blob: fad1737a2c74f601124bfeb236c969516b437121 [file] [log] [blame]
/**************************************************************************
*
* dmfe.c -- Etherboot device driver for the Davicom
* DM9102/DM9102A/DM9102A+DM9801/DM9102A+DM9802 NIC fast ethernet card
*
* Written 2003-2003 by Timothy Legge <tlegge@rogers.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Portions of this code based on:
*
* dmfe.c: A Davicom DM9102/DM9102A/DM9102A+DM9801/DM9102A+DM9802
* NIC fast ethernet driver for Linux.
* Copyright (C) 1997 Sten Wang
* (C)Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
*
*
* REVISION HISTORY:
* ================
* v1.0 10-02-2004 timlegge Boots ltsp needs cleanup
*
* Indent Options: indent -kr -i8
*
*
***************************************************************************/
FILE_LICENCE ( GPL2_OR_LATER );
/* to get some global routines like printf */
#include "etherboot.h"
/* to get the interface to the body of the program */
#include "nic.h"
/* to get the PCI support functions, if this is a PCI NIC */
#include <gpxe/pci.h>
#include <gpxe/ethernet.h>
/* #define EDEBUG 1 */
#ifdef EDEBUG
#define dprintf(x) printf x
#else
#define dprintf(x)
#endif
/* Condensed operations for readability. */
#define virt_to_le32desc(addr) cpu_to_le32(virt_to_bus(addr))
#define le32desc_to_virt(addr) bus_to_virt(le32_to_cpu(addr))
/* Board/System/Debug information/definition ---------------- */
#define PCI_DM9132_ID 0x91321282 /* Davicom DM9132 ID */
#define PCI_DM9102_ID 0x91021282 /* Davicom DM9102 ID */
#define PCI_DM9100_ID 0x91001282 /* Davicom DM9100 ID */
#define PCI_DM9009_ID 0x90091282 /* Davicom DM9009 ID */
#define DM9102_IO_SIZE 0x80
#define DM9102A_IO_SIZE 0x100
#define TX_MAX_SEND_CNT 0x1 /* Maximum tx packet per time */
#define TX_DESC_CNT 0x10 /* Allocated Tx descriptors */
#define RX_DESC_CNT 0x20 /* Allocated Rx descriptors */
#define TX_FREE_DESC_CNT (TX_DESC_CNT - 2) /* Max TX packet count */
#define TX_WAKE_DESC_CNT (TX_DESC_CNT - 3) /* TX wakeup count */
#define DESC_ALL_CNT (TX_DESC_CNT + RX_DESC_CNT)
#define TX_BUF_ALLOC 0x600
#define RX_ALLOC_SIZE 0x620
#define DM910X_RESET 1
#define CR0_DEFAULT 0x00E00000 /* TX & RX burst mode */
#define CR6_DEFAULT 0x00080000 /* HD */
#define CR7_DEFAULT 0x180c1
#define CR15_DEFAULT 0x06 /* TxJabber RxWatchdog */
#define TDES0_ERR_MASK 0x4302 /* TXJT, LC, EC, FUE */
#define MAX_PACKET_SIZE 1514
#define DMFE_MAX_MULTICAST 14
#define RX_COPY_SIZE 100
#define MAX_CHECK_PACKET 0x8000
#define DM9801_NOISE_FLOOR 8
#define DM9802_NOISE_FLOOR 5
#define DMFE_10MHF 0
#define DMFE_100MHF 1
#define DMFE_10MFD 4
#define DMFE_100MFD 5
#define DMFE_AUTO 8
#define DMFE_1M_HPNA 0x10
#define DMFE_TXTH_72 0x400000 /* TX TH 72 byte */
#define DMFE_TXTH_96 0x404000 /* TX TH 96 byte */
#define DMFE_TXTH_128 0x0000 /* TX TH 128 byte */
#define DMFE_TXTH_256 0x4000 /* TX TH 256 byte */
#define DMFE_TXTH_512 0x8000 /* TX TH 512 byte */
#define DMFE_TXTH_1K 0xC000 /* TX TH 1K byte */
#define DMFE_TIMER_WUT (jiffies + HZ * 1) /* timer wakeup time : 1 second */
#define DMFE_TX_TIMEOUT ((3*HZ)/2) /* tx packet time-out time 1.5 s" */
#define DMFE_TX_KICK (HZ/2) /* tx packet Kick-out time 0.5 s" */
#define DMFE_DBUG(dbug_now, msg, value) if (dmfe_debug || (dbug_now)) printk(KERN_ERR DRV_NAME ": %s %lx\n", (msg), (long) (value))
#define SHOW_MEDIA_TYPE(mode) printk(KERN_ERR DRV_NAME ": Change Speed to %sMhz %s duplex\n",mode & 1 ?"100":"10", mode & 4 ? "full":"half");
/* CR9 definition: SROM/MII */
#define CR9_SROM_READ 0x4800
#define CR9_SRCS 0x1
#define CR9_SRCLK 0x2
#define CR9_CRDOUT 0x8
#define SROM_DATA_0 0x0
#define SROM_DATA_1 0x4
#define PHY_DATA_1 0x20000
#define PHY_DATA_0 0x00000
#define MDCLKH 0x10000
#define PHY_POWER_DOWN 0x800
