declarations */
/*********************************************************************/
#include "etherboot.h"
#include "nic.h"
#include <ipxe/pci.h>
#include <ipxe/ethernet.h>
#define TX_TIME_OUT 2*TICKS_PER_SEC
/* Register offsets for davicom device */
enum davicom_offsets {
CSR0=0, CSR1=0x08, CSR2=0x10, CSR3=0x18, CSR4=0x20, CSR5=0x28,
CSR6=0x30, CSR7=0x38, CSR8=0x40, CSR9=0x48, CSR10=0x50, CSR11=0x58,
CSR12=0x60, CSR13=0x68, CSR14=0x70, CSR15=0x78, CSR16=0x80, CSR20=0xA0
};
/* EEPROM Address width definitions */
#define EEPROM_ADDRLEN 6
#define EEPROM_SIZE 32 /* 1 << EEPROM_ADDRLEN */
/* Used to be 128, but we only need to read enough to get the MAC
address at bytes 20..25 */
/* Data Read from the EEPROM */
static unsigned char ee_data[EEPROM_SIZE];
/* The EEPROM commands include the alway-set leading bit. */
#define EE_WRITE_CMD (5 << addr_len)
#define EE_READ_CMD (6 << addr_len)
#define EE_ERASE_CMD (7 << addr_len)
/* EEPROM_Ctrl bits. */
#define EE_SHIFT_CLK 0x02 /* EEPROM shift clock. */
#define EE_CS 0x01 /* EEPROM chip select. */
#define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
#define EE_WRITE_0 0x01
#define EE_WRITE_1 0x05
#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
#define EE_ENB (0x4800 | EE_CS)
/* Sten 10/11 for phyxcer */
#define PHY_DATA_0 0x0
#define PHY_DATA_1 0x20000
#define MDCLKH 0x10000
/* Delay between EEPROM clock transitions. Even at 33Mhz current PCI
implementations don't overrun the EEPROM clock. We add a bus
turn-around to insure that this remains true. */
#define eeprom_delay() inl(ee_addr)
/* helpful macro if on a big_endian machine for changing byte order.
not strictly needed on Intel
Already defined in Etherboot includes
#define le16_to_cpu(val) (val)
*/
/* transmit and receive descriptor format */
struct txdesc {
volatile unsigned long status; /* owner, status */
unsigned long buf1sz:11, /* size of buffer 1 */
buf2sz:11, /* size of buffer 2 */
control:10; /* control bits */
const unsigned char *buf1addr; /* buffer 1 address */
const unsigned char *buf2addr; /* buffer 2 address */
};
struct rxdesc {
volatile unsigned long status; /* owner, status */
unsigned long buf1sz:11, /* size of buffer 1 */
buf2sz:11, /* size of buffer 2 */
control:10; /* control bits */
unsigned char *buf1addr; /* buffer 1 address */
unsigned char *buf2addr; /* buffer 2 address */
};
/* Size of transmit and receive buffers */
#define BUFLEN 1536
/*********************************************************************/
/* Global Storage */
/*********************************************************************/
static struct nic_operations davicom_operations;
/* PCI Bus parameters */
static unsigned short vendor, dev_id;
static unsigned long ioaddr;
/* Note: transmit and receive buffers must be longword aligned and
longword divisable */
/* transmit descriptor and buffer */
#define NTXD 2
#define NRXD 4
struct {
struct txdesc txd[NTXD] __attribute__ ((aligned(4)));
unsigned char txb[BUFLEN] __attribute__ ((aligned(4)));
struct rxdesc rxd[NRXD] __attribute__ ((aligned(4)));
unsigned char rxb[NRXD * BUFLEN] __attribute__ ((aligned(4)));
} davicom_bufs __shared;
#define txd davicom_bufs.txd
#define txb davicom_bufs.txb
#define rxd davicom_bufs.rxd
#define rxb davicom_bufs.rxb
static int rxd_tail;
static int TxPtr;
/*********************************************************************/
/* Function Prototypes */
/*********************************************************************/
static void whereami(const char *str);
static int read_eeprom(unsigned long ioaddr, int location, int addr_len);
