| /* |
| * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org> |
| * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com> |
| * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu> |
| * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org> |
| * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> |
| * |
| * Lightly modified for iPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>. |
| * |
| * Permission to use, copy, modify, and distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| */ |
| |
| FILE_LICENCE ( MIT ); |
| |
| #define _ATH5K_RESET |
| |
| /*****************************\ |
| Reset functions and helpers |
| \*****************************/ |
| |
| #include <ipxe/pci.h> /* To determine if a card is pci-e */ |
| #include <unistd.h> |
| |
| #include "ath5k.h" |
| #include "reg.h" |
| #include "base.h" |
| |
| /* Find last set bit; fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32 */ |
| static int fls(int x) |
| { |
| int r = 32; |
| |
| if (!x) |
| return 0; |
| if (!(x & 0xffff0000u)) { |
| x <<= 16; |
| r -= 16; |
| } |
| if (!(x & 0xff000000u)) { |
| x <<= 8; |
| r -= 8; |
| } |
| if (!(x & 0xf0000000u)) { |
| x <<= 4; |
| r -= 4; |
| } |
| if (!(x & 0xc0000000u)) { |
| x <<= 2; |
| r -= 2; |
| } |
| if (!(x & 0x80000000u)) { |
| x <<= 1; |
| r -= 1; |
| } |
| return r; |
| } |
| |
| |
| /** |
| * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212 |
| * |
| * @ah: the &struct ath5k_hw |
| * @channel: the currently set channel upon reset |
| * |
| * Write the delta slope coefficient (used on pilot tracking ?) for OFDM |
| * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset(). |
| * |
| * Since delta slope is floating point we split it on its exponent and |
| * mantissa and provide these values on hw. |
| * |
| * For more infos i think this patent is related |
| * http://www.freepatentsonline.com/7184495.html |
| */ |
| static int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah, |
| struct net80211_channel *channel) |
| { |
| /* Get exponent and mantissa and set it */ |
| u32 coef_scaled, coef_exp, coef_man, |
| ds_coef_exp, ds_coef_man, clock; |
| |
| if (!(ah->ah_version == AR5K_AR5212) || |
| !(channel->hw_value & CHANNEL_OFDM)) { |
| DBG("ath5k: attempt to set OFDM timings on non-OFDM channel\n"); |
| return -EFAULT; |
| } |
| |
| /* Get coefficient |
| * ALGO: coef = (5 * clock * carrier_freq) / 2) |
| * we scale coef by shifting clock value by 24 for |
| * better precision since we use integers */ |
| /* TODO: Half/quarter rate */ |
| clock = ath5k_hw_htoclock(1, channel->hw_value & CHANNEL_TURBO); |
| |
| coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq; |
| |
| /* Get exponent |
| * ALGO: coef_exp = 14 - highest set bit position */ |
| coef_exp = fls(coef_scaled) - 1; |
| |
| /* Doesn't make sense if it's zero*/ |
| if (!coef_scaled || !coef_exp) |
| return -EINVAL; |
| |
| /* Note: we've shifted coef_scaled by 24 */ |
| coef_exp = 14 - (coef_exp - 24); |
| |
| |
| /* Get mantissa (significant digits) |
| * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */ |
| coef_man = coef_scaled + |
| (1 << (24 - coef_exp - 1)); |
| |
| /* Calculate delta slope coefficient exponent |
| * and mantissa (remove scaling) and set them on hw */ |
| ds_coef_man = coef_man >> (24 - coef_exp); |
| ds_coef_exp = coef_exp - 16; |
| |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, |
| AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man); |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, |
| AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp); |
| |
| return 0; |
| } |
| |
| /** |
| * ath5k_hw_write_rate_duration - fill rate code to duration table |
| * |
| * @ah: the &struct ath5k_hw |
| * @mode: one of enum ath5k_driver_mode |
| * |
| * Write the rate code to duration table upon hw reset. This is a helper for |
| * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on |
| * the hardware, based on current mode, for each rate. The rates which are |
| * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have |
| * different rate code so we write their value twice (one for long preample |
| * and one for short). |
| * |
| * Note: Band doesn't matter here, if we set the values for OFDM it works |
| * on both a and g modes. So all we have to do is set values for all g rates |