#define SROM_V41_CODE 0x14
#define SROM_CLK_WRITE(data, ioaddr) outl(data|CR9_SROM_READ|CR9_SRCS,ioaddr);udelay(5);outl(data|CR9_SROM_READ|CR9_SRCS|CR9_SRCLK,ioaddr);udelay(5);outl(data|CR9_SROM_READ|CR9_SRCS,ioaddr);udelay(5);
#define __CHK_IO_SIZE(pci_id, dev_rev) ( ((pci_id)==PCI_DM9132_ID) || ((dev_rev) >= 0x02000030) ) ? DM9102A_IO_SIZE: DM9102_IO_SIZE
#define CHK_IO_SIZE(pci_dev, dev_rev) __CHK_IO_SIZE(((pci_dev)->device << 16) | (pci_dev)->vendor, dev_rev)
/* Sten Check */
#define DEVICE net_device
/* Structure/enum declaration ------------------------------- */
struct tx_desc {
u32 tdes0, tdes1, tdes2, tdes3; /* Data for the card */
void * tx_buf_ptr; /* Data for us */
struct tx_desc * next_tx_desc;
} __attribute__ ((aligned(32)));
struct rx_desc {
u32 rdes0, rdes1, rdes2, rdes3; /* Data for the card */
void * rx_skb_ptr; /* Data for us */
struct rx_desc * next_rx_desc;
} __attribute__ ((aligned(32)));
static struct dmfe_private {
u32 chip_id; /* Chip vendor/Device ID */
u32 chip_revision; /* Chip revision */
u32 cr0_data;
// u32 cr5_data;
u32 cr6_data;
u32 cr7_data;
u32 cr15_data;
u16 HPNA_command; /* For HPNA register 16 */
u16 HPNA_timer; /* For HPNA remote device check */
u16 NIC_capability; /* NIC media capability */
u16 PHY_reg4; /* Saved Phyxcer register 4 value */
u8 HPNA_present; /* 0:none, 1:DM9801, 2:DM9802 */
u8 chip_type; /* Keep DM9102A chip type */
u8 media_mode; /* user specify media mode */
u8 op_mode; /* real work media mode */
u8 phy_addr;
u8 dm910x_chk_mode; /* Operating mode check */
/* NIC SROM data */
unsigned char srom[128];
/* Etherboot Only */
u8 cur_tx;
u8 cur_rx;
} dfx;
static struct dmfe_private *db;
enum dmfe_offsets {
DCR0 = 0x00, DCR1 = 0x08, DCR2 = 0x10, DCR3 = 0x18, DCR4 = 0x20,
DCR5 = 0x28, DCR6 = 0x30, DCR7 = 0x38, DCR8 = 0x40, DCR9 = 0x48,
DCR10 = 0x50, DCR11 = 0x58, DCR12 = 0x60, DCR13 = 0x68, DCR14 =
0x70,
DCR15 = 0x78
};
enum dmfe_CR6_bits {
CR6_RXSC = 0x2, CR6_PBF = 0x8, CR6_PM = 0x40, CR6_PAM = 0x80,
CR6_FDM = 0x200, CR6_TXSC = 0x2000, CR6_STI = 0x100000,
CR6_SFT = 0x200000, CR6_RXA = 0x40000000, CR6_NO_PURGE = 0x20000000
};
/* Global variable declaration ----------------------------- */
static struct nic_operations dmfe_operations;
static unsigned char dmfe_media_mode = DMFE_AUTO;
static u32 dmfe_cr6_user_set;
/* For module input parameter */
static u8 chkmode = 1;
static u8 HPNA_mode; /* Default: Low Power/High Speed */
static u8 HPNA_rx_cmd; /* Default: Disable Rx remote command */
static u8 HPNA_tx_cmd; /* Default: Don't issue remote command */
static u8 HPNA_NoiseFloor; /* Default: HPNA NoiseFloor */
static u8 SF_mode; /* Special Function: 1:VLAN, 2:RX Flow Control
4: TX pause packet */
/**********************************************
* Descriptor Ring and Buffer defination
***********************************************/
struct {
struct tx_desc txd[TX_DESC_CNT] __attribute__ ((aligned(32)));
unsigned char txb[TX_BUF_ALLOC * TX_DESC_CNT]
__attribute__ ((aligned(32)));
struct rx_desc rxd[RX_DESC_CNT] __attribute__ ((aligned(32)));
unsigned char rxb[RX_ALLOC_SIZE * RX_DESC_CNT]
__attribute__ ((aligned(32)));
} dmfe_bufs __shared;
#define txd dmfe_bufs.txd
#define txb dmfe_bufs.txb
#define rxd dmfe_bufs.rxd
#define rxb dmfe_bufs.rxb
/* NIC specific static variables go here */
static long int BASE;
static u16 read_srom_word(long ioaddr, int offset);
static void dmfe_init_dm910x(struct nic *nic);
static void dmfe_descriptor_init(struct nic *, unsigned long ioaddr);
static void update_cr6(u32, unsigned long);
static void send_filter_frame(struct nic *nic);
static void dm9132_id_table(struct nic *nic);
static u16 phy_read(unsigned long, u8, u8, u32);
static void phy_write(unsigned long, u8, u8, u16, u32);
