blob: c14608553a7b77fc7f29237dc59d9ca6e0121071 [file] [log] [blame]
/*
* Copyright (C) 2014 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
FILE_LICENCE ( GPL2_OR_LATER );
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <byteswap.h>
#include <ipxe/umalloc.h>
#include <ipxe/pixbuf.h>
#include <ipxe/deflate.h>
#include <ipxe/png.h>
/** @file
*
* Portable Network Graphics (PNG) format
*
* The PNG format is defined in RFC 2083.
*/
/** PNG context */
struct png_context {
/** Offset within image */
size_t offset;
/** Pixel buffer */
struct pixel_buffer *pixbuf;
/** Bit depth */
unsigned int depth;
/** Colour type */
unsigned int colour_type;
/** Number of channels */
unsigned int channels;
/** Number of interlace passes */
unsigned int passes;
/** Palette, in iPXE's pixel buffer format */
uint32_t palette[PNG_PALETTE_COUNT];
/** Decompression buffer for raw PNG data */
struct deflate_chunk raw;
/** Decompressor */
struct deflate deflate;
};
/** A PNG interlace pass */
struct png_interlace {
/** Pass number */
unsigned int pass;
/** X starting indent */
unsigned int x_indent;
/** Y starting indent */
unsigned int y_indent;
/** X stride */
unsigned int x_stride;
/** Y stride */
unsigned int y_stride;
/** Width */
unsigned int width;
/** Height */
unsigned int height;
};
/** PNG file signature */
static struct png_signature png_signature = PNG_SIGNATURE;
/** Number of interlacing passes */
static uint8_t png_interlace_passes[] = {
[PNG_INTERLACE_NONE] = 1,
[PNG_INTERLACE_ADAM7] = 7,
};
/**
* Transcribe PNG chunk type name (for debugging)
*
* @v type Chunk type
* @ret name Chunk type name
*/
static const char * png_type_name ( uint32_t type ) {
static union {
uint32_t type;
char name[ sizeof ( uint32_t ) + 1 /* NUL */ ];
} u;
u.type = type;
return u.name;
}
/**
* Calculate PNG interlace pass parameters
*
* @v png PNG context
* @v pass Pass number (0=first pass)
* @v interlace Interlace pass to fill in
*/
static void png_interlace ( struct png_context *png, unsigned int pass,
struct png_interlace *interlace ) {
unsigned int grid_width_log2;
unsigned int grid_height_log2;
unsigned int x_indent;
unsigned int y_indent;
unsigned int x_stride_log2;
unsigned int y_stride_log2;
unsigned int x_stride;
unsigned int y_stride;
unsigned int width;
unsigned int height;
/* Sanity check */
assert ( png->passes > 0 );
/* Store pass number */
interlace->pass = pass;
/* Calculate interlace grid dimensions */
grid_width_log2 = ( png->passes / 2 );
grid_height_log2 = ( ( png->passes - 1 ) / 2 );
/* Calculate starting indents */
interlace->x_indent = x_indent =
( ( pass & 1 ) ?
( 1 << ( grid_width_log2 - ( pass / 2 ) - 1 ) ) : 0 );
interlace->y_indent = y_indent =
( ( pass && ! ( pass & 1 ) ) ?