| * that include all OFDM and CCK rates. If we operate in turbo or xr/half/ |
| * quarter rate mode, we need to use another set of bitrates (that's why we |
| * need the mode parameter) but we don't handle these proprietary modes yet. |
| */ |
| static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah, |
| unsigned int mode __unused) |
| { |
| struct ath5k_softc *sc = ah->ah_sc; |
| u16 rate; |
| int i; |
| |
| /* Write rate duration table */ |
| for (i = 0; i < sc->hwinfo->nr_rates[NET80211_BAND_2GHZ]; i++) { |
| u32 reg; |
| u16 tx_time; |
| |
| rate = sc->hwinfo->rates[NET80211_BAND_2GHZ][i]; |
| |
| /* Set ACK timeout */ |
| reg = AR5K_RATE_DUR(ath5k_bitrate_to_hw_rix(rate)); |
| |
| /* An ACK frame consists of 10 bytes. If you add the FCS, |
| * it's 14 bytes. Note we use the control rate and not the |
| * actual rate for this rate. See mac80211 tx.c |
| * ieee80211_duration() for a brief description of |
| * what rate we should choose to TX ACKs. */ |
| tx_time = net80211_duration(sc->dev, 14, rate); |
| |
| ath5k_hw_reg_write(ah, tx_time, reg); |
| |
| if (rate != 20 && rate != 55 && rate != 110) |
| continue; |
| |
| /* |
| * We're not distinguishing short preamble here, |
| * This is true, all we'll get is a longer value here |
| * which is not necessarilly bad. |
| */ |
| ath5k_hw_reg_write(ah, tx_time, |
| reg + (AR5K_SET_SHORT_PREAMBLE << 2)); |
| } |
| } |
| |
| /* |
| * Reset chipset |
| */ |
| static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val) |
| { |
| int ret; |
| u32 mask = val ? val : ~0U; |
| |
| /* Read-and-clear RX Descriptor Pointer*/ |
| ath5k_hw_reg_read(ah, AR5K_RXDP); |
| |
| /* |
| * Reset the device and wait until success |
| */ |
| ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL); |
| |
| /* Wait at least 128 PCI clocks */ |
| udelay(15); |
| |
| if (ah->ah_version == AR5K_AR5210) { |
| val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA |
| | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY; |
| mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA |
| | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY; |
| } else { |
| val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND; |
| mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND; |
| } |
| |
| ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, 0); |
| |
| /* |
| * Reset configuration register (for hw byte-swap). Note that this |
| * is only set for big endian. We do the necessary magic in |
| * AR5K_INIT_CFG. |
| */ |
| if ((val & AR5K_RESET_CTL_PCU) == 0) |
| ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG); |
| |
| return ret; |
| } |
| |
| /* |
| * Sleep control |
| */ |
| int ath5k_hw_wake(struct ath5k_hw *ah) |
| { |
| unsigned int i; |
| u32 staid, data; |
| |
| staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1); |
| staid &= ~AR5K_STA_ID1_PWR_SV; |
| |
| /* Preserve sleep duration */ |
| data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL); |
| if (data & 0xffc00000) |
| data = 0; |
| else |
| data = data & 0xfffcffff; |
| |
| ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL); |
| udelay(15); |
| |
| for (i = 50; i > 0; i--) { |
| /* Check if the chip did wake up */ |
| if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) & |
| AR5K_PCICFG_SPWR_DN) == 0) |
| break; |
| |
| /* Wait a bit and retry */ |
| udelay(200); |
| ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL); |
| } |
| |
| /* Fail if the chip didn't wake up */ |
| if (i <= 0) |
| return -EIO; |
| |
| ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1); |
| |
| return 0; |
| } |
| |
| /* |
| * Bring up MAC + PHY Chips and program PLL |
| * TODO: Half/Quarter rate support |
| */ |
| int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, int initial __unused) |
| { |
| struct pci_device *pdev = ah->ah_sc->pdev; |
| u32 turbo, mode, clock, bus_flags; |
| int ret; |
| |
| turbo = 0; |
| mode = 0; |
| clock = 0; |
| |
| /* Wakeup the device */ |
| ret = ath5k_hw_wake(ah); |
| if (ret) { |
| DBG("ath5k: failed to wake up the MAC chip\n"); |
| return ret; |
| } |
| |
| if (ah->ah_version != AR5K_AR5210) { |
| /* |
| * Get channel mode flags |
| */ |
| |
| if (ah->ah_radio >= AR5K_RF5112) { |
| mode = AR5K_PHY_MODE_RAD_RF5112; |