static void phy_write_1bit(unsigned long, u32);
static u16 phy_read_1bit(unsigned long);
static void dmfe_set_phyxcer(struct nic *nic);
static void dmfe_parse_srom(struct nic *nic);
static void dmfe_program_DM9801(struct nic *nic, int);
static void dmfe_program_DM9802(struct nic *nic);
static void dmfe_reset(struct nic *nic)
{
/* system variable init */
db->cr6_data = CR6_DEFAULT | dmfe_cr6_user_set;
db->NIC_capability = 0xf; /* All capability */
db->PHY_reg4 = 0x1e0;
/* CR6 operation mode decision */
if (!chkmode || (db->chip_id == PCI_DM9132_ID) ||
(db->chip_revision >= 0x02000030)) {
db->cr6_data |= DMFE_TXTH_256;
db->cr0_data = CR0_DEFAULT;
db->dm910x_chk_mode = 4; /* Enter the normal mode */
} else {
db->cr6_data |= CR6_SFT; /* Store & Forward mode */
db->cr0_data = 0;
db->dm910x_chk_mode = 1; /* Enter the check mode */
}
/* Initilize DM910X board */
dmfe_init_dm910x(nic);
return;
}
/* Initilize DM910X board
* Reset DM910X board
* Initilize TX/Rx descriptor chain structure
* Send the set-up frame
* Enable Tx/Rx machine
*/
static void dmfe_init_dm910x(struct nic *nic)
{
unsigned long ioaddr = BASE;
/* Reset DM910x MAC controller */
outl(DM910X_RESET, ioaddr + DCR0); /* RESET MAC */
udelay(100);
outl(db->cr0_data, ioaddr + DCR0);
udelay(5);
/* Phy addr : DM910(A)2/DM9132/9801, phy address = 1 */
db->phy_addr = 1;
/* Parser SROM and media mode */
dmfe_parse_srom(nic);
db->media_mode = dmfe_media_mode;
/* RESET Phyxcer Chip by GPR port bit 7 */
outl(0x180, ioaddr + DCR12); /* Let bit 7 output port */
if (db->chip_id == PCI_DM9009_ID) {
outl(0x80, ioaddr + DCR12); /* Issue RESET signal */
mdelay(300); /* Delay 300 ms */
}
outl(0x0, ioaddr + DCR12); /* Clear RESET signal */
/* Process Phyxcer Media Mode */
if (!(db->media_mode & 0x10)) /* Force 1M mode */
dmfe_set_phyxcer(nic);
/* Media Mode Process */
if (!(db->media_mode & DMFE_AUTO))
db->op_mode = db->media_mode; /* Force Mode */
/* Initiliaze Transmit/Receive decriptor and CR3/4 */
dmfe_descriptor_init(nic, ioaddr);
/* tx descriptor start pointer */
outl(virt_to_le32desc(&txd[0]), ioaddr + DCR4); /* TX DESC address */
/* rx descriptor start pointer */
outl(virt_to_le32desc(&rxd[0]), ioaddr + DCR3); /* RX DESC address */
/* Init CR6 to program DM910x operation */
update_cr6(db->cr6_data, ioaddr);
/* Send setup frame */
if (db->chip_id == PCI_DM9132_ID) {
dm9132_id_table(nic); /* DM9132 */
} else {
send_filter_frame(nic); /* DM9102/DM9102A */
}
/* Init CR7, interrupt active bit */
db->cr7_data = CR7_DEFAULT;
outl(db->cr7_data, ioaddr + DCR7);
/* Init CR15, Tx jabber and Rx watchdog timer */
outl(db->cr15_data, ioaddr + DCR15);
/* Enable DM910X Tx/Rx function */
db->cr6_data |= CR6_RXSC | CR6_TXSC | 0x40000;
update_cr6(db->cr6_data, ioaddr);
}
#ifdef EDEBUG
void hex_dump(const char *data, const unsigned int len);
#endif
/**************************************************************************
POLL - Wait for a frame
***************************************************************************/
static int dmfe_poll(struct nic *nic, int retrieve)
{
u32 rdes0;
int entry = db->cur_rx % RX_DESC_CNT;
int rxlen;
rdes0 = le32_to_cpu(rxd[entry].rdes0);
if (rdes0 & 0x80000000)
return 0;
if (!retrieve)
return 1;
if ((rdes0 & 0x300) != 0x300) {
/* A packet without First/Last flag */
printf("strange Packet\n");
rxd[entry].rdes0 = cpu_to_le32(0x80000000);
return 0;
} else {
/* A packet with First/Last flag */
rxlen = ((rdes0 >> 16) & 0x3fff) - 4;
/* error summary bit check */
if (rdes0 & 0x8000) {
printf("Error\n");
return 0;
}
if (!(rdes0 & 0x8000) ||
((db->cr6_data & CR6_PM) && (rxlen > 6))) {
if (db->dm910x_chk_mode & 1)
printf("Silly check mode\n");
nic->packetlen = rxlen;
memcpy(nic->packet, rxb + (entry * RX_ALLOC_SIZE),
nic->packetlen);
}
}