( 1 << ( grid_height_log2 - ( ( pass - 1 ) / 2 ) - 1 ) ) : 0);
/* Calculate strides */
x_stride_log2 = ( grid_width_log2 - ( pass / 2 ) );
y_stride_log2 =
( grid_height_log2 - ( pass ? ( ( pass - 1 ) / 2 ) : 0 ) );
interlace->x_stride = x_stride = ( 1 << x_stride_log2 );
interlace->y_stride = y_stride = ( 1 << y_stride_log2 );
/* Calculate pass dimensions */
width = png->pixbuf->width;
height = png->pixbuf->height;
interlace->width =
( ( width - x_indent + x_stride - 1 ) >> x_stride_log2 );
interlace->height =
( ( height - y_indent + y_stride - 1 ) >> y_stride_log2 );
}
/**
* Calculate PNG pixel length
*
* @v png PNG context
* @ret pixel_len Pixel length
*/
static unsigned int png_pixel_len ( struct png_context *png ) {
return ( ( ( png->channels * png->depth ) + 7 ) / 8 );
}
/**
* Calculate PNG scanline length
*
* @v png PNG context
* @v interlace Interlace pass
* @ret scanline_len Scanline length (including filter byte)
*/
static size_t png_scanline_len ( struct png_context *png,
struct png_interlace *interlace ) {
return ( 1 /* Filter byte */ +
( ( interlace->width * png->channels * png->depth ) + 7 ) / 8);
}
/**
* Handle PNG image header chunk
*
* @v image PNG image
* @v png PNG context
* @v len Chunk length
* @ret rc Return status code
*/
static int png_image_header ( struct image *image, struct png_context *png,
size_t len ) {
struct png_image_header ihdr;
struct png_interlace interlace;
unsigned int pass;
/* Sanity check */
if ( len != sizeof ( ihdr ) ) {
DBGC ( image, "PNG %s invalid IHDR length %zd\n",
image->name, len );
return -EINVAL;
}
if ( png->pixbuf ) {
DBGC ( image, "PNG %s duplicate IHDR\n", image->name );
return -EINVAL;
}
/* Extract image header */
copy_from_user ( &ihdr, image->data, png->offset, len );
DBGC ( image, "PNG %s %dx%d depth %d type %d compression %d filter %d "
"interlace %d\n", image->name, ntohl ( ihdr.width ),
ntohl ( ihdr.height ), ihdr.depth, ihdr.colour_type,
ihdr.compression, ihdr.filter, ihdr.interlace );
/* Sanity checks */
if ( ihdr.compression >= PNG_COMPRESSION_UNKNOWN ) {
DBGC ( image, "PNG %s unknown compression method %d\n",
image->name, ihdr.compression );
return -ENOTSUP;
}
if ( ihdr.filter >= PNG_FILTER_UNKNOWN ) {
DBGC ( image, "PNG %s unknown filter method %d\n",
image->name, ihdr.filter );
return -ENOTSUP;
}
if ( ihdr.interlace >= PNG_INTERLACE_UNKNOWN ) {
DBGC ( image, "PNG %s unknown interlace method %d\n",
image->name, ihdr.interlace );
return -ENOTSUP;
}
/* Allocate pixel buffer */
png->pixbuf = alloc_pixbuf ( ntohl ( ihdr.width ),
ntohl ( ihdr.height ) );
if ( ! png->pixbuf ) {
DBGC ( image, "PNG %s could not allocate pixel buffer\n",
image->name );
return -ENOMEM;
}
/* Extract bit depth */
png->depth = ihdr.depth;
if ( ( png->depth == 0 ) ||
( ( png->depth & ( png->depth - 1 ) ) != 0 ) ) {
DBGC ( image, "PNG %s invalid depth %d\n",
image->name, png->depth );
return -EINVAL;
}
/* Calculate number of channels */
png->colour_type = ihdr.colour_type;
png->channels = 1;
if ( ! ( ihdr.colour_type & PNG_COLOUR_TYPE_PALETTE ) ) {
if ( ihdr.colour_type & PNG_COLOUR_TYPE_RGB )
png->channels += 2;
if ( ihdr.colour_type & PNG_COLOUR_TYPE_ALPHA )
png->channels += 1;
}
/* Calculate number of interlace passes */
png->passes = png_interlace_passes[ihdr.interlace];
/* Calculate length of raw data buffer */
for ( pass = 0 ; pass < png->passes ; pass++ ) {
png_interlace ( png, pass, &interlace );
if ( interlace.width == 0 )
continue;
png->raw.len += ( interlace.height *
png_scanline_len ( png, &interlace ) );
}
/* Allocate raw data buffer */
png->raw.data = umalloc ( png->raw.len );
if ( ! png->raw.data ) {
DBGC ( image, "PNG %s could not allocate data buffer\n",
