blob: 5aa5e2a6a59c8fd78b50ff874194c1323cac146d [file] [log] [blame]
/*
* iPXE driver for Marvell Yukon chipset and SysKonnect Gigabit
* Ethernet adapters. Derived from Linux skge driver (v1.13), which was
* based on earlier sk98lin, e100 and FreeBSD if_sk drivers.
*
* This driver intentionally does not support all the features of the
* original driver such as link fail-over and link management because
* those should be done at higher levels.
*
* Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
*
* Modified for iPXE, July 2008 by Michael Decker <mrd999@gmail.com>
* Tested and Modified in December 2009 by
* Thomas Miletich <thomas.miletich@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
FILE_LICENCE ( GPL2_ONLY );
#include <stdint.h>
#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include <ipxe/netdevice.h>
#include <ipxe/ethernet.h>
#include <ipxe/if_ether.h>
#include <ipxe/iobuf.h>
#include <ipxe/malloc.h>
#include <ipxe/pci.h>
#include "skge.h"
static struct pci_device_id skge_id_table[] = {
PCI_ROM(0x10b7, 0x1700, "3C940", "3COM 3C940", 0),
PCI_ROM(0x10b7, 0x80eb, "3C940B", "3COM 3C940", 0),
PCI_ROM(0x1148, 0x4300, "GE", "Syskonnect GE", 0),
PCI_ROM(0x1148, 0x4320, "YU", "Syskonnect YU", 0),
PCI_ROM(0x1186, 0x4C00, "DGE510T", "DLink DGE-510T", 0),
PCI_ROM(0x1186, 0x4b01, "DGE530T", "DLink DGE-530T", 0),
PCI_ROM(0x11ab, 0x4320, "id4320", "Marvell id4320", 0),
PCI_ROM(0x11ab, 0x5005, "id5005", "Marvell id5005", 0), /* Belkin */
PCI_ROM(0x1371, 0x434e, "Gigacard", "CNET Gigacard", 0),
PCI_ROM(0x1737, 0x1064, "EG1064", "Linksys EG1064", 0),
PCI_ROM(0x1737, 0xffff, "id_any", "Linksys [any]", 0)
};
static int skge_up(struct net_device *dev);
static void skge_down(struct net_device *dev);
static void skge_tx_clean(struct net_device *dev);
static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static void yukon_init(struct skge_hw *hw, int port);
static void genesis_mac_init(struct skge_hw *hw, int port);
static void genesis_link_up(struct skge_port *skge);
static void skge_phyirq(struct skge_hw *hw);
static void skge_poll(struct net_device *dev);
static int skge_xmit_frame(struct net_device *dev, struct io_buffer *iob);
static void skge_net_irq ( struct net_device *dev, int enable );
static void skge_rx_refill(struct net_device *dev);
static struct net_device_operations skge_operations = {
.open = skge_up,
.close = skge_down,
.transmit = skge_xmit_frame,
.poll = skge_poll,
.irq = skge_net_irq
};
/* Avoid conditionals by using array */
static const int txqaddr[] = { Q_XA1, Q_XA2 };
static const int rxqaddr[] = { Q_R1, Q_R2 };
static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
/* Determine supported/advertised modes based on hardware.
* Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
*/
static u32 skge_supported_modes(const struct skge_hw *hw)
{
u32 supported;
if (hw->copper) {
supported = SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
| SUPPORTED_Autoneg| SUPPORTED_TP;
if (hw->chip_id == CHIP_ID_GENESIS)
supported &= ~(SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full);
else if (hw->chip_id == CHIP_ID_YUKON)
supported &= ~SUPPORTED_1000baseT_Half;
} else
supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
| SUPPORTED_FIBRE | SUPPORTED_Autoneg;
return supported;
}
/* Chip internal frequency for clock calculations */
static inline u32 hwkhz(const struct skge_hw *hw)
{
return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
}
/* Microseconds to chip HZ */
static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
{
return hwkhz(hw) * usec / 1000;
}
enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
static void skge_led(struct skge_port *skge, enum led_mode mode)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
if (hw->chip_id == CHIP_ID_GENESIS) {
switch (mode) {
case LED_MODE_OFF:
if (hw->phy_type == SK_PHY_BCOM)
xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
else {
skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
}
skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
break;
case LED_MODE_ON:
skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
break;
case LED_MODE_TST:
skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
if (hw->phy_type == SK_PHY_BCOM)
xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
else {
skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
}
}
} else {
switch (mode) {
case LED_MODE_OFF:
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_DUP(MO_LED_OFF) |
PHY_M_LED_MO_10(MO_LED_OFF) |
PHY_M_LED_MO_100(MO_LED_OFF) |
PHY_M_LED_MO_1000(MO_LED_OFF) |
PHY_M_LED_MO_RX(MO_LED_OFF));
break;
case LED_MODE_ON:
gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
PHY_M_LED_PULS_DUR(PULS_170MS) |
PHY_M_LED_BLINK_RT(BLINK_84MS) |
PHY_M_LEDC_TX_CTRL |
PHY_M_LEDC_DP_CTRL);
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_RX(MO_LED_OFF) |
(skge->speed == SPEED_100 ?
PHY_M_LED_MO_100(MO_LED_ON) : 0));
break;
case LED_MODE_TST:
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_DUP(MO_LED_ON) |
PHY_M_LED_MO_10(MO_LED_ON) |
PHY_M_LED_MO_100(MO_LED_ON) |
PHY_M_LED_MO_1000(MO_LED_ON) |
PHY_M_LED_MO_RX(MO_LED_ON));
}
}
}
/*
* I've left in these EEPROM and VPD functions, as someone may desire to
* integrate them in the future. -mdeck
*
* static int skge_get_eeprom_len(struct net_device *dev)
* {
* struct skge_port *skge = netdev_priv(dev);
* u32 reg2;
*
* pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
* return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
* }
*
* static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
* {
* u32 val;
*
* pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
*
* do {
* pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
* } while (!(offset & PCI_VPD_ADDR_F));
*
* pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
* return val;
* }
*
* static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
* {
* pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
* pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
* offset | PCI_VPD_ADDR_F);
*
* do {
* pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
* } while (offset & PCI_VPD_ADDR_F);
* }
*
* static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
* u8 *data)
* {
* struct skge_port *skge = netdev_priv(dev);
* struct pci_dev *pdev = skge->hw->pdev;
* int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
* int length = eeprom->len;
* u16 offset = eeprom->offset;
*
* if (!cap)
* return -EINVAL;
*
* eeprom->magic = SKGE_EEPROM_MAGIC;
*
* while (length > 0) {
* u32 val = skge_vpd_read(pdev, cap, offset);
* int n = min_t(int, length, sizeof(val));
*
* memcpy(data, &val, n);
* length -= n;
* data += n;
* offset += n;
* }
* return 0;
* }
*
* static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
* u8 *data)
* {
* struct skge_port *skge = netdev_priv(dev);
* struct pci_dev *pdev = skge->hw->pdev;
* int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
* int length = eeprom->len;
* u16 offset = eeprom->offset;
*
* if (!cap)
* return -EINVAL;
*
* if (eeprom->magic != SKGE_EEPROM_MAGIC)
* return -EINVAL;
*
* while (length > 0) {
* u32 val;
* int n = min_t(int, length, sizeof(val));
*
* if (n < sizeof(val))
* val = skge_vpd_read(pdev, cap, offset);
* memcpy(&val, data, n);
*
* skge_vpd_write(pdev, cap, offset, val);
*
* length -= n;
* data += n;
* offset += n;
* }
* return 0;
* }
*/
/*
* Allocate ring elements and chain them together
* One-to-one association of board descriptors with ring elements
*/
static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base,
size_t num)
{
struct skge_tx_desc *d;
struct skge_element *e;
unsigned int i;
ring->start = zalloc(num*sizeof(*e));
if (!ring->start)
return -ENOMEM;
for (i = 0, e = ring->start, d = vaddr; i < num; i++, e++, d++) {
e->desc = d;
if (i == num - 1) {
e->next = ring->start;
d->next_offset = base;
} else {
e->next = e + 1;
d->next_offset = base + (i+1) * sizeof(*d);
}
}
ring->to_use = ring->to_clean = ring->start;
return 0;
}
/* Allocate and setup a new buffer for receiving */
static void skge_rx_setup(struct skge_port *skge __unused,
struct skge_element *e,
struct io_buffer *iob, unsigned int bufsize)
{
struct skge_rx_desc *rd = e->desc;
u64 map;
map = ( iob != NULL ) ? virt_to_bus(iob->data) : 0;
rd->dma_lo = map;
rd->dma_hi = map >> 32;
e->iob = iob;
rd->csum1_start = ETH_HLEN;
rd->csum2_start = ETH_HLEN;
rd->csum1 = 0;
rd->csum2 = 0;
wmb();
rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
}
/* Resume receiving using existing skb,
* Note: DMA address is not changed by chip.
