blob: a058710859e342364fa0e33470dfbb5a6754d903 [file] [log] [blame]
/*
* Copyright (C) 2006 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* You can also choose to distribute this program under the terms of
* the Unmodified Binary Distribution Licence (as given in the file
* COPYING.UBDL), provided that you have satisfied its requirements.
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <ipxe/io.h>
#include <ipxe/list.h>
#include <ipxe/init.h>
#include <ipxe/refcnt.h>
#include <ipxe/malloc.h>
#include <valgrind/memcheck.h>
/** @file
*
* Dynamic memory allocation
*
*/
/** A free block of memory */
struct memory_block {
/** Size of this block */
size_t size;
/** Padding
*
* This padding exists to cover the "count" field of a
* reference counter, in the common case where a reference
* counter is the first element of a dynamically-allocated
* object. It avoids clobbering the "count" field as soon as
* the memory is freed, and so allows for the possibility of
* detecting reference counting errors.
*/
char pad[ offsetof ( struct refcnt, count ) +
sizeof ( ( ( struct refcnt * ) NULL )->count ) ];
/** List of free blocks */
struct list_head list;
};
/** Physical address alignment maintained for free blocks of memory
*
* We keep memory blocks aligned on a power of two that is at least
* large enough to hold a @c struct @c memory_block.
*/
#define MIN_MEMBLOCK_ALIGN ( 4 * sizeof ( void * ) )
/** A block of allocated memory complete with size information */
struct autosized_block {
/** Size of this block */
size_t size;
/** Remaining data */
char data[0];
};
/**
* Heap area size
*
* Currently fixed at 512kB.
*/
#define HEAP_SIZE ( 512 * 1024 )
/** Heap area alignment */
#define HEAP_ALIGN MIN_MEMBLOCK_ALIGN
/** The heap area */
static char __attribute__ (( aligned ( HEAP_ALIGN ) )) heap_area[HEAP_SIZE];
/**
* Mark all blocks in free list as defined
*
* @v heap Heap
*/
static inline void valgrind_make_blocks_defined ( struct heap *heap ) {
struct memory_block *block;
/* Do nothing unless running under Valgrind */
if ( RUNNING_ON_VALGRIND <= 0 )
return;
/* Traverse free block list, marking each block structure as
* defined. Some contortions are necessary to avoid errors
* from list_check().
*/
/* Mark block list itself as defined */
VALGRIND_MAKE_MEM_DEFINED ( &heap->blocks, sizeof ( heap->blocks ) );
/* Mark areas accessed by list_check() as defined */
VALGRIND_MAKE_MEM_DEFINED ( &heap->blocks.prev->next,
sizeof ( heap->blocks.prev->next ) );
VALGRIND_MAKE_MEM_DEFINED ( heap->blocks.next,
sizeof ( *heap->blocks.next ) );
VALGRIND_MAKE_MEM_DEFINED ( &heap->blocks.next->next->prev,
sizeof ( heap->blocks.next->next->prev ) );
/* Mark each block in list as defined */
list_for_each_entry ( block, &heap->blocks, list ) {
/* Mark block as defined */
VALGRIND_MAKE_MEM_DEFINED ( block, sizeof ( *block ) );
/* Mark areas accessed by list_check() as defined */
VALGRIND_MAKE_MEM_DEFINED ( block->list.next,
sizeof ( *block->list.next ) );
VALGRIND_MAKE_MEM_DEFINED ( &block->list.next->next->prev,
sizeof ( block->list.next->next->prev ) );
}
}
/**
* Mark all blocks in free list as inaccessible
*
* @v heap Heap
*/
static inline void valgrind_make_blocks_noaccess ( struct heap *heap ) {
struct memory_block *block;
struct memory_block *prev = NULL;
/* Do nothing unless running under Valgrind */
if ( RUNNING_ON_VALGRIND <= 0 )
return;
/* Traverse free block list, marking each block structure as
* inaccessible. Some contortions are necessary to avoid
* errors from list_check().
*/
/* Mark each block in list as inaccessible */
list_for_each_entry ( block, &heap->blocks, list ) {
/* Mark previous block (if any) as inaccessible. (Current
* block will be accessed by list_check().)