image->name );
return -ENOMEM;
}
return 0;
}
/**
* Handle PNG palette chunk
*
* @v image PNG image
* @v png PNG context
* @v len Chunk length
* @ret rc Return status code
*/
static int png_palette ( struct image *image, struct png_context *png,
size_t len ) {
size_t offset = png->offset;
struct png_palette_entry palette;
unsigned int i;
/* Populate palette */
for ( i = 0 ; i < ( sizeof ( png->palette ) /
sizeof ( png->palette[0] ) ) ; i++ ) {
/* Stop when we run out of palette data */
if ( len < sizeof ( palette ) )
break;
/* Extract palette entry */
copy_from_user ( &palette, image->data, offset,
sizeof ( palette ) );
png->palette[i] = ( ( palette.red << 16 ) |
( palette.green << 8 ) |
( palette.blue << 0 ) );
DBGC2 ( image, "PNG %s palette entry %d is %#06x\n",
image->name, i, png->palette[i] );
/* Move to next entry */
offset += sizeof ( palette );
len -= sizeof ( palette );
}
return 0;
}
/**
* Handle PNG image data chunk
*
* @v image PNG image
* @v png PNG context
* @v len Chunk length
* @ret rc Return status code
*/
static int png_image_data ( struct image *image, struct png_context *png,
size_t len ) {
struct deflate_chunk in;
int rc;
/* Deflate this chunk */
deflate_chunk_init ( &in, image->data, png->offset,
( png->offset + len ) );
if ( ( rc = deflate_inflate ( &png->deflate, &in, &png->raw ) ) != 0 ) {
DBGC ( image, "PNG %s could not decompress: %s\n",
image->name, strerror ( rc ) );
return rc;
}
return 0;
}
/**
* Unfilter byte using the "None" filter
*
* @v current Filtered current byte
* @v left Unfiltered left byte
* @v above Unfiltered above byte
* @v above_left Unfiltered above-left byte
* @ret current Unfiltered current byte
*/
static unsigned int png_unfilter_none ( unsigned int current,
unsigned int left __unused,
unsigned int above __unused,
unsigned int above_left __unused ) {
return current;
}
/**
* Unfilter byte using the "Sub" filter
*
* @v current Filtered current byte
* @v left Unfiltered left byte
* @v above Unfiltered above byte
* @v above_left Unfiltered above-left byte
* @ret current Unfiltered current byte
*/
static unsigned int png_unfilter_sub ( unsigned int current,
unsigned int left,
unsigned int above __unused,
unsigned int above_left __unused ) {
return ( current + left );
}
/**
* Unfilter byte using the "Up" filter
*
* @v current Filtered current byte
* @v left Unfiltered left byte
* @v above Unfiltered above byte
* @v above_left Unfiltered above-left byte
* @ret current Unfiltered current byte
*/
static unsigned int png_unfilter_up ( unsigned int current,
unsigned int left __unused,
unsigned int above,
unsigned int above_left __unused ) {
return ( current + above );
}
/**
* Unfilter byte using the "Average" filter
*
* @v current Filtered current byte
* @v left Unfiltered left byte
* @v above Unfiltered above byte
* @v above_left Unfiltered above-left byte
* @ret current Unfiltered current byte
*/
static unsigned int png_unfilter_average ( unsigned int current,
unsigned int left,
unsigned int above,
unsigned int above_left __unused ) {
return ( current + ( ( above + left ) >> 1 ) );
}
/**
* Paeth predictor function (defined in RFC 2083)
*
* @v a Pixel A
* @v b Pixel B
* @v c Pixel C
* @ret predictor Predictor pixel
*/
static unsigned int png_paeth_predictor ( unsigned int a, unsigned int b,
unsigned int c ) {
unsigned int p;
unsigned int pa;
unsigned int pb;
unsigned int pc;
/* Algorithm as defined in RFC 2083 section 6.6 */
p = ( a + b - c );
pa = abs ( p - a );
pb = abs ( p - b );
pc = abs ( p - c );
if ( ( pa <= pb ) && ( pa <= pc ) ) {
return a;
} else if ( pb <= pc ) {
return b;
} else {
return c;
}
}
/**
* Unfilter byte using the "Paeth" filter