| clock = AR5K_PHY_PLL_RF5112; |
| } else { |
| mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/ |
| clock = AR5K_PHY_PLL_RF5111; /*Zero*/ |
| } |
| |
| if (flags & CHANNEL_2GHZ) { |
| mode |= AR5K_PHY_MODE_FREQ_2GHZ; |
| clock |= AR5K_PHY_PLL_44MHZ; |
| |
| if (flags & CHANNEL_CCK) { |
| mode |= AR5K_PHY_MODE_MOD_CCK; |
| } else if (flags & CHANNEL_OFDM) { |
| /* XXX Dynamic OFDM/CCK is not supported by the |
| * AR5211 so we set MOD_OFDM for plain g (no |
| * CCK headers) operation. We need to test |
| * this, 5211 might support ofdm-only g after |
| * all, there are also initial register values |
| * in the code for g mode (see initvals.c). */ |
| if (ah->ah_version == AR5K_AR5211) |
| mode |= AR5K_PHY_MODE_MOD_OFDM; |
| else |
| mode |= AR5K_PHY_MODE_MOD_DYN; |
| } else { |
| DBG("ath5k: invalid radio modulation mode\n"); |
| return -EINVAL; |
| } |
| } else if (flags & CHANNEL_5GHZ) { |
| mode |= AR5K_PHY_MODE_FREQ_5GHZ; |
| |
| if (ah->ah_radio == AR5K_RF5413) |
| clock = AR5K_PHY_PLL_40MHZ_5413; |
| else |
| clock |= AR5K_PHY_PLL_40MHZ; |
| |
| if (flags & CHANNEL_OFDM) |
| mode |= AR5K_PHY_MODE_MOD_OFDM; |
| else { |
| DBG("ath5k: invalid radio modulation mode\n"); |
| return -EINVAL; |
| } |
| } else { |
| DBG("ath5k: invalid radio frequency mode\n"); |
| return -EINVAL; |
| } |
| |
| if (flags & CHANNEL_TURBO) |
| turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT; |
| } else { /* Reset the device */ |
| |
| /* ...enable Atheros turbo mode if requested */ |
| if (flags & CHANNEL_TURBO) |
| ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE, |
| AR5K_PHY_TURBO); |
| } |
| |
| /* reseting PCI on PCI-E cards results card to hang |
| * and always return 0xffff... so we ingore that flag |
| * for PCI-E cards */ |
| if (pci_find_capability(pdev, PCI_CAP_ID_EXP)) |
| bus_flags = 0; |
| else |
| bus_flags = AR5K_RESET_CTL_PCI; |
| |
| /* Reset chipset */ |
| if (ah->ah_version == AR5K_AR5210) { |
| ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | |
| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA | |
| AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI); |
| mdelay(2); |
| } else { |
| ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | |
| AR5K_RESET_CTL_BASEBAND | bus_flags); |
| } |
| if (ret) { |
| DBG("ath5k: failed to reset the MAC chip\n"); |
| return -EIO; |
| } |
| |
| /* ...wakeup again!*/ |
| ret = ath5k_hw_wake(ah); |
| if (ret) { |
| DBG("ath5k: failed to resume the MAC chip\n"); |
| return ret; |
| } |
| |
| /* ...final warm reset */ |
| if (ath5k_hw_nic_reset(ah, 0)) { |
| DBG("ath5k: failed to warm reset the MAC chip\n"); |
| return -EIO; |
| } |
| |
| if (ah->ah_version != AR5K_AR5210) { |
| |
| /* ...update PLL if needed */ |
| if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) { |
| ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL); |
| udelay(300); |
| } |
| |
| /* ...set the PHY operating mode */ |
| ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE); |
| ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO); |
| } |
| |
| return 0; |
| } |
| |
| static int ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah, |
| struct net80211_channel *channel) |
| { |
| u8 refclk_freq; |
| |
| if ((ah->ah_radio == AR5K_RF5112) || |
| (ah->ah_radio == AR5K_RF5413) || |
| (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) |
| refclk_freq = 40; |
| else |
| refclk_freq = 32; |
| |
| if ((channel->center_freq % refclk_freq != 0) && |
| ((channel->center_freq % refclk_freq < 10) || |
| (channel->center_freq % refclk_freq > 22))) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* TODO: Half/Quarter rate */ |
| static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah, |
| struct net80211_channel *channel) |
| { |
| if (ah->ah_version == AR5K_AR5212 && |
| ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { |
| |
| /* Setup ADC control */ |
| ath5k_hw_reg_write(ah, |
| (AR5K_REG_SM(2, |
| AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) | |
| AR5K_REG_SM(2, |
| AR5K_PHY_ADC_CTL_INBUFGAIN_ON) | |
| AR5K_PHY_ADC_CTL_PWD_DAC_OFF | |
| AR5K_PHY_ADC_CTL_PWD_ADC_OFF), |
| AR5K_PHY_ADC_CTL); |
| |
| |
| |
| /* Disable barker RSSI threshold */ |
| AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL, |
| AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR); |