static int davicom_probe(struct nic *nic,struct pci_device *pci);
static void davicom_init_chain(struct nic *nic); /* Sten 10/9 */
static void davicom_reset(struct nic *nic);
static void davicom_transmit(struct nic *nic, const char *d, unsigned int t,
unsigned int s, const char *p);
static int davicom_poll(struct nic *nic, int retrieve);
static void davicom_disable(struct nic *nic);
static void davicom_wait(unsigned int nticks);
static int phy_read(int);
static void phy_write(int, u16);
static void phy_write_1bit(u32, u32);
static int phy_read_1bit(u32);
static void davicom_media_chk(struct nic *);
/*********************************************************************/
/* Utility Routines */
/*********************************************************************/
static inline void whereami(const char *str)
{
DBGP("%s\n", str);
/* sleep(2); */
}
static void davicom_wait(unsigned int nticks)
{
unsigned int to = currticks() + nticks;
while (currticks() < to)
/* wait */ ;
}
/*********************************************************************/
/* For DAVICOM phyxcer register by MII interface */
/*********************************************************************/
/*
Read a word data from phy register
*/
static int phy_read(int location)
{
int i, phy_addr=1;
u16 phy_data;
u32 io_dcr9;
whereami("phy_read\n");
io_dcr9 = ioaddr + CSR9;
/* Send 33 synchronization clock to Phy controller */
for (i=0; i<34; i++)
phy_write_1bit(io_dcr9, PHY_DATA_1);
/* Send start command(01) to Phy */
phy_write_1bit(io_dcr9, PHY_DATA_0);
phy_write_1bit(io_dcr9, PHY_DATA_1);
/* Send read command(10) to Phy */
phy_write_1bit(io_dcr9, PHY_DATA_1);
phy_write_1bit(io_dcr9, PHY_DATA_0);
/* Send Phy address */
for (i=0x10; i>0; i=i>>1)
phy_write_1bit(io_dcr9, phy_addr&i ? PHY_DATA_1: PHY_DATA_0);
/* Send register address */
for (i=0x10; i>0; i=i>>1)
phy_write_1bit(io_dcr9, location&i ? PHY_DATA_1: PHY_DATA_0);
/* Skip transition state */
phy_read_1bit(io_dcr9);
/* read 16bit data */
for (phy_data=0, i=0; i<16; i++) {
phy_data<<=1;
phy_data|=phy_read_1bit(io_dcr9);
}
return phy_data;
}
/*
Write a word to Phy register
*/
static void phy_write(int location, u16 phy_data)
{
u16 i, phy_addr=1;
u32 io_dcr9;
whereami("phy_write\n");
io_dcr9 = ioaddr + CSR9;
/* Send 33 synchronization clock to Phy controller */
for (i=0; i<34; i++)
phy_write_1bit(io_dcr9, PHY_DATA_1);
/* Send start command(01) to Phy */
phy_write_1bit(io_dcr9, PHY_DATA_0);
phy_write_1bit(io_dcr9, PHY_DATA_1);
/* Send write command(01) to Phy */
phy_write_1bit(io_dcr9, PHY_DATA_0);
phy_write_1bit(io_dcr9, PHY_DATA_1);
/* Send Phy address */
for (i=0x10; i>0; i=i>>1)
phy_write_1bit(io_dcr9, phy_addr&i ? PHY_DATA_1: PHY_DATA_0);
/* Send register address */
for (i=0x10; i>0; i=i>>1)
phy_write_1bit(io_dcr9, location&i ? PHY_DATA_1: PHY_DATA_0);
/* written trasnition */
phy_write_1bit(io_dcr9, PHY_DATA_1);
phy_write_1bit(io_dcr9, PHY_DATA_0);
/* Write a word data to PHY controller */
for (i=0x8000; i>0; i>>=1)
phy_write_1bit(io_dcr9, phy_data&i ? PHY_DATA_1: PHY_DATA_0);
}
/*
Write one bit data to Phy Controller
*/
static void phy_write_1bit(u32 ee_addr, u32 phy_data)
{
whereami("phy_write_1bit\n");
outl(phy_data, ee_addr); /* MII Clock Low */
eeprom_delay();
outl(phy_data|MDCLKH, ee_addr); /* MII Clock High */
eeprom_delay();
outl(phy_data, ee_addr); /* MII Clock Low */
eeprom_delay();
}
/*
Read one bit phy data from PHY controller
*/
static int phy_read_1bit(u32 ee_addr)
{
int phy_data;
whereami("phy_read_1bit\n");