*
* @v current Filtered current byte
* @v above_left Unfiltered above-left byte
* @v above Unfiltered above byte
* @v left Unfiltered left byte
* @ret current Unfiltered current byte
*/
static unsigned int png_unfilter_paeth ( unsigned int current,
unsigned int left,
unsigned int above,
unsigned int above_left ) {
return ( current + png_paeth_predictor ( left, above, above_left ) );
}
/** A PNG filter */
struct png_filter {
/**
* Unfilter byte
*
* @v current Filtered current byte
* @v left Unfiltered left byte
* @v above Unfiltered above byte
* @v above_left Unfiltered above-left byte
* @ret current Unfiltered current byte
*/
unsigned int ( * unfilter ) ( unsigned int current,
unsigned int left,
unsigned int above,
unsigned int above_left );
};
/** PNG filter types */
static struct png_filter png_filters[] = {
[PNG_FILTER_BASIC_NONE] = { png_unfilter_none },
[PNG_FILTER_BASIC_SUB] = { png_unfilter_sub },
[PNG_FILTER_BASIC_UP] = { png_unfilter_up },
[PNG_FILTER_BASIC_AVERAGE] = { png_unfilter_average },
[PNG_FILTER_BASIC_PAETH] = { png_unfilter_paeth },
};
/**
* Unfilter one interlace pass of PNG raw data
*
* @v image PNG image
* @v png PNG context
* @v interlace Interlace pass
* @ret rc Return status code
*
* This routine may assume that it is impossible to overrun the raw
* data buffer, since the size is determined by the image dimensions.
*/
static int png_unfilter_pass ( struct image *image, struct png_context *png,
struct png_interlace *interlace ) {
size_t offset = png->raw.offset;
size_t pixel_len = png_pixel_len ( png );
size_t scanline_len = png_scanline_len ( png, interlace );
struct png_filter *filter;
unsigned int scanline;
unsigned int byte;
uint8_t filter_type;
uint8_t left;
uint8_t above;
uint8_t above_left;
uint8_t current;
/* On the first scanline of a pass, above bytes are assumed to
* be zero.
*/
above = 0;
/* Iterate over each scanline in turn */
for ( scanline = 0 ; scanline < interlace->height ; scanline++ ) {
/* Extract filter byte and determine filter type */
copy_from_user ( &filter_type, png->raw.data, offset++,
sizeof ( filter_type ) );
if ( filter_type >= ( sizeof ( png_filters ) /
sizeof ( png_filters[0] ) ) ) {
DBGC ( image, "PNG %s unknown filter type %d\n",
image->name, filter_type );
return -ENOTSUP;
}
filter = &png_filters[filter_type];
assert ( filter->unfilter != NULL );
DBGC2 ( image, "PNG %s pass %d scanline %d filter type %d\n",
image->name, interlace->pass, scanline, filter_type );
/* At the start of a line, both above-left and left
* bytes are taken to be zero.
*/
left = 0;
above_left = 0;
/* Iterate over each byte (not pixel) in turn */
for ( byte = 0 ; byte < ( scanline_len - 1 ) ; byte++ ) {
/* Extract predictor bytes, if applicable */
if ( byte >= pixel_len ) {
copy_from_user ( &left, png->raw.data,
( offset - pixel_len ),
sizeof ( left ) );
}
if ( scanline > 0 ) {
copy_from_user ( &above, png->raw.data,
( offset - scanline_len ),
sizeof ( above ) );
}
if ( ( scanline > 0 ) && ( byte >= pixel_len ) ) {
copy_from_user ( &above_left, png->raw.data,
( offset - scanline_len -
pixel_len ),
sizeof ( above_left ) );
}
/* Unfilter current byte */
copy_from_user ( &current, png->raw.data,
offset, sizeof ( current ) );
current = filter->unfilter ( current, left, above,
above_left );
copy_to_user ( png->raw.data, offset++,
&current, sizeof ( current ) );
}
}
/* Update offset */
png->raw.offset = offset;
return 0;
}
/**
* Unfilter PNG raw data
*
* @v image PNG image
* @v png PNG context
* @ret rc Return status code
*
* This routine may assume that it is impossible to overrun the raw
* data buffer, since the size is determined by the image dimensions.