* MTU not changed while receiver active.
*/
static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
{
struct skge_rx_desc *rd = e->desc;
rd->csum2 = 0;
rd->csum2_start = ETH_HLEN;
wmb();
rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
}
/* Free all buffers in receive ring, assumes receiver stopped */
static void skge_rx_clean(struct skge_port *skge)
{
struct skge_ring *ring = &skge->rx_ring;
struct skge_element *e;
e = ring->start;
do {
struct skge_rx_desc *rd = e->desc;
rd->control = 0;
if (e->iob) {
free_iob(e->iob);
e->iob = NULL;
}
} while ((e = e->next) != ring->start);
}
static void skge_link_up(struct skge_port *skge)
{
skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
netdev_link_up(skge->netdev);
DBG2(PFX "%s: Link is up at %d Mbps, %s duplex\n",
skge->netdev->name, skge->speed,
skge->duplex == DUPLEX_FULL ? "full" : "half");
}
static void skge_link_down(struct skge_port *skge)
{
skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
netdev_link_down(skge->netdev);
DBG2(PFX "%s: Link is down.\n", skge->netdev->name);
}
static void xm_link_down(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
if (netdev_link_ok(dev))
skge_link_down(skge);
}
static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
{
int i;
xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
*val = xm_read16(hw, port, XM_PHY_DATA);
if (hw->phy_type == SK_PHY_XMAC)
goto ready;
for (i = 0; i < PHY_RETRIES; i++) {
if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
goto ready;
udelay(1);
}
return -ETIMEDOUT;
ready:
*val = xm_read16(hw, port, XM_PHY_DATA);
return 0;
}
static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
u16 v = 0;
if (__xm_phy_read(hw, port, reg, &v))
DBG(PFX "%s: phy read timed out\n",
hw->dev[port]->name);
return v;
}
static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{
int i;
xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
for (i = 0; i < PHY_RETRIES; i++) {
if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
goto ready;
udelay(1);
}
return -EIO;
ready:
xm_write16(hw, port, XM_PHY_DATA, val);
for (i = 0; i < PHY_RETRIES; i++) {
if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static void genesis_init(struct skge_hw *hw)
{
/* set blink source counter */
skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
skge_write8(hw, B2_BSC_CTRL, BSC_START);
/* configure mac arbiter */
skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
/* configure mac arbiter timeout values */
skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
skge_write8(hw, B3_MA_RCINI_RX1, 0);
skge_write8(hw, B3_MA_RCINI_RX2, 0);
skge_write8(hw, B3_MA_RCINI_TX1, 0);
skge_write8(hw, B3_MA_RCINI_TX2, 0);
/* configure packet arbiter timeout */
skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
}
static void genesis_reset(struct skge_hw *hw, int port)
{
const u8 zero[8] = { 0 };
u32 reg;
skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
/* reset the statistics module */
xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
/* disable Broadcom PHY IRQ */
if (hw->phy_type == SK_PHY_BCOM)
xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
xm_outhash(hw, port, XM_HSM, zero);
/* Flush TX and RX fifo */
reg = xm_read32(hw, port, XM_MODE);
xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
}
/* Convert mode to MII values */
static const u16 phy_pause_map[] = {
[FLOW_MODE_NONE] = 0,
[FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
[FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
};
/* special defines for FIBER (88E1011S only) */
static const u16 fiber_pause_map[] = {
[FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
[FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
[FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
[FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
};
/* Check status of Broadcom phy link */
static void bcom_check_link(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
u16 status;
/* read twice because of latch */
xm_phy_read(hw, port, PHY_BCOM_STAT);
status = xm_phy_read(hw, port, PHY_BCOM_STAT);
if ((status & PHY_ST_LSYNC) == 0) {
xm_link_down(hw, port);
return;
}
if (skge->autoneg == AUTONEG_ENABLE) {
u16 lpa, aux;
if (!(status & PHY_ST_AN_OVER))
return;
lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
if (lpa & PHY_B_AN_RF) {
DBG(PFX "%s: remote fault\n",
dev->name);
return;
}
aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
/* Check Duplex mismatch */
switch (aux & PHY_B_AS_AN_RES_MSK) {
case PHY_B_RES_1000FD:
skge->duplex = DUPLEX_FULL;
break;
case PHY_B_RES_1000HD:
skge->duplex = DUPLEX_HALF;
break;
default:
DBG(PFX "%s: duplex mismatch\n",
dev->name);
return;
}
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
switch (aux & PHY_B_AS_PAUSE_MSK) {
case PHY_B_AS_PAUSE_MSK:
skge->flow_status = FLOW_STAT_SYMMETRIC;
break;
case PHY_B_AS_PRR:
skge->flow_status = FLOW_STAT_REM_SEND;
break;
case PHY_B_AS_PRT:
skge->flow_status = FLOW_STAT_LOC_SEND;
break;
default:
skge->flow_status = FLOW_STAT_NONE;
}
skge->speed = SPEED_1000;
}
if (!netdev_link_ok(dev))
genesis_link_up(skge);
}
/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
* Phy on for 100 or 10Mbit operation
*/
static void bcom_phy_init(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
unsigned int i;
u16 id1, r, ext, ctl;
/* magic workaround patterns for Broadcom */
static const struct {
u16 reg;
u16 val;
} A1hack[] = {
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
}, C0hack[] = {
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
};
/* read Id from external PHY (all have the same address) */
id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
/* Optimize MDIO transfer by suppressing preamble. */
r = xm_read16(hw, port, XM_MMU_CMD);
r |= XM_MMU_NO_PRE;
xm_write16(hw, port, XM_MMU_CMD,r);
switch (id1) {
case PHY_BCOM_ID1_C0:
/*
* Workaround BCOM Errata for the C0 type.