outl(0x50000, ee_addr);
eeprom_delay();
phy_data=(inl(ee_addr)>>19) & 0x1;
outl(0x40000, ee_addr);
eeprom_delay();
return phy_data;
}
/*
DM9801/DM9802 present check and program
*/
static void HPNA_process(void)
{
if ( (phy_read(3) & 0xfff0) == 0xb900 ) {
if ( phy_read(31) == 0x4404 ) {
/* DM9801 present */
if (phy_read(3) == 0xb901)
phy_write(16, 0x5); /* DM9801 E4 */
else
phy_write(16, 0x1005); /* DM9801 E3 and others */
phy_write(25, ((phy_read(24) + 3) & 0xff) | 0xf000);
} else {
/* DM9802 present */
phy_write(16, 0x5);
phy_write(25, (phy_read(25) & 0xff00) + 2);
}
}
}
/*
Sense media mode and set CR6
*/
static void davicom_media_chk(struct nic * nic __unused)
{
unsigned long to, csr6;
csr6 = 0x00200000; /* SF */
outl(csr6, ioaddr + CSR6);
#define PCI_VENDOR_ID_DAVICOM 0x1282
#define PCI_DEVICE_ID_DM9009 0x9009
if (vendor == PCI_VENDOR_ID_DAVICOM && dev_id == PCI_DEVICE_ID_DM9009) {
/* Set to 10BaseT mode for DM9009 */
phy_write(0, 0);
} else {
/* For DM9102/DM9102A */
to = currticks() + 2 * TICKS_PER_SEC;
while ( ((phy_read(1) & 0x24)!=0x24) && (currticks() < to))
/* wait */ ;
if ( (phy_read(1) & 0x24) == 0x24 ) {
if (phy_read(17) & 0xa000)
csr6 |= 0x00000200; /* Full Duplex mode */
} else
csr6 |= 0x00040000; /* Select DM9801/DM9802 when Ethernet link failed */
}
/* set the chip's operating mode */
outl(csr6, ioaddr + CSR6);
/* DM9801/DM9802 present check & program */
if (csr6 & 0x40000)
HPNA_process();
}
/*********************************************************************/
/* EEPROM Reading Code */
/*********************************************************************/
/* EEPROM routines adapted from the Linux Tulip Code */
/* Reading a serial EEPROM is a "bit" grungy, but we work our way
through:->.
*/
static int read_eeprom(unsigned long ioaddr, int location, int addr_len)
{
int i;
unsigned short retval = 0;
long ee_addr = ioaddr + CSR9;
int read_cmd = location | EE_READ_CMD;
whereami("read_eeprom\n");
outl(EE_ENB & ~EE_CS, ee_addr);
outl(EE_ENB, ee_addr);
/* Shift the read command bits out. */
for (i = 4 + addr_len; i >= 0; i--) {
short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
outl(EE_ENB | dataval, ee_addr);
eeprom_delay();
outl(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
eeprom_delay();
}
outl(EE_ENB, ee_addr);
for (i = 16; i > 0; i--) {
outl(EE_ENB | EE_SHIFT_CLK, ee_addr);
eeprom_delay();
retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0);
outl(EE_ENB, ee_addr);
eeprom_delay();
}
/* Terminate the EEPROM access. */
outl(EE_ENB & ~EE_CS, ee_addr);
return retval;
}
/*********************************************************************/
/* davicom_init_chain - setup the tx and rx descriptors */
/* Sten 10/9 */
/*********************************************************************/
static void davicom_init_chain(struct nic *nic)
{
int i;
/* setup the transmit descriptor */
/* Sten: Set 2 TX descriptor but use one TX buffer because
it transmit a packet and wait complete every time. */
for (i=0; i<NTXD; i++) {
txd[i].buf1addr = (void *)virt_to_bus(&txb[0]); /* Used same TX buffer */
txd[i].buf2addr = (void *)virt_to_bus(&txd[i+1]); /* Point to Next TX desc */
txd[i].buf1sz = 0;
txd[i].buf2sz = 0;
txd[i].control = 0x184; /* Begin/End/Chain */
txd[i].status = 0x00000000; /* give ownership to Host */
}
/* construct perfect filter frame with mac address as first match
and broadcast address for all others */
for (i=0; i<192; i++) txb[i] = 0xFF;
txb[0] = nic->node_addr[0];
txb[1] = nic->node_addr[1];
txb[4] = nic->node_addr[2];
txb[5] = nic->node_addr[3];