*/
static int png_unfilter ( struct image *image, struct png_context *png ) {
struct png_interlace interlace;
unsigned int pass;
int rc;
/* Process each interlace pass */
png->raw.offset = 0;
for ( pass = 0 ; pass < png->passes ; pass++ ) {
/* Calculate interlace pass parameters */
png_interlace ( png, pass, &interlace );
/* Skip zero-width rows (which have no filter bytes) */
if ( interlace.width == 0 )
continue;
/* Unfilter this pass */
if ( ( rc = png_unfilter_pass ( image, png,
&interlace ) ) != 0 )
return rc;
}
assert ( png->raw.offset == png->raw.len );
return 0;
}
/**
* Calculate PNG pixel component value
*
* @v raw Raw component value
* @v alpha Alpha value
* @v max Maximum raw/alpha value
* @ret value Component value in range 0-255
*/
static inline unsigned int png_pixel ( unsigned int raw, unsigned int alpha,
unsigned int max ) {
/* The basic calculation is 255*(raw/max)*(value/max). We use
* fixed-point arithmetic (scaling up to the maximum range for
* a 32-bit integer), in order to get the same results for
* alpha blending as the test cases (produced using
* ImageMagick).
*/
return ( ( ( ( ( 0xff00 * raw * alpha ) / max ) / max ) + 0x80 ) >> 8 );
}
/**
* Fill one interlace pass of PNG pixels
*
* @v image PNG image
* @v png PNG context
* @v interlace Interlace pass
*
* This routine may assume that it is impossible to overrun either the
* raw data buffer or the pixel buffer, since the sizes of both are
* determined by the image dimensions.
*/
static void png_pixels_pass ( struct image *image,
struct png_context *png,
struct png_interlace *interlace ) {
size_t raw_offset = png->raw.offset;
uint8_t channel[png->channels];
int is_indexed = ( png->colour_type & PNG_COLOUR_TYPE_PALETTE );
int is_rgb = ( png->colour_type & PNG_COLOUR_TYPE_RGB );
int has_alpha = ( png->colour_type & PNG_COLOUR_TYPE_ALPHA );
size_t pixbuf_y_offset;
size_t pixbuf_offset;
size_t pixbuf_x_stride;
size_t pixbuf_y_stride;
size_t raw_stride;
unsigned int y;
unsigned int x;
unsigned int c;
unsigned int bits;
unsigned int depth;
unsigned int max;
unsigned int alpha;
unsigned int raw;
unsigned int value;
uint8_t current = 0;
uint32_t pixel;
/* We only ever use the top byte of 16-bit pixels. Model this
* as a bit depth of 8 with a stride of more than one.
*/
depth = png->depth;
raw_stride = ( ( depth + 7 ) / 8 );
if ( depth > 8 )
depth = 8;
max = ( ( 1 << depth ) - 1 );
/* Calculate pixel buffer offset and strides */
pixbuf_y_offset = ( ( ( interlace->y_indent * png->pixbuf->width ) +
interlace->x_indent ) * sizeof ( pixel ) );
pixbuf_x_stride = ( interlace->x_stride * sizeof ( pixel ) );
pixbuf_y_stride = ( interlace->y_stride * png->pixbuf->width *
sizeof ( pixel ) );
DBGC2 ( image, "PNG %s pass %d %dx%d at (%d,%d) stride (%d,%d)\n",
image->name, interlace->pass, interlace->width,
interlace->height, interlace->x_indent, interlace->y_indent,
interlace->x_stride, interlace->y_stride );
/* Iterate over each scanline in turn */
for ( y = 0 ; y < interlace->height ; y++ ) {
/* Skip filter byte */
raw_offset++;
/* Iterate over each pixel in turn */
bits = depth;
pixbuf_offset = pixbuf_y_offset;
for ( x = 0 ; x < interlace->width ; x++ ) {
/* Extract sample value */
for ( c = 0 ; c < png->channels ; c++ ) {
/* Get sample value into high bits of current */
current <<= depth;
bits -= depth;
if ( ! bits ) {
copy_from_user ( &current,
png->raw.data,
raw_offset,
sizeof ( current ) );
raw_offset += raw_stride;
bits = 8;
}
/* Extract sample value */
channel[c] = ( current >> ( 8 - depth ) );
}
/* Convert to native pixel format */
if ( is_indexed ) {
/* Indexed */
pixel = png->palette[channel[0]];
} else {
/* Determine alpha value */
alpha = ( has_alpha ?