* Write magic patterns to reserved registers.
*/
for (i = 0; i < ARRAY_SIZE(C0hack); i++)
xm_phy_write(hw, port,
C0hack[i].reg, C0hack[i].val);
break;
case PHY_BCOM_ID1_A1:
/*
* Workaround BCOM Errata for the A1 type.
* Write magic patterns to reserved registers.
*/
for (i = 0; i < ARRAY_SIZE(A1hack); i++)
xm_phy_write(hw, port,
A1hack[i].reg, A1hack[i].val);
break;
}
/*
* Workaround BCOM Errata (#10523) for all BCom PHYs.
* Disable Power Management after reset.
*/
r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
r |= PHY_B_AC_DIS_PM;
xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
/* Dummy read */
xm_read16(hw, port, XM_ISRC);
ext = PHY_B_PEC_EN_LTR; /* enable tx led */
ctl = PHY_CT_SP1000; /* always 1000mbit */
if (skge->autoneg == AUTONEG_ENABLE) {
/*
* Workaround BCOM Errata #1 for the C5 type.
* 1000Base-T Link Acquisition Failure in Slave Mode
* Set Repeater/DTE bit 10 of the 1000Base-T Control Register
*/
u16 adv = PHY_B_1000C_RD;
if (skge->advertising & ADVERTISED_1000baseT_Half)
adv |= PHY_B_1000C_AHD;
if (skge->advertising & ADVERTISED_1000baseT_Full)
adv |= PHY_B_1000C_AFD;
xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
if (skge->duplex == DUPLEX_FULL)
ctl |= PHY_CT_DUP_MD;
/* Force to slave */
xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
}
/* Set autonegotiation pause parameters */
xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
/* Use link status change interrupt */
xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
}
static void xm_phy_init(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 ctrl = 0;
if (skge->autoneg == AUTONEG_ENABLE) {
if (skge->advertising & ADVERTISED_1000baseT_Half)
ctrl |= PHY_X_AN_HD;
if (skge->advertising & ADVERTISED_1000baseT_Full)
ctrl |= PHY_X_AN_FD;
ctrl |= fiber_pause_map[skge->flow_control];
xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
/* Restart Auto-negotiation */
ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
/* Set DuplexMode in Config register */
if (skge->duplex == DUPLEX_FULL)
ctrl |= PHY_CT_DUP_MD;
/*
* Do NOT enable Auto-negotiation here. This would hold
* the link down because no IDLEs are transmitted
*/
}
xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
/* Poll PHY for status changes */
skge->use_xm_link_timer = 1;
}
static int xm_check_link(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 status;
/* read twice because of latch */
xm_phy_read(hw, port, PHY_XMAC_STAT);
status = xm_phy_read(hw, port, PHY_XMAC_STAT);
if ((status & PHY_ST_LSYNC) == 0) {
xm_link_down(hw, port);
return 0;
}
if (skge->autoneg == AUTONEG_ENABLE) {
u16 lpa, res;
if (!(status & PHY_ST_AN_OVER))
return 0;
lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
if (lpa & PHY_B_AN_RF) {
DBG(PFX "%s: remote fault\n",
dev->name);
return 0;
}
res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
/* Check Duplex mismatch */
switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
case PHY_X_RS_FD:
skge->duplex = DUPLEX_FULL;
break;
case PHY_X_RS_HD:
skge->duplex = DUPLEX_HALF;
break;
default:
DBG(PFX "%s: duplex mismatch\n",
dev->name);
return 0;
}
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
(lpa & PHY_X_P_SYM_MD))
skge->flow_status = FLOW_STAT_SYMMETRIC;
else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
(lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
/* Enable PAUSE receive, disable PAUSE transmit */
skge->flow_status = FLOW_STAT_REM_SEND;
else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
(lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
/* Disable PAUSE receive, enable PAUSE transmit */
skge->flow_status = FLOW_STAT_LOC_SEND;
else
skge->flow_status = FLOW_STAT_NONE;
skge->speed = SPEED_1000;
}
if (!netdev_link_ok(dev))
genesis_link_up(skge);
return 1;
}
/* Poll to check for link coming up.
*
* Since internal PHY is wired to a level triggered pin, can't
* get an interrupt when carrier is detected, need to poll for
* link coming up.
*/
static void xm_link_timer(struct skge_port *skge)
{
struct net_device *dev = skge->netdev;
struct skge_hw *hw = skge->hw;
int port = skge->port;
int i;
/*
* Verify that the link by checking GPIO register three times.
* This pin has the signal from the link_sync pin connected to it.
*/
for (i = 0; i < 3; i++) {
if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
return;
}
/* Re-enable interrupt to detect link down */
if (xm_check_link(dev)) {
u16 msk = xm_read16(hw, port, XM_IMSK);
msk &= ~XM_IS_INP_ASS;
xm_write16(hw, port, XM_IMSK, msk);
xm_read16(hw, port, XM_ISRC);
}
}
static void genesis_mac_init(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
int i;
u32 r;
const u8 zero[6] = { 0 };
for (i = 0; i < 10; i++) {
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
MFF_SET_MAC_RST);
if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
goto reset_ok;
udelay(1);
}
DBG(PFX "%s: genesis reset failed\n", dev->name);
reset_ok:
/* Unreset the XMAC. */
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
/*
* Perform additional initialization for external PHYs,
* namely for the 1000baseTX cards that use the XMAC's
* GMII mode.
*/
if (hw->phy_type != SK_PHY_XMAC) {
/* Take external Phy out of reset */
r = skge_read32(hw, B2_GP_IO);
if (port == 0)
r |= GP_DIR_0|GP_IO_0;
else
r |= GP_DIR_2|GP_IO_2;
skge_write32(hw, B2_GP_IO, r);
/* Enable GMII interface */
xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
}
switch(hw->phy_type) {
case SK_PHY_XMAC:
xm_phy_init(skge);
break;
case SK_PHY_BCOM:
bcom_phy_init(skge);
bcom_check_link(hw, port);
}
/* Set Station Address */
xm_outaddr(hw, port, XM_SA, dev->ll_addr);
/* We don't use match addresses so clear */
for (i = 1; i < 16; i++)
xm_outaddr(hw, port, XM_EXM(i), zero);
/* Clear MIB counters */
xm_write16(hw, port, XM_STAT_CMD,
XM_SC_CLR_RXC | XM_SC_CLR_TXC);
/* Clear two times according to Errata #3 */
xm_write16(hw, port, XM_STAT_CMD,
XM_SC_CLR_RXC | XM_SC_CLR_TXC);
/* configure Rx High Water Mark (XM_RX_HI_WM) */
xm_write16(hw, port, XM_RX_HI_WM, 1450);
/* We don't need the FCS appended to the packet. */
r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
if (skge->duplex == DUPLEX_HALF) {
/*
* If in manual half duplex mode the other side might be in
* full duplex mode, so ignore if a carrier extension is not seen
* on frames received
*/
r |= XM_RX_DIS_CEXT;
}
xm_write16(hw, port, XM_RX_CMD, r);
/* We want short frames padded to 60 bytes. */
xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
xm_write16(hw, port, XM_TX_THR, 512);
/*
* Enable the reception of all error frames. This is is
* a necessary evil due to the design of the XMAC. The
* XMAC's receive FIFO is only 8K in size, however jumbo
* frames can be up to 9000 bytes in length. When bad
* frame filtering is enabled, the XMAC's RX FIFO operates
* in 'store and forward' mode. For this to work, the
* entire frame has to fit into the FIFO, but that means
* that jumbo frames larger than 8192 bytes will be
* truncated. Disabling all bad frame filtering causes
* the RX FIFO to operate in streaming mode, in which
* case the XMAC will start transferring frames out of the
* RX FIFO as soon as the FIFO threshold is reached.