| |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL, |
| AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2); |
| |
| /* Set the mute mask */ |
| ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK); |
| } |
| |
| /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */ |
| if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B) |
| ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH); |
| |
| /* Enable DCU double buffering */ |
| if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B) |
| AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, |
| AR5K_TXCFG_DCU_DBL_BUF_DIS); |
| |
| /* Set DAC/ADC delays */ |
| if (ah->ah_version == AR5K_AR5212) { |
| u32 scal; |
| if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)) |
| scal = AR5K_PHY_SCAL_32MHZ_2417; |
| else if (ath5k_eeprom_is_hb63(ah)) |
| scal = AR5K_PHY_SCAL_32MHZ_HB63; |
| else |
| scal = AR5K_PHY_SCAL_32MHZ; |
| ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL); |
| } |
| |
| /* Set fast ADC */ |
| if ((ah->ah_radio == AR5K_RF5413) || |
| (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) { |
| u32 fast_adc = 1; |
| |
| if (channel->center_freq == 2462 || |
| channel->center_freq == 2467) |
| fast_adc = 0; |
| |
| /* Only update if needed */ |
| if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc) |
| ath5k_hw_reg_write(ah, fast_adc, |
| AR5K_PHY_FAST_ADC); |
| } |
| |
| /* Fix for first revision of the RF5112 RF chipset */ |
| if (ah->ah_radio == AR5K_RF5112 && |
| ah->ah_radio_5ghz_revision < |
| AR5K_SREV_RAD_5112A) { |
| u32 data; |
| ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD, |
| AR5K_PHY_CCKTXCTL); |
| if (channel->hw_value & CHANNEL_5GHZ) |
| data = 0xffb81020; |
| else |
| data = 0xffb80d20; |
| ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL); |
| } |
| |
| if (ah->ah_mac_srev < AR5K_SREV_AR5211) { |
| u32 usec_reg; |
| /* 5311 has different tx/rx latency masks |
| * from 5211, since we deal 5311 the same |
| * as 5211 when setting initvals, shift |
| * values here to their proper locations */ |
| usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211); |
| ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 | |
| AR5K_USEC_32 | |
| AR5K_USEC_TX_LATENCY_5211 | |
| AR5K_REG_SM(29, |
| AR5K_USEC_RX_LATENCY_5210)), |
| AR5K_USEC_5211); |
| /* Clear QCU/DCU clock gating register */ |
| ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT); |
| /* Set DAC/ADC delays */ |
| ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL); |
| /* Enable PCU FIFO corruption ECO */ |
| AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211, |
| AR5K_DIAG_SW_ECO_ENABLE); |
| } |
| } |
| |
| static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah, |
| struct net80211_channel *channel, u8 *ant, u8 ee_mode) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| s16 cck_ofdm_pwr_delta; |
| |
| /* Adjust power delta for channel 14 */ |
| if (channel->center_freq == 2484) |
| cck_ofdm_pwr_delta = |
| ((ee->ee_cck_ofdm_power_delta - |
| ee->ee_scaled_cck_delta) * 2) / 10; |
| else |
| cck_ofdm_pwr_delta = |
| (ee->ee_cck_ofdm_power_delta * 2) / 10; |
| |
| /* Set CCK to OFDM power delta on tx power |
| * adjustment register */ |
| if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { |
| if (channel->hw_value == CHANNEL_G) |
| ath5k_hw_reg_write(ah, |
| AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1), |
| AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) | |
| AR5K_REG_SM((cck_ofdm_pwr_delta * -1), |
| AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX), |
| AR5K_PHY_TX_PWR_ADJ); |
| else |
| ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ); |
| } else { |
| /* For older revs we scale power on sw during tx power |
| * setup */ |
| ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta; |
| ah->ah_txpower.txp_cck_ofdm_gainf_delta = |
| ee->ee_cck_ofdm_gain_delta; |
| } |
| |
| /* Set antenna idle switch table */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL, |
| AR5K_PHY_ANT_CTL_SWTABLE_IDLE, |
| (ah->ah_antenna[ee_mode][0] | |
| AR5K_PHY_ANT_CTL_TXRX_EN)); |
| |
| /* Set antenna switch table */ |
| ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]], |
| AR5K_PHY_ANT_SWITCH_TABLE_0); |
| ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]], |