rxd[entry].rdes0 = cpu_to_le32(0x80000000);
db->cur_rx++;
return 1;
}
static void dmfe_irq(struct nic *nic __unused, irq_action_t action __unused)
{
switch ( action ) {
case DISABLE :
break;
case ENABLE :
break;
case FORCE :
break;
}
}
/**************************************************************************
TRANSMIT - Transmit a frame
***************************************************************************/
static void dmfe_transmit(struct nic *nic,
const char *dest, /* Destination */
unsigned int type, /* Type */
unsigned int size, /* size */
const char *packet) /* Packet */
{
u16 nstype;
u8 *ptxb;
ptxb = &txb[db->cur_tx];
/* Stop Tx */
outl(0, BASE + DCR7);
memcpy(ptxb, dest, ETH_ALEN);
memcpy(ptxb + ETH_ALEN, nic->node_addr, ETH_ALEN);
nstype = htons((u16) type);
memcpy(ptxb + 2 * ETH_ALEN, (u8 *) & nstype, 2);
memcpy(ptxb + ETH_HLEN, packet, size);
size += ETH_HLEN;
while (size < ETH_ZLEN)
ptxb[size++] = '\0';
/* setup the transmit descriptor */
txd[db->cur_tx].tdes1 = cpu_to_le32(0xe1000000 | size);
txd[db->cur_tx].tdes0 = cpu_to_le32(0x80000000); /* give ownership to device */
/* immediate transmit demand */
outl(0x1, BASE + DCR1);
outl(db->cr7_data, BASE + DCR7);
/* Point to next TX descriptor */
db->cur_tx++;
db->cur_tx = db->cur_tx % TX_DESC_CNT;
}
/**************************************************************************
DISABLE - Turn off ethernet interface
***************************************************************************/
static void dmfe_disable ( struct nic *nic __unused ) {
/* Reset & stop DM910X board */
outl(DM910X_RESET, BASE + DCR0);
udelay(5);
phy_write(BASE, db->phy_addr, 0, 0x8000, db->chip_id);
}
/**************************************************************************
PROBE - Look for an adapter, this routine's visible to the outside
***************************************************************************/
#define board_found 1
#define valid_link 0
static int dmfe_probe ( struct nic *nic, struct pci_device *pci ) {
uint32_t dev_rev, pci_pmr;
int i;
if (pci->ioaddr == 0)
return 0;
BASE = pci->ioaddr;
printf("dmfe.c: Found %s Vendor=0x%hX Device=0x%hX\n",
pci->driver_name, pci->vendor, pci->device);
/* Read Chip revision */
pci_read_config_dword(pci, PCI_REVISION_ID, &dev_rev);
dprintf(("Revision %lX\n", dev_rev));
/* point to private storage */
db = &dfx;
db->chip_id = ((u32) pci->device << 16) | pci->vendor;
BASE = pci_bar_start(pci, PCI_BASE_ADDRESS_0);
db->chip_revision = dev_rev;
pci_read_config_dword(pci, 0x50, &pci_pmr);
pci_pmr &= 0x70000;
if ((pci_pmr == 0x10000) && (dev_rev == 0x02000031))
db->chip_type = 1; /* DM9102A E3 */
else
db->chip_type = 0;
dprintf(("Chip type : %d\n", db->chip_type));
/* read 64 word srom data */
for (i = 0; i < 64; i++)
((u16 *) db->srom)[i] = cpu_to_le16(read_srom_word(BASE, i));
/* Set Node address */
for (i = 0; i < 6; i++)
nic->node_addr[i] = db->srom[20 + i];
/* Print out some hardware info */
DBG ( "%s: %s at ioaddr %4.4lx\n", pci->driver_name, eth_ntoa ( nic->node_addr ), BASE );
/* Set the card as PCI Bus Master */
adjust_pci_device(pci);
dmfe_reset(nic);
nic->irqno = 0;
nic->ioaddr = pci->ioaddr;
/* point to NIC specific routines */
nic->nic_op = &dmfe_operations;
return 1;
}
/*
* Initialize transmit/Receive descriptor
* Using Chain structure, and allocate Tx/Rx buffer
*/
static void dmfe_descriptor_init(struct nic *nic __unused, unsigned long ioaddr)
{
int i;
db->cur_tx = 0;
db->cur_rx = 0;
/* tx descriptor start pointer */
outl(virt_to_le32desc(&txd[0]), ioaddr + DCR4); /* TX DESC address */
/* rx descriptor start pointer */
outl(virt_to_le32desc(&rxd[0]), ioaddr + DCR3); /* RX DESC address */
/* Init Transmit chain */
for (i = 0; i < TX_DESC_CNT; i++) {
txd[i].tx_buf_ptr = &txb[i];