*/
xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
/*
* Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
* - Enable all bits excepting 'Octets Rx OK Low CntOv'
* and 'Octets Rx OK Hi Cnt Ov'.
*/
xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
/*
* Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
* - Enable all bits excepting 'Octets Tx OK Low CntOv'
* and 'Octets Tx OK Hi Cnt Ov'.
*/
xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
/* Configure MAC arbiter */
skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
/* configure timeout values */
skge_write8(hw, B3_MA_TOINI_RX1, 72);
skge_write8(hw, B3_MA_TOINI_RX2, 72);
skge_write8(hw, B3_MA_TOINI_TX1, 72);
skge_write8(hw, B3_MA_TOINI_TX2, 72);
skge_write8(hw, B3_MA_RCINI_RX1, 0);
skge_write8(hw, B3_MA_RCINI_RX2, 0);
skge_write8(hw, B3_MA_RCINI_TX1, 0);
skge_write8(hw, B3_MA_RCINI_TX2, 0);
/* Configure Rx MAC FIFO */
skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
/* Configure Tx MAC FIFO */
skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
/* enable timeout timers */
skge_write16(hw, B3_PA_CTRL,
(port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
}
static void genesis_stop(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
unsigned retries = 1000;
u16 cmd;
/* Disable Tx and Rx */
cmd = xm_read16(hw, port, XM_MMU_CMD);
cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
xm_write16(hw, port, XM_MMU_CMD, cmd);
genesis_reset(hw, port);
/* Clear Tx packet arbiter timeout IRQ */
skge_write16(hw, B3_PA_CTRL,
port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
/* Reset the MAC */
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
do {
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
break;
} while (--retries > 0);
/* For external PHYs there must be special handling */
if (hw->phy_type != SK_PHY_XMAC) {
u32 reg = skge_read32(hw, B2_GP_IO);
if (port == 0) {
reg |= GP_DIR_0;
reg &= ~GP_IO_0;
} else {
reg |= GP_DIR_2;
reg &= ~GP_IO_2;
}
skge_write32(hw, B2_GP_IO, reg);
skge_read32(hw, B2_GP_IO);
}
xm_write16(hw, port, XM_MMU_CMD,
xm_read16(hw, port, XM_MMU_CMD)
& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
xm_read16(hw, port, XM_MMU_CMD);
}
static void genesis_link_up(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 cmd, msk;
u32 mode;
cmd = xm_read16(hw, port, XM_MMU_CMD);
/*
* enabling pause frame reception is required for 1000BT
* because the XMAC is not reset if the link is going down
*/
if (skge->flow_status == FLOW_STAT_NONE ||
skge->flow_status == FLOW_STAT_LOC_SEND)
/* Disable Pause Frame Reception */
cmd |= XM_MMU_IGN_PF;
else
/* Enable Pause Frame Reception */
cmd &= ~XM_MMU_IGN_PF;
xm_write16(hw, port, XM_MMU_CMD, cmd);
mode = xm_read32(hw, port, XM_MODE);
if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
skge->flow_status == FLOW_STAT_LOC_SEND) {
/*
* Configure Pause Frame Generation
* Use internal and external Pause Frame Generation.
* Sending pause frames is edge triggered.
* Send a Pause frame with the maximum pause time if
* internal oder external FIFO full condition occurs.
* Send a zero pause time frame to re-start transmission.
*/
/* XM_PAUSE_DA = '010000C28001' (default) */
/* XM_MAC_PTIME = 0xffff (maximum) */
/* remember this value is defined in big endian (!) */
xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
mode |= XM_PAUSE_MODE;
skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
} else {
/*
* disable pause frame generation is required for 1000BT
* because the XMAC is not reset if the link is going down
*/
/* Disable Pause Mode in Mode Register */
mode &= ~XM_PAUSE_MODE;
skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
}
xm_write32(hw, port, XM_MODE, mode);
/* Turn on detection of Tx underrun */
msk = xm_read16(hw, port, XM_IMSK);
msk &= ~XM_IS_TXF_UR;
xm_write16(hw, port, XM_IMSK, msk);
xm_read16(hw, port, XM_ISRC);
/* get MMU Command Reg. */
cmd = xm_read16(hw, port, XM_MMU_CMD);
if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
cmd |= XM_MMU_GMII_FD;
/*
* Workaround BCOM Errata (#10523) for all BCom Phys
* Enable Power Management after link up
*/
if (hw->phy_type == SK_PHY_BCOM) {
xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
& ~PHY_B_AC_DIS_PM);
xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
}
/* enable Rx/Tx */
xm_write16(hw, port, XM_MMU_CMD,
cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
skge_link_up(skge);
}
static inline void bcom_phy_intr(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 isrc;
isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
DBGIO(PFX "%s: phy interrupt status 0x%x\n",
skge->netdev->name, isrc);
if (isrc & PHY_B_IS_PSE)
DBG(PFX "%s: uncorrectable pair swap error\n",
hw->dev[port]->name);
/* Workaround BCom Errata:
* enable and disable loopback mode if "NO HCD" occurs.