| AR5K_PHY_ANT_SWITCH_TABLE_1); |
| |
| /* Noise floor threshold */ |
| ath5k_hw_reg_write(ah, |
| AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]), |
| AR5K_PHY_NFTHRES); |
| |
| if ((channel->hw_value & CHANNEL_TURBO) && |
| (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) { |
| /* Switch settling time (Turbo) */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING, |
| AR5K_PHY_SETTLING_SWITCH, |
| ee->ee_switch_settling_turbo[ee_mode]); |
| |
| /* Tx/Rx attenuation (Turbo) */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN, |
| AR5K_PHY_GAIN_TXRX_ATTEN, |
| ee->ee_atn_tx_rx_turbo[ee_mode]); |
| |
| /* ADC/PGA desired size (Turbo) */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, |
| AR5K_PHY_DESIRED_SIZE_ADC, |
| ee->ee_adc_desired_size_turbo[ee_mode]); |
| |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, |
| AR5K_PHY_DESIRED_SIZE_PGA, |
| ee->ee_pga_desired_size_turbo[ee_mode]); |
| |
| /* Tx/Rx margin (Turbo) */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ, |
| AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX, |
| ee->ee_margin_tx_rx_turbo[ee_mode]); |
| |
| } else { |
| /* Switch settling time */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING, |
| AR5K_PHY_SETTLING_SWITCH, |
| ee->ee_switch_settling[ee_mode]); |
| |
| /* Tx/Rx attenuation */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN, |
| AR5K_PHY_GAIN_TXRX_ATTEN, |
| ee->ee_atn_tx_rx[ee_mode]); |
| |
| /* ADC/PGA desired size */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, |
| AR5K_PHY_DESIRED_SIZE_ADC, |
| ee->ee_adc_desired_size[ee_mode]); |
| |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, |
| AR5K_PHY_DESIRED_SIZE_PGA, |
| ee->ee_pga_desired_size[ee_mode]); |
| |
| /* Tx/Rx margin */ |
| if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ, |
| AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX, |
| ee->ee_margin_tx_rx[ee_mode]); |
| } |
| |
| /* XPA delays */ |
| ath5k_hw_reg_write(ah, |
| (ee->ee_tx_end2xpa_disable[ee_mode] << 24) | |
| (ee->ee_tx_end2xpa_disable[ee_mode] << 16) | |
| (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) | |
| (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4); |
| |
| /* XLNA delay */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3, |
| AR5K_PHY_RF_CTL3_TXE2XLNA_ON, |
| ee->ee_tx_end2xlna_enable[ee_mode]); |
| |
| /* Thresh64 (ANI) */ |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF, |
| AR5K_PHY_NF_THRESH62, |
| ee->ee_thr_62[ee_mode]); |
| |
| |
| /* False detect backoff for channels |
| * that have spur noise. Write the new |
| * cyclic power RSSI threshold. */ |
| if (ath5k_hw_chan_has_spur_noise(ah, channel)) |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR, |
| AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1, |
| AR5K_INIT_CYCRSSI_THR1 + |
| ee->ee_false_detect[ee_mode]); |
| else |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR, |
| AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1, |
| AR5K_INIT_CYCRSSI_THR1); |
| |
| /* I/Q correction |
| * TODO: Per channel i/q infos ? */ |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, |
| AR5K_PHY_IQ_CORR_ENABLE | |
| (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) | |
| ee->ee_q_cal[ee_mode]); |
| |
| /* Heavy clipping -disable for now */ |
| if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1) |
| ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE); |
| |
| return; |
| } |
| |
| /* |
| * Main reset function |
| */ |
| int ath5k_hw_reset(struct ath5k_hw *ah, |
| struct net80211_channel *channel, int change_channel) |
| { |
| u32 s_seq[10], s_ant, s_led[3], staid1_flags; |
| u32 phy_tst1; |
| u8 mode, freq, ee_mode, ant[2]; |
| int i, ret; |
| |
| s_ant = 0; |
| ee_mode = 0; |
| staid1_flags = 0; |
| freq = 0; |
| mode = 0; |
| |
| /* |
| * Save some registers before a reset |
| */ |
| /*DCU/Antenna selection not available on 5210*/ |
| if (ah->ah_version != AR5K_AR5210) { |
| |
| switch (channel->hw_value & CHANNEL_MODES) { |
| case CHANNEL_A: |
| mode = AR5K_MODE_11A; |
| freq = AR5K_INI_RFGAIN_5GHZ; |
| ee_mode = AR5K_EEPROM_MODE_11A; |
| break; |
| case CHANNEL_G: |
| mode = AR5K_MODE_11G; |
| freq = AR5K_INI_RFGAIN_2GHZ; |
| ee_mode = AR5K_EEPROM_MODE_11G; |
| break; |
| case CHANNEL_B: |