channel[ png->channels - 1 ] : max );
/* Convert to RGB value */
pixel = 0;
for ( c = 0 ; c < 3 ; c++ ) {
raw = channel[ is_rgb ? c : 0 ];
value = png_pixel ( raw, alpha, max );
assert ( value <= 255 );
pixel = ( ( pixel << 8 ) | value );
}
}
/* Store pixel */
copy_to_user ( png->pixbuf->data, pixbuf_offset,
&pixel, sizeof ( pixel ) );
pixbuf_offset += pixbuf_x_stride;
}
/* Move to next output row */
pixbuf_y_offset += pixbuf_y_stride;
}
/* Update offset */
png->raw.offset = raw_offset;
}
/**
* Fill PNG pixels
*
* @v image PNG image
* @v png PNG context
*
* This routine may assume that it is impossible to overrun either the
* raw data buffer or the pixel buffer, since the sizes of both are
* determined by the image dimensions.
*/
static void png_pixels ( struct image *image, struct png_context *png ) {
struct png_interlace interlace;
unsigned int pass;
/* Process each interlace pass */
png->raw.offset = 0;
for ( pass = 0 ; pass < png->passes ; pass++ ) {
/* Calculate interlace pass parameters */
png_interlace ( png, pass, &interlace );
/* Skip zero-width rows (which have no filter bytes) */
if ( interlace.width == 0 )
continue;
/* Unfilter this pass */
png_pixels_pass ( image, png, &interlace );
}
assert ( png->raw.offset == png->raw.len );
}
/**
* Handle PNG image end chunk
*
* @v image PNG image
* @v png PNG context
* @v len Chunk length
* @ret rc Return status code
*/
static int png_image_end ( struct image *image, struct png_context *png,
size_t len ) {
int rc;
/* Sanity checks */
if ( len != 0 ) {
DBGC ( image, "PNG %s invalid IEND length %zd\n",
image->name, len );
return -EINVAL;
}
if ( ! png->pixbuf ) {
DBGC ( image, "PNG %s missing pixel buffer (no IHDR?)\n",
image->name );
return -EINVAL;
}
if ( ! deflate_finished ( &png->deflate ) ) {
DBGC ( image, "PNG %s decompression not complete\n",
image->name );
return -EINVAL;
}
if ( png->raw.offset != png->raw.len ) {
DBGC ( image, "PNG %s incorrect decompressed length (expected "
"%zd, got %zd)\n", image->name, png->raw.len,
png->raw.offset );
return -EINVAL;
}
/* Unfilter raw data */
if ( ( rc = png_unfilter ( image, png ) ) != 0 )
return rc;
/* Fill pixel buffer */
png_pixels ( image, png );
return 0;
}
/** A PNG chunk handler */
struct png_chunk_handler {
/** Chunk type */
uint32_t type;
/**
* Handle chunk
*
* @v image PNG image
* @v png PNG context
* @v len Chunk length
* @ret rc Return status code
*/
int ( * handle ) ( struct image *image, struct png_context *png,
size_t len );
};
/** PNG chunk handlers */
static struct png_chunk_handler png_chunk_handlers[] = {
{ htonl ( PNG_TYPE_IHDR ), png_image_header },
{ htonl ( PNG_TYPE_PLTE ), png_palette },
{ htonl ( PNG_TYPE_IDAT ), png_image_data },
{ htonl ( PNG_TYPE_IEND ), png_image_end },
};
/**
* Handle PNG chunk
*
* @v image PNG image
* @v png PNG context
* @v type Chunk type
* @v len Chunk length
* @ret rc Return status code
*/
static int png_chunk ( struct image *image, struct png_context *png,
uint32_t type, size_t len ) {
struct png_chunk_handler *handler;
unsigned int i;
DBGC ( image, "PNG %s chunk type %s offset %zd length %zd\n",