*/
if (isrc & PHY_B_IS_NO_HDCL) {
u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
xm_phy_write(hw, port, PHY_BCOM_CTRL,
ctrl | PHY_CT_LOOP);
xm_phy_write(hw, port, PHY_BCOM_CTRL,
ctrl & ~PHY_CT_LOOP);
}
if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
bcom_check_link(hw, port);
}
static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{
int i;
gma_write16(hw, port, GM_SMI_DATA, val);
gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
for (i = 0; i < PHY_RETRIES; i++) {
udelay(1);
if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
return 0;
}
DBG(PFX "%s: phy write timeout port %x reg %x val %x\n",
hw->dev[port]->name,
port, reg, val);
return -EIO;
}
static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
{
int i;
gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(hw->phy_addr)
| GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
for (i = 0; i < PHY_RETRIES; i++) {
udelay(1);
if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
goto ready;
}
return -ETIMEDOUT;
ready:
*val = gma_read16(hw, port, GM_SMI_DATA);
return 0;
}
static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
u16 v = 0;
if (__gm_phy_read(hw, port, reg, &v))
DBG(PFX "%s: phy read timeout port %x reg %x val %x\n",
hw->dev[port]->name,
port, reg, v);
return v;
}
/* Marvell Phy Initialization */
static void yukon_init(struct skge_hw *hw, int port)
{
struct skge_port *skge = netdev_priv(hw->dev[port]);
u16 ctrl, ct1000, adv;
if (skge->autoneg == AUTONEG_ENABLE) {
u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
PHY_M_EC_MAC_S_MSK);
ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
}
ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
if (skge->autoneg == AUTONEG_DISABLE)
ctrl &= ~PHY_CT_ANE;
ctrl |= PHY_CT_RESET;
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
ctrl = 0;
ct1000 = 0;
adv = PHY_AN_CSMA;
if (skge->autoneg == AUTONEG_ENABLE) {
if (hw->copper) {
if (skge->advertising & ADVERTISED_1000baseT_Full)
ct1000 |= PHY_M_1000C_AFD;
if (skge->advertising & ADVERTISED_1000baseT_Half)
ct1000 |= PHY_M_1000C_AHD;
if (skge->advertising & ADVERTISED_100baseT_Full)
adv |= PHY_M_AN_100_FD;
if (skge->advertising & ADVERTISED_100baseT_Half)
adv |= PHY_M_AN_100_HD;
if (skge->advertising & ADVERTISED_10baseT_Full)
adv |= PHY_M_AN_10_FD;
if (skge->advertising & ADVERTISED_10baseT_Half)
adv |= PHY_M_AN_10_HD;
/* Set Flow-control capabilities */
adv |= phy_pause_map[skge->flow_control];
} else {
if (skge->advertising & ADVERTISED_1000baseT_Full)
adv |= PHY_M_AN_1000X_AFD;
if (skge->advertising & ADVERTISED_1000baseT_Half)
adv |= PHY_M_AN_1000X_AHD;
adv |= fiber_pause_map[skge->flow_control];
}
/* Restart Auto-negotiation */
ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
/* forced speed/duplex settings */
ct1000 = PHY_M_1000C_MSE;
if (skge->duplex == DUPLEX_FULL)
ctrl |= PHY_CT_DUP_MD;
switch (skge->speed) {
case SPEED_1000:
ctrl |= PHY_CT_SP1000;
break;
case SPEED_100:
ctrl |= PHY_CT_SP100;
break;
}
ctrl |= PHY_CT_RESET;
}
gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
/* Enable phy interrupt on autonegotiation complete (or link up) */
if (skge->autoneg == AUTONEG_ENABLE)
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
else
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
}
static void yukon_reset(struct skge_hw *hw, int port)
{
gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
gma_write16(hw, port, GM_MC_ADDR_H2, 0);
gma_write16(hw, port, GM_MC_ADDR_H3, 0);
gma_write16(hw, port, GM_MC_ADDR_H4, 0);
gma_write16(hw, port, GM_RX_CTRL,
gma_read16(hw, port, GM_RX_CTRL)
| GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
}
/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
static int is_yukon_lite_a0(struct skge_hw *hw)
{
u32 reg;
int ret;
if (hw->chip_id != CHIP_ID_YUKON)
return 0;
reg = skge_read32(hw, B2_FAR);
skge_write8(hw, B2_FAR + 3, 0xff);
ret = (skge_read8(hw, B2_FAR + 3) != 0);
skge_write32(hw, B2_FAR, reg);
return ret;
}
static void yukon_mac_init(struct skge_hw *hw, int port)
{
struct skge_port *skge = netdev_priv(hw->dev[port]);
int i;
u32 reg;
const u8 *addr = hw->dev[port]->ll_addr;
/* WA code for COMA mode -- set PHY reset */
if (hw->chip_id == CHIP_ID_YUKON_LITE &&
hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
reg = skge_read32(hw, B2_GP_IO);
reg |= GP_DIR_9 | GP_IO_9;
skge_write32(hw, B2_GP_IO, reg);
}
/* hard reset */
skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
/* WA code for COMA mode -- clear PHY reset */
if (hw->chip_id == CHIP_ID_YUKON_LITE &&
hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
reg = skge_read32(hw, B2_GP_IO);
reg |= GP_DIR_9;
reg &= ~GP_IO_9;
skge_write32(hw, B2_GP_IO, reg);
}
/* Set hardware config mode */
reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
/* Clear GMC reset */
skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
if (skge->autoneg == AUTONEG_DISABLE) {
reg = GM_GPCR_AU_ALL_DIS;
gma_write16(hw, port, GM_GP_CTRL,
gma_read16(hw, port, GM_GP_CTRL) | reg);
switch (skge->speed) {
case SPEED_1000:
reg &= ~GM_GPCR_SPEED_100;
reg |= GM_GPCR_SPEED_1000;
break;
case SPEED_100:
reg &= ~GM_GPCR_SPEED_1000;
reg |= GM_GPCR_SPEED_100;
break;
case SPEED_10:
reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
break;
}
if (skge->duplex == DUPLEX_FULL)
reg |= GM_GPCR_DUP_FULL;
} else
reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
switch (skge->flow_control) {
case FLOW_MODE_NONE:
skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
break;
case FLOW_MODE_LOC_SEND:
/* disable Rx flow-control */
reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
break;
case FLOW_MODE_SYMMETRIC:
case FLOW_MODE_SYM_OR_REM:
/* enable Tx & Rx flow-control */
break;
}
gma_write16(hw, port, GM_GP_CTRL, reg);
skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
yukon_init(hw, port);
/* MIB clear */
reg = gma_read16(hw, port, GM_PHY_ADDR);
gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
for (i = 0; i < GM_MIB_CNT_SIZE; i++)
gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
gma_write16(hw, port, GM_PHY_ADDR, reg);
/* transmit control */
gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
/* receive control reg: unicast + multicast + no FCS */
gma_write16(hw, port, GM_RX_CTRL,
GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
/* transmit flow control */
gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
/* transmit parameter */
gma_write16(hw, port, GM_TX_PARAM,
TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
/* configure the Serial Mode Register */
reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
| GM_SMOD_VLAN_ENA
| IPG_DATA_VAL(IPG_DATA_DEF);
gma_write16(hw, port, GM_SERIAL_MODE, reg);
/* physical address: used for pause frames */
gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
/* virtual address for data */
gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
/* enable interrupt mask for counter overflows */
gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
/* Initialize Mac Fifo */
/* Configure Rx MAC FIFO */
skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
if (is_yukon_lite_a0(hw))