| mode = AR5K_MODE_11B; |
| freq = AR5K_INI_RFGAIN_2GHZ; |
| ee_mode = AR5K_EEPROM_MODE_11B; |
| break; |
| case CHANNEL_T: |
| mode = AR5K_MODE_11A_TURBO; |
| freq = AR5K_INI_RFGAIN_5GHZ; |
| ee_mode = AR5K_EEPROM_MODE_11A; |
| break; |
| case CHANNEL_TG: |
| if (ah->ah_version == AR5K_AR5211) { |
| DBG("ath5k: TurboG not available on 5211\n"); |
| return -EINVAL; |
| } |
| mode = AR5K_MODE_11G_TURBO; |
| freq = AR5K_INI_RFGAIN_2GHZ; |
| ee_mode = AR5K_EEPROM_MODE_11G; |
| break; |
| case CHANNEL_XR: |
| if (ah->ah_version == AR5K_AR5211) { |
| DBG("ath5k: XR mode not available on 5211\n"); |
| return -EINVAL; |
| } |
| mode = AR5K_MODE_XR; |
| freq = AR5K_INI_RFGAIN_5GHZ; |
| ee_mode = AR5K_EEPROM_MODE_11A; |
| break; |
| default: |
| DBG("ath5k: invalid channel (%d MHz)\n", |
| channel->center_freq); |
| return -EINVAL; |
| } |
| |
| if (change_channel) { |
| /* |
| * Save frame sequence count |
| * For revs. after Oahu, only save |
| * seq num for DCU 0 (Global seq num) |
| */ |
| if (ah->ah_mac_srev < AR5K_SREV_AR5211) { |
| |
| for (i = 0; i < 10; i++) |
| s_seq[i] = ath5k_hw_reg_read(ah, |
| AR5K_QUEUE_DCU_SEQNUM(i)); |
| |
| } else { |
| s_seq[0] = ath5k_hw_reg_read(ah, |
| AR5K_QUEUE_DCU_SEQNUM(0)); |
| } |
| } |
| |
| /* Save default antenna */ |
| s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA); |
| |
| if (ah->ah_version == AR5K_AR5212) { |
| /* Since we are going to write rf buffer |
| * check if we have any pending gain_F |
| * optimization settings */ |
| if (change_channel && ah->ah_rf_banks != NULL) |
| ath5k_hw_gainf_calibrate(ah); |
| } |
| } |
| |
| /*GPIOs*/ |
| s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) & |
| AR5K_PCICFG_LEDSTATE; |
| s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR); |
| s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO); |
| |
| /* AR5K_STA_ID1 flags, only preserve antenna |
| * settings and ack/cts rate mode */ |
| staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & |
| (AR5K_STA_ID1_DEFAULT_ANTENNA | |
| AR5K_STA_ID1_DESC_ANTENNA | |
| AR5K_STA_ID1_RTS_DEF_ANTENNA | |
| AR5K_STA_ID1_ACKCTS_6MB | |
| AR5K_STA_ID1_BASE_RATE_11B | |
| AR5K_STA_ID1_SELFGEN_DEF_ANT); |
| |
| /* Wakeup the device */ |
| ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, 0); |
| if (ret) |
| return ret; |
| |
| /* PHY access enable */ |
| if (ah->ah_mac_srev >= AR5K_SREV_AR5211) |
| ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); |
| else |
| ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40, |
| AR5K_PHY(0)); |
| |
| /* Write initial settings */ |
| ret = ath5k_hw_write_initvals(ah, mode, change_channel); |
| if (ret) |
| return ret; |
| |
| /* |
| * 5211/5212 Specific |
| */ |
| if (ah->ah_version != AR5K_AR5210) { |
| |
| /* |
| * Write initial RF gain settings |
| * This should work for both 5111/5112 |
| */ |
| ret = ath5k_hw_rfgain_init(ah, freq); |
| if (ret) |
| return ret; |
| |
| mdelay(1); |
| |
| /* |
| * Tweak initval settings for revised |
| * chipsets and add some more config |
| * bits |
| */ |
| ath5k_hw_tweak_initval_settings(ah, channel); |
| |
| /* |
| * Set TX power (FIXME) |
| */ |
| ret = ath5k_hw_txpower(ah, channel, ee_mode, |
| AR5K_TUNE_DEFAULT_TXPOWER); |
| if (ret) |
| return ret; |
| |
| /* Write rate duration table only on AR5212 */ |
| if (ah->ah_version == AR5K_AR5212) |
| ath5k_hw_write_rate_duration(ah, mode); |
| |
| /* |
| * Write RF buffer |
| */ |
| ret = ath5k_hw_rfregs_init(ah, channel, mode); |
| if (ret) |
| return ret; |
| |
| |
| /* Write OFDM timings on 5212*/ |
| if (ah->ah_version == AR5K_AR5212 && |
| channel->hw_value & CHANNEL_OFDM) { |
| ret = ath5k_hw_write_ofdm_timings(ah, channel); |
| if (ret) |
| return ret; |
| } |
| |
| /*Enable/disable 802.11b mode on 5111 |
| (enable 2111 frequency converter + CCK)*/ |
| if (ah->ah_radio == AR5K_RF5111) { |
| if (mode == AR5K_MODE_11B) |
| AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, |
| AR5K_TXCFG_B_MODE); |
| else |
| AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, |
| AR5K_TXCFG_B_MODE); |
| } |
| |
| /* |
| * In case a fixed antenna was set as default |
| * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE |
| * registers. |
| */ |
| if (s_ant != 0) { |
| if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */ |
| ant[0] = ant[1] = AR5K_ANT_FIXED_A; |
| else /* 2 - Aux */ |
| ant[0] = ant[1] = AR5K_ANT_FIXED_B; |
| } else { |
| ant[0] = AR5K_ANT_FIXED_A; |
| ant[1] = AR5K_ANT_FIXED_B; |
| } |
| |
| /* Commit values from EEPROM */ |
| ath5k_hw_commit_eeprom_settings(ah, channel, ant, ee_mode); |
| |
| } else { |
| /* |
| * For 5210 we do all initialization using |
| * initvals, so we don't have to modify |
| * any settings (5210 also only supports |
| * a/aturbo modes) |
| */ |
| mdelay(1); |
| /* Disable phy and wait */ |
| ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); |
| mdelay(1); |
| } |
| |
| /* |
| * Restore saved values |
| */ |
| |
| /*DCU/Antenna selection not available on 5210*/ |
| if (ah->ah_version != AR5K_AR5210) { |
| |
| if (change_channel) { |
| if (ah->ah_mac_srev < AR5K_SREV_AR5211) { |
| for (i = 0; i < 10; i++) |
| ath5k_hw_reg_write(ah, s_seq[i], |
| AR5K_QUEUE_DCU_SEQNUM(i)); |
| } else { |
| ath5k_hw_reg_write(ah, s_seq[0], |
| AR5K_QUEUE_DCU_SEQNUM(0)); |
| } |
| } |
| |
| ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA); |
| } |
| |
| /* Ledstate */ |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]); |
| |
| /* Gpio settings */ |
| ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR); |
| ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO); |
| |
| /* Restore sta_id flags and preserve our mac address*/ |
| ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_sta_id), |
| AR5K_STA_ID0); |
| ath5k_hw_reg_write(ah, staid1_flags | AR5K_HIGH_ID(ah->ah_sta_id), |
| AR5K_STA_ID1); |
| |
| |
| /* |
| * Configure PCU |
| */ |
| |
| /* Restore bssid and bssid mask */ |
| /* XXX: add ah->aid once mac80211 gives this to us */ |
| ath5k_hw_set_associd(ah, ah->ah_bssid, 0); |
| |
| /* Set PCU config */ |
| ath5k_hw_set_opmode(ah); |
| |
| /* Clear any pending interrupts |
| * PISR/SISR Not available on 5210 */ |
| if (ah->ah_version != AR5K_AR5210) |
| ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR); |
| |
| /* Set RSSI/BRSSI thresholds |
| * |
| * Note: If we decide to set this value |
| * dynamicaly, have in mind that when AR5K_RSSI_THR |
| * register is read it might return 0x40 if we haven't |
| * wrote anything to it plus BMISS RSSI threshold is zeroed. |
| * So doing a save/restore procedure here isn't the right |
| * choice. Instead store it on ath5k_hw */ |
| ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES | |
| AR5K_TUNE_BMISS_THRES << |
| AR5K_RSSI_THR_BMISS_S), |
| AR5K_RSSI_THR); |
| |
| /* MIC QoS support */ |
| if (ah->ah_mac_srev >= AR5K_SREV_AR2413) { |
| ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL); |
| ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL); |
| } |
| |
| /* QoS NOACK Policy */ |
| if (ah->ah_version == AR5K_AR5212) { |
| ath5k_hw_reg_write(ah, |
| AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) | |
| AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) | |
| AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET), |
| AR5K_QOS_NOACK); |
| } |
| |
| |
| /* |
| * Configure PHY |
| */ |
| |
| /* Set channel on PHY */ |
| ret = ath5k_hw_channel(ah, channel); |
| if (ret) |
| return ret; |
| |
| /* |
| * Enable the PHY and wait until completion |
| * This includes BaseBand and Synthesizer |
| * activation. |
| */ |
| ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); |
| |
| /* |
| * On 5211+ read activation -> rx delay |
| * and use it. |
| * |
| * TODO: Half/quarter rate support |
| */ |
| if (ah->ah_version != AR5K_AR5210) { |
| u32 delay; |
| delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) & |
| AR5K_PHY_RX_DELAY_M; |
| delay = (channel->hw_value & CHANNEL_CCK) ? |
| ((delay << 2) / 22) : (delay / 10); |
| |
| udelay(100 + (2 * delay)); |
| } else { |
| mdelay(1); |
| } |
| |
| /* |
| * Perform ADC test to see if baseband is ready |
| * Set tx hold and check adc test register |
| */ |
| phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1); |
| ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1); |
| for (i = 0; i <= 20; i++) { |
| if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10)) |
| break; |
| udelay(200); |
| } |
| ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1); |
| |
| /* |
| * Start automatic gain control calibration |
| * |
| * During AGC calibration RX path is re-routed to |