txb[8] = nic->node_addr[4];
txb[9] = nic->node_addr[5];
/* setup receive descriptor */
for (i=0; i<NRXD; i++) {
rxd[i].buf1addr = (void *)virt_to_bus(&rxb[i * BUFLEN]);
rxd[i].buf2addr = (void *)virt_to_bus(&rxd[i+1]); /* Point to Next RX desc */
rxd[i].buf1sz = BUFLEN;
rxd[i].buf2sz = 0; /* not used */
rxd[i].control = 0x4; /* Chain Structure */
rxd[i].status = 0x80000000; /* give ownership to device */
}
/* Chain the last descriptor to first */
txd[NTXD - 1].buf2addr = (void *)virt_to_bus(&txd[0]);
rxd[NRXD - 1].buf2addr = (void *)virt_to_bus(&rxd[0]);
TxPtr = 0;
rxd_tail = 0;
}
/*********************************************************************/
/* davicom_reset - Reset adapter */
/*********************************************************************/
static void davicom_reset(struct nic *nic)
{
unsigned long to;
whereami("davicom_reset\n");
/* Stop Tx and RX */
outl(inl(ioaddr + CSR6) & ~0x00002002, ioaddr + CSR6);
/* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
outl(0x00000001, ioaddr + CSR0);
davicom_wait(TICKS_PER_SEC);
/* TX/RX descriptor burst */
outl(0x0C00000, ioaddr + CSR0); /* Sten 10/9 */
/* set up transmit and receive descriptors */
davicom_init_chain(nic); /* Sten 10/9 */
/* Point to receive descriptor */
outl(virt_to_bus(&rxd[0]), ioaddr + CSR3);
outl(virt_to_bus(&txd[0]), ioaddr + CSR4); /* Sten 10/9 */
/* According phyxcer media mode to set CR6,
DM9102/A phyxcer can auto-detect media mode */
davicom_media_chk(nic);
/* Prepare Setup Frame Sten 10/9 */
txd[TxPtr].buf1sz = 192;
txd[TxPtr].control = 0x024; /* SF/CE */
txd[TxPtr].status = 0x80000000; /* Give ownership to device */
/* Start Tx */
outl(inl(ioaddr + CSR6) | 0x00002000, ioaddr + CSR6);
/* immediate transmit demand */
outl(0, ioaddr + CSR1);
to = currticks() + TX_TIME_OUT;
while ((txd[TxPtr].status & 0x80000000) && (currticks() < to)) /* Sten 10/9 */
/* wait */ ;
if (currticks() >= to) {
DBG ("TX Setup Timeout!\n");
}
/* Point to next TX descriptor */
TxPtr = (++TxPtr >= NTXD) ? 0:TxPtr; /* Sten 10/9 */
DBG("txd.status = %lX\n", txd[TxPtr].status);
DBG("ticks = %ld\n", currticks() - (to - TX_TIME_OUT));
DBG_MORE();
/* enable RX */
outl(inl(ioaddr + CSR6) | 0x00000002, ioaddr + CSR6);
/* immediate poll demand */
outl(0, ioaddr + CSR2);
}
/*********************************************************************/
/* eth_transmit - Transmit a frame */
/*********************************************************************/
static void davicom_transmit(struct nic *nic, const char *d, unsigned int t,
unsigned int s, const char *p)
{
unsigned long to;
whereami("davicom_transmit\n");
/* Stop Tx */
/* outl(inl(ioaddr + CSR6) & ~0x00002000, ioaddr + CSR6); */
/* setup ethernet header */
memcpy(&txb[0], d, ETH_ALEN); /* DA 6byte */
memcpy(&txb[ETH_ALEN], nic->node_addr, ETH_ALEN); /* SA 6byte*/
txb[ETH_ALEN*2] = (t >> 8) & 0xFF; /* Frame type: 2byte */
txb[ETH_ALEN*2+1] = t & 0xFF;
memcpy(&txb[ETH_HLEN], p, s); /* Frame data */
/* setup the transmit descriptor */
txd[TxPtr].buf1sz = ETH_HLEN+s;
txd[TxPtr].control = 0x00000184; /* LS+FS+CE */
txd[TxPtr].status = 0x80000000; /* give ownership to device */
/* immediate transmit demand */
outl(0, ioaddr + CSR1);
to = currticks() + TX_TIME_OUT;
while ((txd[TxPtr].status & 0x80000000) && (currticks() < to))
/* wait */ ;
if (currticks() >= to) {
DBG ("TX Timeout!\n");
}
/* Point to next TX descriptor */
TxPtr = (++TxPtr >= NTXD) ? 0:TxPtr; /* Sten 10/9 */
}
/*********************************************************************/
/* eth_poll - Wait for a frame */