txd[i].tdes0 = cpu_to_le32(0);
txd[i].tdes1 = cpu_to_le32(0x81000000); /* IC, chain */
txd[i].tdes2 = cpu_to_le32(virt_to_bus(&txb[i]));
txd[i].tdes3 = cpu_to_le32(virt_to_bus(&txd[i + 1]));
txd[i].next_tx_desc = &txd[i + 1];
}
/* Mark the last entry as wrapping the ring */
txd[i - 1].tdes3 = virt_to_le32desc(&txd[0]);
txd[i - 1].next_tx_desc = &txd[0];
/* receive descriptor chain */
for (i = 0; i < RX_DESC_CNT; i++) {
rxd[i].rx_skb_ptr = &rxb[i * RX_ALLOC_SIZE];
rxd[i].rdes0 = cpu_to_le32(0x80000000);
rxd[i].rdes1 = cpu_to_le32(0x01000600);
rxd[i].rdes2 =
cpu_to_le32(virt_to_bus(&rxb[i * RX_ALLOC_SIZE]));
rxd[i].rdes3 = cpu_to_le32(virt_to_bus(&rxd[i + 1]));
rxd[i].next_rx_desc = &rxd[i + 1];
}
/* Mark the last entry as wrapping the ring */
rxd[i - 1].rdes3 = cpu_to_le32(virt_to_bus(&rxd[0]));
rxd[i - 1].next_rx_desc = &rxd[0];
}
/*
* Update CR6 value
* Firstly stop DM910X , then written value and start
*/
static void update_cr6(u32 cr6_data, unsigned long ioaddr)
{
u32 cr6_tmp;
cr6_tmp = cr6_data & ~0x2002; /* stop Tx/Rx */
outl(cr6_tmp, ioaddr + DCR6);
udelay(5);
outl(cr6_data, ioaddr + DCR6);
udelay(5);
}
/*
* Send a setup frame for DM9132
* This setup frame initilize DM910X addres filter mode
*/
static void dm9132_id_table(struct nic *nic __unused)
{
#ifdef LINUX
u16 *addrptr;
u8 dmi_addr[8];
unsigned long ioaddr = BASE + 0xc0; /* ID Table */
u32 hash_val;
u16 i, hash_table[4];
#endif
dprintf(("dm9132_id_table\n"));
printf("FIXME: This function is broken. If you have this card contact "
"Timothy Legge at the etherboot-user list\n");
#ifdef LINUX
//DMFE_DBUG(0, "dm9132_id_table()", 0);
/* Node address */
addrptr = (u16 *) nic->node_addr;
outw(addrptr[0], ioaddr);
ioaddr += 4;
outw(addrptr[1], ioaddr);
ioaddr += 4;
outw(addrptr[2], ioaddr);
ioaddr += 4;
/* Clear Hash Table */
for (i = 0; i < 4; i++)
hash_table[i] = 0x0;
/* broadcast address */
hash_table[3] = 0x8000;
/* the multicast address in Hash Table : 64 bits */
for (mcptr = mc_list, i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
hash_val = cal_CRC((char *) mcptr->dmi_addr, 6, 0) & 0x3f;
hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
}
/* Write the hash table to MAC MD table */
for (i = 0; i < 4; i++, ioaddr += 4)
outw(hash_table[i], ioaddr);
#endif
}
/*
* Send a setup frame for DM9102/DM9102A
* This setup frame initilize DM910X addres filter mode
*/
static void send_filter_frame(struct nic *nic)
{
u8 *ptxb;
int i;
dprintf(("send_filter_frame\n"));
/* point to the current txb incase multiple tx_rings are used */
ptxb = &txb[db->cur_tx];
/* construct perfect filter frame with mac address as first match
and broadcast address for all others */
for (i = 0; i < 192; i++)
ptxb[i] = 0xFF;
ptxb[0] = nic->node_addr[0];
ptxb[1] = nic->node_addr[1];
ptxb[4] = nic->node_addr[2];
ptxb[5] = nic->node_addr[3];
ptxb[8] = nic->node_addr[4];
ptxb[9] = nic->node_addr[5];
/* prepare the setup frame */
txd[db->cur_tx].tdes1 = cpu_to_le32(0x890000c0);
txd[db->cur_tx].tdes0 = cpu_to_le32(0x80000000);
update_cr6(db->cr6_data | 0x2000, BASE);
outl(0x1, BASE + DCR1); /* Issue Tx polling */
update_cr6(db->cr6_data, BASE);
db->cur_tx++;
}
/*
* Read one word data from the serial ROM
*/
static u16 read_srom_word(long ioaddr, int offset)
{
int i;
u16 srom_data = 0;
long cr9_ioaddr = ioaddr + DCR9;
outl(CR9_SROM_READ, cr9_ioaddr);
outl(CR9_SROM_READ | CR9_SRCS, cr9_ioaddr);
/* Send the Read Command 110b */
SROM_CLK_WRITE(SROM_DATA_1, cr9_ioaddr);
SROM_CLK_WRITE(SROM_DATA_1, cr9_ioaddr);
SROM_CLK_WRITE(SROM_DATA_0, cr9_ioaddr);
/* Send the offset */
for (i = 5; i >= 0; i--) {
srom_data =
(offset & (1 << i)) ? SROM_DATA_1 : SROM_DATA_0;
SROM_CLK_WRITE(srom_data, cr9_ioaddr);
}
outl(CR9_SROM_READ | CR9_SRCS, cr9_ioaddr);