| * a power detector so we don't receive anything. |
| * |
| * This method is used to calibrate some static offsets |
| * used together with on-the fly I/Q calibration (the |
| * one performed via ath5k_hw_phy_calibrate), that doesn't |
| * interrupt rx path. |
| * |
| * While rx path is re-routed to the power detector we also |
| * start a noise floor calibration, to measure the |
| * card's noise floor (the noise we measure when we are not |
| * transmiting or receiving anything). |
| * |
| * If we are in a noisy environment AGC calibration may time |
| * out and/or noise floor calibration might timeout. |
| */ |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, |
| AR5K_PHY_AGCCTL_CAL); |
| |
| /* At the same time start I/Q calibration for QAM constellation |
| * -no need for CCK- */ |
| ah->ah_calibration = 0; |
| if (!(mode == AR5K_MODE_11B)) { |
| ah->ah_calibration = 1; |
| AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, |
| AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, |
| AR5K_PHY_IQ_RUN); |
| } |
| |
| /* Wait for gain calibration to finish (we check for I/Q calibration |
| * during ath5k_phy_calibrate) */ |
| if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, |
| AR5K_PHY_AGCCTL_CAL, 0, 0)) { |
| DBG("ath5k: gain calibration timeout (%d MHz)\n", |
| channel->center_freq); |
| } |
| |
| /* |
| * If we run NF calibration before AGC, it always times out. |
| * Binary HAL starts NF and AGC calibration at the same time |
| * and only waits for AGC to finish. Also if AGC or NF cal. |
| * times out, reset doesn't fail on binary HAL. I believe |
| * that's wrong because since rx path is routed to a detector, |
| * if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211 |
| * enables noise floor calibration after offset calibration and if noise |
| * floor calibration fails, reset fails. I believe that's |
| * a better approach, we just need to find a polling interval |
| * that suits best, even if reset continues we need to make |
| * sure that rx path is ready. |
| */ |
| ath5k_hw_noise_floor_calibration(ah, channel->center_freq); |
| |
| |
| /* |
| * Configure QCUs/DCUs |
| */ |
| |
| /* TODO: HW Compression support for data queues */ |
| /* TODO: Burst prefetch for data queues */ |
| |
| /* |
| * Reset queues and start beacon timers at the end of the reset routine |
| * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping |
| * Note: If we want we can assign multiple qcus on one dcu. |
| */ |
| ret = ath5k_hw_reset_tx_queue(ah); |
| if (ret) { |
| DBG("ath5k: failed to reset TX queue\n"); |
| return ret; |
| } |
| |
| /* |
| * Configure DMA/Interrupts |
| */ |
| |
| /* |
| * Set Rx/Tx DMA Configuration |
| * |
| * Set standard DMA size (128). Note that |
| * a DMA size of 512 causes rx overruns and tx errors |
| * on pci-e cards (tested on 5424 but since rx overruns |
| * also occur on 5416/5418 with madwifi we set 128 |
| * for all PCI-E cards to be safe). |
| * |
| * XXX: need to check 5210 for this |
| * TODO: Check out tx triger level, it's always 64 on dumps but I |
| * guess we can tweak it and see how it goes ;-) |
| */ |
| if (ah->ah_version != AR5K_AR5210) { |
| AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG, |
| AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B); |
| AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG, |
| AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B); |
| } |
| |
| /* Pre-enable interrupts on 5211/5212*/ |
| if (ah->ah_version != AR5K_AR5210) |
| ath5k_hw_set_imr(ah, ah->ah_imr); |
| |
| /* |
| * Setup RFKill interrupt if rfkill flag is set on eeprom. |
| * TODO: Use gpio pin and polarity infos from eeprom |
| * TODO: Handle this in ath5k_intr because it'll result |
| * a nasty interrupt storm. |
| */ |
| #if 0 |
| if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) { |
| ath5k_hw_set_gpio_input(ah, 0); |
| ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0); |
| if (ah->ah_gpio[0] == 0) |
| ath5k_hw_set_gpio_intr(ah, 0, 1); |
| else |
| ath5k_hw_set_gpio_intr(ah, 0, 0); |
| } |
| #endif |
| |
| /* |
| * Disable beacons and reset the register |
| */ |
| AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE | |
| AR5K_BEACON_RESET_TSF); |
| |
| return 0; |
| } |
| |
| #undef _ATH5K_RESET |