/*********************************************************************/
static int davicom_poll(struct nic *nic, int retrieve)
{
whereami("davicom_poll\n");
if (rxd[rxd_tail].status & 0x80000000)
return 0;
if ( ! retrieve ) return 1;
whereami("davicom_poll got one\n");
nic->packetlen = (rxd[rxd_tail].status & 0x3FFF0000) >> 16;
if( rxd[rxd_tail].status & 0x00008000){
rxd[rxd_tail].status = 0x80000000;
rxd_tail++;
if (rxd_tail == NRXD) rxd_tail = 0;
return 0;
}
/* copy packet to working buffer */
/* XXX - this copy could be avoided with a little more work
but for now we are content with it because the optimised
memcpy is quite fast */
memcpy(nic->packet, rxb + rxd_tail * BUFLEN, nic->packetlen);
/* return the descriptor and buffer to receive ring */
rxd[rxd_tail].status = 0x80000000;
rxd_tail++;
if (rxd_tail == NRXD) rxd_tail = 0;
return 1;
}
/*********************************************************************/
/* eth_disable - Disable the interface */
/*********************************************************************/
static void davicom_disable ( struct nic *nic ) {
whereami("davicom_disable\n");
davicom_reset(nic);
/* disable interrupts */
outl(0x00000000, ioaddr + CSR7);
/* Stop the chip's Tx and Rx processes. */
outl(inl(ioaddr + CSR6) & ~0x00002002, ioaddr + CSR6);
/* Clear the missed-packet counter. */
inl(ioaddr + CSR8);
}
/*********************************************************************/
/* eth_irq - enable, disable and force interrupts */
/*********************************************************************/
static void davicom_irq(struct nic *nic __unused, irq_action_t action __unused)
{
switch ( action ) {
case DISABLE :
break;
case ENABLE :
break;
case FORCE :
break;
}
}
/*********************************************************************/
/* eth_probe - Look for an adapter */
/*********************************************************************/
static int davicom_probe ( struct nic *nic, struct pci_device *pci ) {
unsigned int i;
whereami("davicom_probe\n");
if (pci->ioaddr == 0)
return 0;
vendor = pci->vendor;
dev_id = pci->device;
ioaddr = pci->ioaddr;
nic->ioaddr = pci->ioaddr;
nic->irqno = 0;
/* wakeup chip */
pci_write_config_dword(pci, 0x40, 0x00000000);
/* Stop the chip's Tx and Rx processes. */
outl(inl(ioaddr + CSR6) & ~0x00002002, ioaddr + CSR6);
/* Clear the missed-packet counter. */
inl(ioaddr + CSR8);
/* Get MAC Address */
/* read EEPROM data */
for (i = 0; i < sizeof(ee_data)/2; i++)
((unsigned short *)ee_data)[i] =
le16_to_cpu(read_eeprom(ioaddr, i, EEPROM_ADDRLEN));
/* extract MAC address from EEPROM buffer */
for (i=0; i<ETH_ALEN; i++)
nic->node_addr[i] = ee_data[20+i];
DBG ( "Davicom %s at IOADDR %4.4lx\n", eth_ntoa ( nic->node_addr ), ioaddr );
/* initialize device */
davicom_reset(nic);
nic->nic_op = &davicom_operations;
return 1;
}
static struct nic_operations davicom_operations = {
.connect = dummy_connect,
.poll = davicom_poll,
.transmit = davicom_transmit,
.irq = davicom_irq,
};
static struct pci_device_id davicom_nics[] = {
PCI_ROM(0x1282, 0x9009, "davicom9009", "Davicom 9009", 0),
PCI_ROM(0x1282, 0x9100, "davicom9100", "Davicom 9100", 0),
PCI_ROM(0x1282, 0x9102, "davicom9102", "Davicom 9102", 0),
PCI_ROM(0x1282, 0x9132, "davicom9132", "Davicom 9132", 0), /* Needs probably some fixing */
};
PCI_DRIVER ( davicom_driver, davicom_nics, PCI_NO_CLASS );
DRIVER ( "DAVICOM", nic_driver, pci_driver, davicom_driver,
davicom_probe, davicom_disable );
/*
* Local variables:
* c-basic-offset: 8
* c-indent-level: 8
* tab-width: 8
* End:
*/