reg &= ~GMF_RX_F_FL_ON;
skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
/*
* because Pause Packet Truncation in GMAC is not working
* we have to increase the Flush Threshold to 64 bytes
* in order to flush pause packets in Rx FIFO on Yukon-1
*/
skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
/* Configure Tx MAC FIFO */
skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
}
/* Go into power down mode */
static void yukon_suspend(struct skge_hw *hw, int port)
{
u16 ctrl;
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
ctrl |= PHY_M_PC_POL_R_DIS;
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
ctrl |= PHY_CT_RESET;
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
/* switch IEEE compatible power down mode on */
ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
ctrl |= PHY_CT_PDOWN;
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
}
static void yukon_stop(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
yukon_reset(hw, port);
gma_write16(hw, port, GM_GP_CTRL,
gma_read16(hw, port, GM_GP_CTRL)
& ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
gma_read16(hw, port, GM_GP_CTRL);
yukon_suspend(hw, port);
/* set GPHY Control reset */
skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
}
static u16 yukon_speed(const struct skge_hw *hw __unused, u16 aux)
{
switch (aux & PHY_M_PS_SPEED_MSK) {
case PHY_M_PS_SPEED_1000:
return SPEED_1000;
case PHY_M_PS_SPEED_100:
return SPEED_100;
default:
return SPEED_10;
}
}
static void yukon_link_up(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 reg;
/* Enable Transmit FIFO Underrun */
skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
reg = gma_read16(hw, port, GM_GP_CTRL);
if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
reg |= GM_GPCR_DUP_FULL;
/* enable Rx/Tx */
reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
gma_write16(hw, port, GM_GP_CTRL, reg);
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
skge_link_up(skge);
}
static void yukon_link_down(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 ctrl;
ctrl = gma_read16(hw, port, GM_GP_CTRL);
ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
gma_write16(hw, port, GM_GP_CTRL, ctrl);
if (skge->flow_status == FLOW_STAT_REM_SEND) {
ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
ctrl |= PHY_M_AN_ASP;
/* restore Asymmetric Pause bit */
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
}
skge_link_down(skge);
yukon_init(hw, port);
}
static void yukon_phy_intr(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
const char *reason = NULL;
u16 istatus, phystat;
istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
DBGIO(PFX "%s: phy interrupt status 0x%x 0x%x\n",
skge->netdev->name, istatus, phystat);
if (istatus & PHY_M_IS_AN_COMPL) {
if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
& PHY_M_AN_RF) {
reason = "remote fault";
goto failed;
}
if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
reason = "master/slave fault";
goto failed;
}
if (!(phystat & PHY_M_PS_SPDUP_RES)) {
reason = "speed/duplex";
goto failed;
}
skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
? DUPLEX_FULL : DUPLEX_HALF;
skge->speed = yukon_speed(hw, phystat);
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
switch (phystat & PHY_M_PS_PAUSE_MSK) {
case PHY_M_PS_PAUSE_MSK:
skge->flow_status = FLOW_STAT_SYMMETRIC;
break;
case PHY_M_PS_RX_P_EN:
skge->flow_status = FLOW_STAT_REM_SEND;
break;
case PHY_M_PS_TX_P_EN:
skge->flow_status = FLOW_STAT_LOC_SEND;
break;
default:
skge->flow_status = FLOW_STAT_NONE;
}
if (skge->flow_status == FLOW_STAT_NONE ||
(skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
else
skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
yukon_link_up(skge);
return;
}
if (istatus & PHY_M_IS_LSP_CHANGE)
skge->speed = yukon_speed(hw, phystat);
if (istatus & PHY_M_IS_DUP_CHANGE)
skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
if (istatus & PHY_M_IS_LST_CHANGE) {
if (phystat & PHY_M_PS_LINK_UP)
yukon_link_up(skge);
else
yukon_link_down(skge);
}
return;
failed:
DBG(PFX "%s: autonegotiation failed (%s)\n",
skge->netdev->name, reason);
/* XXX restart autonegotiation? */
}
static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
{
u32 end;
start /= 8;
len /= 8;
end = start + len - 1;
skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
skge_write32(hw, RB_ADDR(q, RB_START), start);
skge_write32(hw, RB_ADDR(q, RB_WP), start);
skge_write32(hw, RB_ADDR(q, RB_RP), start);
skge_write32(hw, RB_ADDR(q, RB_END), end);
if (q == Q_R1 || q == Q_R2) {
/* Set thresholds on receive queue's */
skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
start + (2*len)/3);
skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
start + (len/3));
} else {
/* Enable store & forward on Tx queue's because
* Tx FIFO is only 4K on Genesis and 1K on Yukon
*/
skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
}
skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
}
/* Setup Bus Memory Interface */
static void skge_qset(struct skge_port *skge, u16 q,
const struct skge_element *e)
{
struct skge_hw *hw = skge->hw;
u32 watermark = 0x600;
u64 base = skge->dma + (e->desc - skge->mem);
/* optimization to reduce window on 32bit/33mhz */
if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
watermark /= 2;
skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
skge_write32(hw, Q_ADDR(q, Q_F), watermark);
skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
}
void skge_free(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
free(skge->rx_ring.start);
skge->rx_ring.start = NULL;
free(skge->tx_ring.start);
skge->tx_ring.start = NULL;
free_phys(skge->mem, RING_SIZE);
skge->mem = NULL;
skge->dma = 0;
}
static int skge_up(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
u32 chunk, ram_addr;
int err;
DBG2(PFX "%s: enabling interface\n", dev->name);
skge->mem = malloc_phys(RING_SIZE, SKGE_RING_ALIGN);
skge->dma = virt_to_bus(skge->mem);
if (!skge->mem)
return -ENOMEM;
memset(skge->mem, 0, RING_SIZE);
assert(!(skge->dma & 7));
/* FIXME: find out whether 64 bit iPXE will be loaded > 4GB */
if ((u64)skge->dma >> 32 != ((u64) skge->dma + RING_SIZE) >> 32) {
DBG(PFX "pci_alloc_consistent region crosses 4G boundary\n");
err = -EINVAL;
goto err;
}
err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma, NUM_RX_DESC);
if (err)
goto err;
/* this call relies on e->iob and d->control to be 0
* This is assured by calling memset() on skge->mem and using zalloc()
* for the skge_element structures.
*/
skge_rx_refill(dev);
err = skge_ring_alloc(&skge->tx_ring, skge->mem + RX_RING_SIZE,
skge->dma + RX_RING_SIZE, NUM_TX_DESC);
if (err)
goto err;
/* Initialize MAC */
if (hw->chip_id == CHIP_ID_GENESIS)
genesis_mac_init(hw, port);
else
yukon_mac_init(hw, port);
/* Configure RAMbuffers - equally between ports and tx/rx */
chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
ram_addr = hw->ram_offset + 2 * chunk * port;
skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
assert(!(skge->tx_ring.to_use != skge->tx_ring.to_clean));
skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