for (i = 16; i > 0; i--) {
outl(CR9_SROM_READ | CR9_SRCS | CR9_SRCLK, cr9_ioaddr);
udelay(5);
srom_data =
(srom_data << 1) | ((inl(cr9_ioaddr) & CR9_CRDOUT) ? 1
: 0);
outl(CR9_SROM_READ | CR9_SRCS, cr9_ioaddr);
udelay(5);
}
outl(CR9_SROM_READ, cr9_ioaddr);
return srom_data;
}
/*
* Auto sense the media mode
*/
#if 0 /* not used */
static u8 dmfe_sense_speed(struct nic *nic __unused)
{
u8 ErrFlag = 0;
u16 phy_mode;
/* CR6 bit18=0, select 10/100M */
update_cr6((db->cr6_data & ~0x40000), BASE);
phy_mode = phy_read(BASE, db->phy_addr, 1, db->chip_id);
phy_mode = phy_read(BASE, db->phy_addr, 1, db->chip_id);
if ((phy_mode & 0x24) == 0x24) {
if (db->chip_id == PCI_DM9132_ID) /* DM9132 */
phy_mode =
phy_read(BASE, db->phy_addr, 7,
db->chip_id) & 0xf000;
else /* DM9102/DM9102A */
phy_mode =
phy_read(BASE, db->phy_addr, 17,
db->chip_id) & 0xf000;
/* printk(DRV_NAME ": Phy_mode %x ",phy_mode); */
switch (phy_mode) {
case 0x1000:
db->op_mode = DMFE_10MHF;
break;
case 0x2000:
db->op_mode = DMFE_10MFD;
break;
case 0x4000:
db->op_mode = DMFE_100MHF;
break;
case 0x8000:
db->op_mode = DMFE_100MFD;
break;
default:
db->op_mode = DMFE_10MHF;
ErrFlag = 1;
break;
}
} else {
db->op_mode = DMFE_10MHF;
//DMFE_DBUG(0, "Link Failed :", phy_mode);
ErrFlag = 1;
}
return ErrFlag;
}
#endif
/*
* Set 10/100 phyxcer capability
* AUTO mode : phyxcer register4 is NIC capability
* Force mode: phyxcer register4 is the force media
*/
static void dmfe_set_phyxcer(struct nic *nic __unused)
{
u16 phy_reg;
/* Select 10/100M phyxcer */
db->cr6_data &= ~0x40000;
update_cr6(db->cr6_data, BASE);
/* DM9009 Chip: Phyxcer reg18 bit12=0 */
if (db->chip_id == PCI_DM9009_ID) {
phy_reg =
phy_read(BASE, db->phy_addr, 18,
db->chip_id) & ~0x1000;
phy_write(BASE, db->phy_addr, 18, phy_reg, db->chip_id);
}
/* Phyxcer capability setting */
phy_reg = phy_read(BASE, db->phy_addr, 4, db->chip_id) & ~0x01e0;
if (db->media_mode & DMFE_AUTO) {
/* AUTO Mode */
phy_reg |= db->PHY_reg4;
} else {
/* Force Mode */
switch (db->media_mode) {
case DMFE_10MHF:
phy_reg |= 0x20;
break;
case DMFE_10MFD:
phy_reg |= 0x40;
break;
case DMFE_100MHF:
phy_reg |= 0x80;
break;
case DMFE_100MFD:
phy_reg |= 0x100;
break;
}
if (db->chip_id == PCI_DM9009_ID)
phy_reg &= 0x61;
}
/* Write new capability to Phyxcer Reg4 */
if (!(phy_reg & 0x01e0)) {
phy_reg |= db->PHY_reg4;
db->media_mode |= DMFE_AUTO;
}
phy_write(BASE, db->phy_addr, 4, phy_reg, db->chip_id);
/* Restart Auto-Negotiation */
if (db->chip_type && (db->chip_id == PCI_DM9102_ID))
phy_write(BASE, db->phy_addr, 0, 0x1800, db->chip_id);
if (!db->chip_type)
phy_write(BASE, db->phy_addr, 0, 0x1200, db->chip_id);
}
/*
* Process op-mode
* AUTO mode : PHY controller in Auto-negotiation Mode
* Force mode: PHY controller in force mode with HUB
* N-way force capability with SWITCH
*/
#if 0 /* not used */
static void dmfe_process_mode(struct nic *nic __unused)
{
u16 phy_reg;
/* Full Duplex Mode Check */
if (db->op_mode & 0x4)
db->cr6_data |= CR6_FDM; /* Set Full Duplex Bit */
else
db->cr6_data &= ~CR6_FDM; /* Clear Full Duplex Bit */
/* Transciver Selection */
if (db->op_mode & 0x10) /* 1M HomePNA */
db->cr6_data |= 0x40000; /* External MII select */
else
db->cr6_data &= ~0x40000; /* Internal 10/100 transciver */
update_cr6(db->cr6_data, BASE);
/* 10/100M phyxcer force mode need */
if (!(db->media_mode & 0x18)) {
/* Forece Mode */
phy_reg = phy_read(BASE, db->phy_addr, 6, db->chip_id);
if (!(phy_reg & 0x1)) {
/* parter without N-Way capability */
phy_reg = 0x0;
switch (db->op_mode) {
case DMFE_10MHF:
phy_reg = 0x0;
break;
case DMFE_10MFD:
phy_reg = 0x100;
break;
case DMFE_100MHF:
phy_reg = 0x2000;
break;
case DMFE_100MFD:
phy_reg = 0x2100;
break;
}
phy_write(BASE, db->phy_addr, 0, phy_reg,
db->chip_id);
if (db->chip_type