image->name, png_type_name ( type ), png->offset, len );
/* Handle according to chunk type */
for ( i = 0 ; i < ( sizeof ( png_chunk_handlers ) /
sizeof ( png_chunk_handlers[0] ) ) ; i++ ) {
handler = &png_chunk_handlers[i];
if ( handler->type == type )
return handler->handle ( image, png, len );
}
/* Fail if unknown chunk type is critical */
if ( ! ( type & htonl ( PNG_CHUNK_ANCILLARY ) ) ) {
DBGC ( image, "PNG %s unknown critical chunk type %s\n",
image->name, png_type_name ( type ) );
return -ENOTSUP;
}
/* Ignore non-critical unknown chunk types */
return 0;
}
/**
* Convert PNG image to pixel buffer
*
* @v image PNG image
* @v pixbuf Pixel buffer to fill in
* @ret rc Return status code
*/
static int png_pixbuf ( struct image *image, struct pixel_buffer **pixbuf ) {
struct png_context *png;
struct png_chunk_header header;
struct png_chunk_footer footer;
size_t remaining;
size_t chunk_len;
int rc;
/* Allocate and initialise context */
png = zalloc ( sizeof ( *png ) );
if ( ! png ) {
rc = -ENOMEM;
goto err_alloc;
}
png->offset = sizeof ( struct png_signature );
deflate_init ( &png->deflate, DEFLATE_ZLIB );
/* Process chunks */
do {
/* Extract chunk header */
remaining = ( image->len - png->offset );
if ( remaining < sizeof ( header ) ) {
DBGC ( image, "PNG %s truncated chunk header at offset "
"%zd\n", image->name, png->offset );
rc = -EINVAL;
goto err_truncated;
}
copy_from_user ( &header, image->data, png->offset,
sizeof ( header ) );
png->offset += sizeof ( header );
/* Validate chunk length */
chunk_len = ntohl ( header.len );
if ( remaining < ( sizeof ( header ) + chunk_len +
sizeof ( footer ) ) ) {
DBGC ( image, "PNG %s truncated chunk data/footer at "
"offset %zd\n", image->name, png->offset );
rc = -EINVAL;
goto err_truncated;
}
/* Handle chunk */
if ( ( rc = png_chunk ( image, png, header.type,
chunk_len ) ) != 0 )
goto err_chunk;
/* Move to next chunk */
png->offset += ( chunk_len + sizeof ( footer ) );
} while ( png->offset < image->len );
/* Check that we finished with an IEND chunk */
if ( header.type != htonl ( PNG_TYPE_IEND ) ) {
DBGC ( image, "PNG %s did not finish with IEND\n",
image->name );
rc = -EINVAL;
goto err_iend;
}
/* Return pixel buffer */
*pixbuf = pixbuf_get ( png->pixbuf );
/* Success */
rc = 0;
err_iend:
err_chunk:
err_truncated:
pixbuf_put ( png->pixbuf );
ufree ( png->raw.data );
free ( png );
err_alloc:
return rc;
}
/**
* Probe PNG image
*
* @v image PNG image
* @ret rc Return status code
*/
static int png_probe ( struct image *image ) {
struct png_signature signature;
/* Sanity check */
if ( image->len < sizeof ( signature ) ) {
DBGC ( image, "PNG %s is too short\n", image->name );
return -ENOEXEC;
}
/* Check signature */
copy_from_user ( &signature, image->data, 0, sizeof ( signature ) );
if ( memcmp ( &signature, &png_signature, sizeof ( signature ) ) != 0 ){
DBGC ( image, "PNG %s has invalid signature\n", image->name );
return -ENOEXEC;
}
return 0;
}
/** PNG image type */
struct image_type png_image_type __image_type ( PROBE_NORMAL ) = {
.name = "PNG",
.probe = png_probe,
.pixbuf = png_pixbuf,
};