/* Start receiver BMU */
wmb();
skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
skge_led(skge, LED_MODE_ON);
hw->intr_mask |= portmask[port];
skge_write32(hw, B0_IMSK, hw->intr_mask);
return 0;
err:
skge_rx_clean(skge);
skge_free(dev);
return err;
}
/* stop receiver */
static void skge_rx_stop(struct skge_hw *hw, int port)
{
skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
RB_RST_SET|RB_DIS_OP_MD);
skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
}
static void skge_down(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
if (skge->mem == NULL)
return;
DBG2(PFX "%s: disabling interface\n", dev->name);
if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
skge->use_xm_link_timer = 0;
netdev_link_down(dev);
hw->intr_mask &= ~portmask[port];
skge_write32(hw, B0_IMSK, hw->intr_mask);
skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
if (hw->chip_id == CHIP_ID_GENESIS)
genesis_stop(skge);
else
yukon_stop(skge);
/* Stop transmitter */
skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
RB_RST_SET|RB_DIS_OP_MD);
/* Disable Force Sync bit and Enable Alloc bit */
skge_write8(hw, SK_REG(port, TXA_CTRL),
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
/* Stop Interval Timer and Limit Counter of Tx Arbiter */
skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
/* Reset PCI FIFO */
skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
/* Reset the RAM Buffer async Tx queue */
skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
skge_rx_stop(hw, port);
if (hw->chip_id == CHIP_ID_GENESIS) {
skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
} else {
skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
}
skge_led(skge, LED_MODE_OFF);
skge_tx_clean(dev);
skge_rx_clean(skge);
skge_free(dev);
return;
}
static inline int skge_tx_avail(const struct skge_ring *ring)
{
mb();
return ((ring->to_clean > ring->to_use) ? 0 : NUM_TX_DESC)
+ (ring->to_clean - ring->to_use) - 1;
}
static int skge_xmit_frame(struct net_device *dev, struct io_buffer *iob)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
struct skge_element *e;
struct skge_tx_desc *td;
u32 control, len;
u64 map;
if (skge_tx_avail(&skge->tx_ring) < 1)
return -EBUSY;
e = skge->tx_ring.to_use;
td = e->desc;
assert(!(td->control & BMU_OWN));
e->iob = iob;
len = iob_len(iob);
map = virt_to_bus(iob->data);
td->dma_lo = map;
td->dma_hi = map >> 32;
control = BMU_CHECK;
control |= BMU_EOF| BMU_IRQ_EOF;
/* Make sure all the descriptors written */
wmb();
td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
wmb();
skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
DBGIO(PFX "%s: tx queued, slot %td, len %d\n",
dev->name, e - skge->tx_ring.start, (unsigned int)len);
skge->tx_ring.to_use = e->next;
wmb();
if (skge_tx_avail(&skge->tx_ring) <= 1) {
DBG(PFX "%s: transmit queue full\n", dev->name);
}
return 0;
}
/* Free all buffers in transmit ring */
static void skge_tx_clean(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_element *e;
for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
struct skge_tx_desc *td = e->desc;
td->control = 0;
}
skge->tx_ring.to_clean = e;
}
static inline u16 phy_length(const struct skge_hw *hw, u32 status)
{
if (hw->chip_id == CHIP_ID_GENESIS)
return status >> XMR_FS_LEN_SHIFT;
else
return status >> GMR_FS_LEN_SHIFT;
}
static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
{
if (hw->chip_id == CHIP_ID_GENESIS)
return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
else
return (status & GMR_FS_ANY_ERR) ||
(status & GMR_FS_RX_OK) == 0;
}
/* Free all buffers in Tx ring which are no longer owned by device */
static void skge_tx_done(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_ring *ring = &skge->tx_ring;
struct skge_element *e;
skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
for (e = ring->to_clean; e != ring->to_use; e = e->next) {
u32 control = ((const struct skge_tx_desc *) e->desc)->control;
if (control & BMU_OWN)
break;
netdev_tx_complete(dev, e->iob);
}
skge->tx_ring.to_clean = e;
/* Can run lockless until we need to synchronize to restart queue. */
mb();
}
static void skge_rx_refill(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_ring *ring = &skge->rx_ring;
struct skge_element *e;
struct io_buffer *iob;
struct skge_rx_desc *rd;
u32 control;
int i;
for (i = 0; i < NUM_RX_DESC; i++) {
e = ring->to_clean;
rd = e->desc;
iob = e->iob;
control = rd->control;
/* nothing to do here */
if (iob || (control & BMU_OWN))
continue;
DBG2("refilling rx desc %zd: ", (ring->to_clean - ring->start));
iob = alloc_iob(RX_BUF_SIZE);
if (iob) {
skge_rx_setup(skge, e, iob, RX_BUF_SIZE);
} else {
DBG("descr %zd: alloc_iob() failed\n",
(ring->to_clean - ring->start));
/* We pass the descriptor to the NIC even if the
* allocation failed. The card will stop as soon as it
* encounters a descriptor with the OWN bit set to 0,
* thus never getting to the next descriptor that might
* contain a valid io_buffer. This would effectively
* stall the receive.
*/
skge_rx_setup(skge, e, NULL, 0);
}
ring->to_clean = e->next;
}
}
static void skge_rx_done(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_ring *ring = &skge->rx_ring;
struct skge_rx_desc *rd;
struct skge_element *e;
struct io_buffer *iob;
u32 control;
u16 len;
int i;
e = ring->to_clean;
for (i = 0; i < NUM_RX_DESC; i++) {
iob = e->iob;
rd = e->desc;
rmb();
control = rd->control;
if ((control & BMU_OWN))
break;
if (!iob)
continue;
len = control & BMU_BBC;
/* catch RX errors */
if ((bad_phy_status(skge->hw, rd->status)) ||
(phy_length(skge->hw, rd->status) != len)) {
/* report receive errors */
DBG("rx error\n");
netdev_rx_err(dev, iob, -EIO);
} else {
DBG2("received packet, len %d\n", len);
iob_put(iob, len);
netdev_rx(dev, iob);
}
/* io_buffer passed to core, make sure we don't reuse it */
e->iob = NULL;
e = e->next;
}
skge_rx_refill(dev);
}
static void skge_poll(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
u32 status;
/* reading this register ACKs interrupts */
status = skge_read32(hw, B0_SP_ISRC);
/* Link event? */
if (status & IS_EXT_REG) {
skge_phyirq(hw);
if (skge->use_xm_link_timer)
xm_link_timer(skge);
}
skge_tx_done(dev);
skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
skge_rx_done(dev);
/* restart receiver */
wmb();
skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
skge_read32(hw, B0_IMSK);
return;
}
static void skge_phyirq(struct skge_hw *hw)
{
int port;
for (port = 0; port < hw->ports; port++) {
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
if (hw->chip_id != CHIP_ID_GENESIS)
yukon_phy_intr(skge);
else if (hw->phy_type == SK_PHY_BCOM)
bcom_phy_intr(skge);
}
hw->intr_mask |= IS_EXT_REG;
skge_write32(hw, B0_IMSK, hw->intr_mask);
skge_read32(hw, B0_IMSK);
}
static const struct {
u8 id;
const char *name;
} skge_chips[] = {
{ CHIP_ID_GENESIS, "Genesis" },
{ CHIP_ID_YUKON, "Yukon" },
{ CHIP_ID_YUKON_LITE, "Yukon-Lite"},
{ CHIP_ID_YUKON_LP, "Yukon-LP"},
};
static const char *skge_board_name(const struct skge_hw *hw)
{
unsigned int i;
static char buf[16];
for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