&& (db->chip_id == PCI_DM9102_ID))
mdelay(20);
phy_write(BASE, db->phy_addr, 0, phy_reg,
db->chip_id);
}
}
}
#endif
/*
* Write a word to Phy register
*/
static void phy_write(unsigned long iobase, u8 phy_addr, u8 offset,
u16 phy_data, u32 chip_id)
{
u16 i;
unsigned long ioaddr;
if (chip_id == PCI_DM9132_ID) {
ioaddr = iobase + 0x80 + offset * 4;
outw(phy_data, ioaddr);
} else {
/* DM9102/DM9102A Chip */
ioaddr = iobase + DCR9;
/* Send 33 synchronization clock to Phy controller */
for (i = 0; i < 35; i++)
phy_write_1bit(ioaddr, PHY_DATA_1);
/* Send start command(01) to Phy */
phy_write_1bit(ioaddr, PHY_DATA_0);
phy_write_1bit(ioaddr, PHY_DATA_1);
/* Send write command(01) to Phy */
phy_write_1bit(ioaddr, PHY_DATA_0);
phy_write_1bit(ioaddr, PHY_DATA_1);
/* Send Phy addres */
for (i = 0x10; i > 0; i = i >> 1)
phy_write_1bit(ioaddr,
phy_addr & i ? PHY_DATA_1 :
PHY_DATA_0);
/* Send register addres */
for (i = 0x10; i > 0; i = i >> 1)
phy_write_1bit(ioaddr,
offset & i ? PHY_DATA_1 :
PHY_DATA_0);
/* written trasnition */
phy_write_1bit(ioaddr, PHY_DATA_1);
phy_write_1bit(ioaddr, PHY_DATA_0);
/* Write a word data to PHY controller */
for (i = 0x8000; i > 0; i >>= 1)
phy_write_1bit(ioaddr,
phy_data & i ? PHY_DATA_1 :
PHY_DATA_0);
}
}
/*
* Read a word data from phy register
*/
static u16 phy_read(unsigned long iobase, u8 phy_addr, u8 offset,
u32 chip_id)
{
int i;
u16 phy_data;
unsigned long ioaddr;
if (chip_id == PCI_DM9132_ID) {
/* DM9132 Chip */
ioaddr = iobase + 0x80 + offset * 4;
phy_data = inw(ioaddr);
} else {
/* DM9102/DM9102A Chip */
ioaddr = iobase + DCR9;
/* Send 33 synchronization clock to Phy controller */
for (i = 0; i < 35; i++)
phy_write_1bit(ioaddr, PHY_DATA_1);
/* Send start command(01) to Phy */
phy_write_1bit(ioaddr, PHY_DATA_0);
phy_write_1bit(ioaddr, PHY_DATA_1);
/* Send read command(10) to Phy */
phy_write_1bit(ioaddr, PHY_DATA_1);
phy_write_1bit(ioaddr, PHY_DATA_0);
/* Send Phy addres */
for (i = 0x10; i > 0; i = i >> 1)
phy_write_1bit(ioaddr,
phy_addr & i ? PHY_DATA_1 :
PHY_DATA_0);
/* Send register addres */
for (i = 0x10; i > 0; i = i >> 1)
phy_write_1bit(ioaddr,
offset & i ? PHY_DATA_1 :
PHY_DATA_0);
/* Skip transition state */
phy_read_1bit(ioaddr);
/* read 16bit data */
for (phy_data = 0, i = 0; i < 16; i++) {
phy_data <<= 1;
phy_data |= phy_read_1bit(ioaddr);
}
}
return phy_data;
}
/*
* Write one bit data to Phy Controller
*/
static void phy_write_1bit(unsigned long ioaddr, u32 phy_data)
{
outl(phy_data, ioaddr); /* MII Clock Low */
udelay(1);
outl(phy_data | MDCLKH, ioaddr); /* MII Clock High */
udelay(1);
outl(phy_data, ioaddr); /* MII Clock Low */
udelay(1);
}
/*
* Read one bit phy data from PHY controller
*/
static u16 phy_read_1bit(unsigned long ioaddr)
{
u16 phy_data;
outl(0x50000, ioaddr);
udelay(1);
phy_data = (inl(ioaddr) >> 19) & 0x1;
outl(0x40000, ioaddr);
udelay(1);
return phy_data;
}
/*
* Parser SROM and media mode
*/
static void dmfe_parse_srom(struct nic *nic)
{
unsigned char *srom = db->srom;
int dmfe_mode, tmp_reg;
/* Init CR15 */
db->cr15_data = CR15_DEFAULT;
/* Check SROM Version */
if (((int) srom[18] & 0xff) == SROM_V41_CODE) {
/* SROM V4.01 */
/* Get NIC support media mode */
db->NIC_capability = *(u16 *) (srom + 34);
db->PHY_reg4 = 0;
for (tmp_reg = 1; tmp_reg < 0x10; tmp_reg <<= 1) {
switch (db->NIC_capability & tmp_reg) {
case 0x1:
db->PHY_reg4 |= 0x0020;
break;
case 0x2:
db->PHY_reg4 |= 0x0040;
break;
case 0x4:
db->PHY_reg4 |= 0x0080;
break;
case 0x8:
db->PHY_reg4 |= 0x0100;
break;
}
}
/* Media Mode Force or not check */
dmfe_mode = *((int *) srom + 34) & *((int *) srom + 36);
switch (dmfe_mode) {
case 0x4:
dmfe_media_mode = DMFE_100MHF;
break; /* 100MHF */
case 0x2:
dmfe_media_mode = DMFE_10MFD;
break; /* 10MFD */
case 0x8:
dmfe_media_mode = DMFE_100MFD;
break; /* 100MFD */
case 0x100:
case 0x200:
dmfe_media_mode = DMFE_1M_HPNA;
break; /* HomePNA */
}
/* Special Function setting */
/* VLAN function */
if ((SF_mode & 0x1) || (srom[43] & 0x80))
db->cr15_data |= 0x40;
/* Flow Control */
if ((SF_mode & 0x2) || (srom[40] & 0x1))
db->cr15_data |= 0x400;
/* TX pause packet */
if ((SF_mode & 0x4) || (srom[40] & 0xe))
db->cr15_data |= 0x9800;
}
/* Parse HPNA parameter */
db->HPNA_command = 1;
/* Accept remote command or not */
if (HPNA_rx_cmd == 0)
db->HPNA_command |= 0x8000;
/* Issue remote command & operation mode */
if (HPNA_tx_cmd == 1)
switch (HPNA_mode) { /* Issue Remote Command */
case 0:
db->HPNA_command |= 0x0904;
break;
case 1:
db->HPNA_command |= 0x0a00;
break;
case 2:
db->HPNA_command |= 0x0506;
break;
case 3:
db->HPNA_command |= 0x0602;
break;
} else
switch (HPNA_mode) { /* Don't Issue */
case 0:
db->HPNA_command |= 0x0004;
break;
case 1:
db->HPNA_command |= 0x0000;
break;
case 2:
db->HPNA_command |= 0x0006;
break;
case 3:
db->HPNA_command |= 0x0002;
break;
}
/* Check DM9801 or DM9802 present or not */
db->HPNA_present = 0;
update_cr6(db->cr6_data | 0x40000, BASE);
tmp_reg = phy_read(BASE, db->phy_addr, 3, db->chip_id);
if ((tmp_reg & 0xfff0) == 0xb900) {
/* DM9801 or DM9802 present */
db->HPNA_timer = 8;
if (phy_read(BASE, db->phy_addr, 31, db->chip_id) ==
0x4404) {
/* DM9801 HomeRun */
db->HPNA_present = 1;
dmfe_program_DM9801(nic, tmp_reg);
} else {
/* DM9802 LongRun */
db->HPNA_present = 2;
dmfe_program_DM9802(nic);
}
}
}
/*
* Init HomeRun DM9801
*/
static void dmfe_program_DM9801(struct nic *nic __unused, int HPNA_rev)
{
u32 reg17, reg25;
if (!HPNA_NoiseFloor)
HPNA_NoiseFloor = DM9801_NOISE_FLOOR;
switch (HPNA_rev) {
case 0xb900: /* DM9801 E3 */
db->HPNA_command |= 0x1000;
reg25 = phy_read(BASE, db->phy_addr, 24, db->chip_id);
reg25 = ((reg25 + HPNA_NoiseFloor) & 0xff) | 0xf000;
reg17 = phy_read(BASE, db->phy_addr, 17, db->chip_id);
break;
case 0xb901: /* DM9801 E4 */
reg25 = phy_read(BASE, db->phy_addr, 25, db->chip_id);
reg25 = (reg25 & 0xff00) + HPNA_NoiseFloor;
reg17 = phy_read(BASE, db->phy_addr, 17, db->chip_id);
reg17 = (reg17 & 0xfff0) + HPNA_NoiseFloor + 3;
break;
case 0xb902: /* DM9801 E5 */
case 0xb903: /* DM9801 E6 */
default:
db->HPNA_command |= 0x1000;
reg25 = phy_read(BASE, db->phy_addr, 25, db->chip_id);
reg25 = (reg25 & 0xff00) + HPNA_NoiseFloor - 5;
reg17 = phy_read(BASE, db->phy_addr, 17, db->chip_id);
reg17 = (reg17 & 0xfff0) + HPNA_NoiseFloor;
break;
}
phy_write(BASE, db->phy_addr, 16, db->HPNA_command, db->chip_id);
phy_write(BASE, db->phy_addr, 17, reg17, db->chip_id);
phy_write(BASE, db->phy_addr, 25, reg25, db->chip_id);
}
/*
* Init HomeRun DM9802
*/
static void dmfe_program_DM9802(struct nic *nic __unused)
{
u32 phy_reg;
if (!HPNA_NoiseFloor)
HPNA_NoiseFloor = DM9802_NOISE_FLOOR;
phy_write(BASE, db->phy_addr, 16, db->HPNA_command, db->chip_id);
phy_reg = phy_read(BASE, db->phy_addr, 25, db->chip_id);
phy_reg = (phy_reg & 0xff00) + HPNA_NoiseFloor;
phy_write(BASE, db->phy_addr, 25, phy_reg, db->chip_id);
}
static struct nic_operations dmfe_operations = {
.connect = dummy_connect,
.poll = dmfe_poll,
.transmit = dmfe_transmit,
.irq = dmfe_irq,
};
static struct pci_device_id dmfe_nics[] = {
PCI_ROM(0x1282, 0x9100, "dmfe9100", "Davicom 9100", 0),
PCI_ROM(0x1282, 0x9102, "dmfe9102", "Davicom 9102", 0),
PCI_ROM(0x1282, 0x9009, "dmfe9009", "Davicom 9009", 0),
PCI_ROM(0x1282, 0x9132, "dmfe9132", "Davicom 9132", 0), /* Needs probably some fixing */
};
PCI_DRIVER ( dmfe_driver, dmfe_nics, PCI_NO_CLASS );
DRIVER ( "DMFE/PCI", nic_driver, pci_driver, dmfe_driver,
dmfe_probe, dmfe_disable );
/*
* Local variables:
* c-basic-offset: 8
* c-indent-level: 8
* tab-width: 8
* End:
*/