if (skge_chips[i].id == hw->chip_id)
return skge_chips[i].name;
snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
return buf;
}
/*
* Setup the board data structure, but don't bring up
* the port(s)
*/
static int skge_reset(struct skge_hw *hw)
{
u32 reg;
u16 ctst, pci_status;
u8 t8, mac_cfg, pmd_type;
int i;
ctst = skge_read16(hw, B0_CTST);
/* do a SW reset */
skge_write8(hw, B0_CTST, CS_RST_SET);
skge_write8(hw, B0_CTST, CS_RST_CLR);
/* clear PCI errors, if any */
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
skge_write8(hw, B2_TST_CTRL2, 0);
pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
pci_write_config_word(hw->pdev, PCI_STATUS,
pci_status | PCI_STATUS_ERROR_BITS);
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
skge_write8(hw, B0_CTST, CS_MRST_CLR);
/* restore CLK_RUN bits (for Yukon-Lite) */
skge_write16(hw, B0_CTST,
ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
hw->chip_id = skge_read8(hw, B2_CHIP_ID);
hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
pmd_type = skge_read8(hw, B2_PMD_TYP);
hw->copper = (pmd_type == 'T' || pmd_type == '1');
switch (hw->chip_id) {
case CHIP_ID_GENESIS:
switch (hw->phy_type) {
case SK_PHY_XMAC:
hw->phy_addr = PHY_ADDR_XMAC;
break;
case SK_PHY_BCOM:
hw->phy_addr = PHY_ADDR_BCOM;
break;
default:
DBG(PFX "unsupported phy type 0x%x\n",
hw->phy_type);
return -EOPNOTSUPP;
}
break;
case CHIP_ID_YUKON:
case CHIP_ID_YUKON_LITE:
case CHIP_ID_YUKON_LP:
if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
hw->copper = 1;
hw->phy_addr = PHY_ADDR_MARV;
break;
default:
DBG(PFX "unsupported chip type 0x%x\n",
hw->chip_id);
return -EOPNOTSUPP;
}
mac_cfg = skge_read8(hw, B2_MAC_CFG);
hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
/* read the adapters RAM size */
t8 = skge_read8(hw, B2_E_0);
if (hw->chip_id == CHIP_ID_GENESIS) {
if (t8 == 3) {
/* special case: 4 x 64k x 36, offset = 0x80000 */
hw->ram_size = 0x100000;
hw->ram_offset = 0x80000;
} else
hw->ram_size = t8 * 512;
}
else if (t8 == 0)
hw->ram_size = 0x20000;
else
hw->ram_size = t8 * 4096;
hw->intr_mask = IS_HW_ERR;
/* Use PHY IRQ for all but fiber based Genesis board */
if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
hw->intr_mask |= IS_EXT_REG;
if (hw->chip_id == CHIP_ID_GENESIS)
genesis_init(hw);
else {
/* switch power to VCC (WA for VAUX problem) */
skge_write8(hw, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
/* avoid boards with stuck Hardware error bits */
if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
(skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
DBG(PFX "stuck hardware sensor bit\n");
hw->intr_mask &= ~IS_HW_ERR;
}
/* Clear PHY COMA */
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
reg &= ~PCI_PHY_COMA;
pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
for (i = 0; i < hw->ports; i++) {
skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
}
}
/* turn off hardware timer (unused) */
skge_write8(hw, B2_TI_CTRL, TIM_STOP);
skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
skge_write8(hw, B0_LED, LED_STAT_ON);
/* enable the Tx Arbiters */
for (i = 0; i < hw->ports; i++)
skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
/* Initialize ram interface */
skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
/* Set interrupt moderation for Transmit only
* Receive interrupts avoided by NAPI
*/
skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
skge_write32(hw, B2_IRQM_CTRL, TIM_START);
skge_write32(hw, B0_IMSK, hw->intr_mask);
for (i = 0; i < hw->ports; i++) {
if (hw->chip_id == CHIP_ID_GENESIS)
genesis_reset(hw, i);
else
yukon_reset(hw, i);
}
return 0;
}
/* Initialize network device */
static struct net_device *skge_devinit(struct skge_hw *hw, int port,
int highmem __unused)
{
struct skge_port *skge;
struct net_device *dev = alloc_etherdev(sizeof(*skge));
if (!dev) {
DBG(PFX "etherdev alloc failed\n");
return NULL;
}
dev->dev = &hw->pdev->dev;
skge = netdev_priv(dev);
skge->netdev = dev;
skge->hw = hw;
/* Auto speed and flow control */
skge->autoneg = AUTONEG_ENABLE;
skge->flow_control = FLOW_MODE_SYM_OR_REM;
skge->duplex = -1;
skge->speed = -1;
skge->advertising = skge_supported_modes(hw);
hw->dev[port] = dev;
skge->port = port;
/* read the mac address */
memcpy(dev->hw_addr, (void *) (hw->regs + B2_MAC_1 + port*8), ETH_ALEN);
return dev;
}
static void skge_show_addr(struct net_device *dev)
{
DBG2(PFX "%s: addr %s\n",
dev->name, netdev_addr(dev));
}
static int skge_probe(struct pci_device *pdev)
{
struct net_device *dev, *dev1;
struct skge_hw *hw;
int err, using_dac = 0;
adjust_pci_device(pdev);
err = -ENOMEM;
hw = zalloc(sizeof(*hw));
if (!hw) {
DBG(PFX "cannot allocate hardware struct\n");
goto err_out_free_regions;
}
hw->pdev = pdev;
hw->regs = (unsigned long)pci_ioremap(pdev,
pci_bar_start(pdev, PCI_BASE_ADDRESS_0),
SKGE_REG_SIZE);
if (!hw->regs) {
DBG(PFX "cannot map device registers\n");
goto err_out_free_hw;
}
err = skge_reset(hw);
if (err)
goto err_out_iounmap;
DBG(PFX " addr 0x%llx irq %d chip %s rev %d\n",
(unsigned long long)pdev->ioaddr, pdev->irq,
skge_board_name(hw), hw->chip_rev);
dev = skge_devinit(hw, 0, using_dac);
if (!dev)
goto err_out_led_off;
netdev_init ( dev, &skge_operations );
err = register_netdev(dev);
if (err) {
DBG(PFX "cannot register net device\n");
goto err_out_free_netdev;
}
skge_show_addr(dev);
if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
if (register_netdev(dev1) == 0)
skge_show_addr(dev1);
else {
/* Failure to register second port need not be fatal */
DBG(PFX "register of second port failed\n");
hw->dev[1] = NULL;
netdev_nullify(dev1);
netdev_put(dev1);
}
}
pci_set_drvdata(pdev, hw);
return 0;
err_out_free_netdev:
netdev_nullify(dev);
netdev_put(dev);
err_out_led_off:
skge_write16(hw, B0_LED, LED_STAT_OFF);
err_out_iounmap:
iounmap((void*)hw->regs);
err_out_free_hw:
free(hw);
err_out_free_regions:
pci_set_drvdata(pdev, NULL);
return err;
}
static void skge_remove(struct pci_device *pdev)
{
struct skge_hw *hw = pci_get_drvdata(pdev);
struct net_device *dev0, *dev1;
if (!hw)
return;
if ((dev1 = hw->dev[1]))
unregister_netdev(dev1);
dev0 = hw->dev[0];
unregister_netdev(dev0);
hw->intr_mask = 0;
skge_write32(hw, B0_IMSK, 0);
skge_read32(hw, B0_IMSK);
skge_write16(hw, B0_LED, LED_STAT_OFF);
skge_write8(hw, B0_CTST, CS_RST_SET);
if (dev1) {
netdev_nullify(dev1);
netdev_put(dev1);
}
netdev_nullify(dev0);
netdev_put(dev0);
iounmap((void*)hw->regs);
free(hw);
pci_set_drvdata(pdev, NULL);
}
/*
* Enable or disable IRQ masking.
*
* @v netdev Device to control.
* @v enable Zero to mask off IRQ, non-zero to enable IRQ.
*
* This is a iPXE Network Driver API function.
*/
static void skge_net_irq ( struct net_device *dev, int enable ) {
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
if (enable)
hw->intr_mask |= portmask[skge->port];
else
hw->intr_mask &= ~portmask[skge->port];
skge_write32(hw, B0_IMSK, hw->intr_mask);
}
struct pci_driver skge_driver __pci_driver = {
.ids = skge_id_table,
.id_count = ( sizeof (skge_id_table) / sizeof (skge_id_table[0]) ),
.probe = skge_probe,
.remove = skge_remove
};