*/
if ( prev )
VALGRIND_MAKE_MEM_NOACCESS ( prev, sizeof ( *prev ) );
prev = block;
/* At the end of the list, list_check() will end up
* accessing the first list item. Temporarily mark
* this area as defined.
*/
VALGRIND_MAKE_MEM_DEFINED ( &heap->blocks.next->prev,
sizeof ( heap->blocks.next->prev ));
}
/* Mark last block (if any) as inaccessible */
if ( prev )
VALGRIND_MAKE_MEM_NOACCESS ( prev, sizeof ( *prev ) );
/* Mark as inaccessible the area that was temporarily marked
* as defined to avoid errors from list_check().
*/
VALGRIND_MAKE_MEM_NOACCESS ( &heap->blocks.next->prev,
sizeof ( heap->blocks.next->prev ) );
/* Mark block list itself as inaccessible */
VALGRIND_MAKE_MEM_NOACCESS ( &heap->blocks, sizeof ( heap->blocks ) );
}
/**
* Check integrity of the blocks in the free list
*
* @v heap Heap
*/
static inline void check_blocks ( struct heap *heap ) {
struct memory_block *block;
struct memory_block *prev = NULL;
if ( ! ASSERTING )
return;
list_for_each_entry ( block, &heap->blocks, list ) {
/* Check alignment */
assert ( ( virt_to_phys ( block ) &
( heap->align - 1 ) ) == 0 );
/* Check that list structure is intact */
list_check ( &block->list );
/* Check that block size is not too small */
assert ( block->size >= sizeof ( *block ) );
assert ( block->size >= heap->align );
/* Check that block does not wrap beyond end of address space */
assert ( ( ( void * ) block + block->size ) >
( ( void * ) block ) );
/* Check that blocks remain in ascending order, and
* that adjacent blocks have been merged.
*/
if ( prev ) {
assert ( ( ( void * ) block ) > ( ( void * ) prev ) );
assert ( ( ( void * ) block ) >
( ( ( void * ) prev ) + prev->size ) );
}
prev = block;
}
}
/**
* Discard some cached data
*
* @v size Failed allocation size
* @ret discarded Number of cached items discarded
*/
static unsigned int discard_cache ( size_t size __unused ) {
struct cache_discarder *discarder;
unsigned int discarded;
for_each_table_entry ( discarder, CACHE_DISCARDERS ) {
discarded = discarder->discard();
if ( discarded )
return discarded;
}
return 0;
}
/**
* Discard all cached data
*
*/
static void discard_all_cache ( void ) {
unsigned int discarded;
do {
discarded = discard_cache ( 0 );
} while ( discarded );
}
/**
* Allocate a memory block
*
* @v heap Heap
* @v size Requested size
* @v align Physical alignment
* @v offset Offset from physical alignment
* @ret ptr Memory block, or NULL
*
* Allocates a memory block @b physically aligned as requested. No
* guarantees are provided for the alignment of the virtual address.
*
* @c align must be a power of two. @c size may not be zero.
*/
static void * heap_alloc_block ( struct heap *heap, size_t size, size_t align,
size_t offset ) {
struct memory_block *block;
size_t actual_offset;
size_t align_mask;
size_t actual_size;
size_t pre_size;
size_t post_size;
struct memory_block *pre;
struct memory_block *post;
unsigned int grown;
void *ptr;
/* Sanity checks */
assert ( size != 0 );
assert ( ( align == 0 ) || ( ( align & ( align - 1 ) ) == 0 ) );
valgrind_make_blocks_defined ( heap );
check_blocks ( heap );
/* Limit offset to requested alignment */
offset &= ( align ? ( align - 1 ) : 0 );
/* Calculate offset of memory block */
actual_offset = ( offset & ~( heap->align - 1 ) );
assert ( actual_offset <= offset );
/* Calculate size of memory block */
actual_size = ( ( size + offset - actual_offset + heap->align - 1 )
& ~( heap->align - 1 ) );
if ( ! actual_size ) {
/* The requested size is not permitted to be zero. A
* zero result at this point indicates that either the
* original requested size was zero, or that unsigned
* integer overflow has occurred.
*/
ptr = NULL;
goto done;
}
assert ( actual_size >= size );
/* Calculate alignment mask */
align_mask = ( ( align - 1 ) | ( heap->align - 1 ) );
DBGC2 ( heap, "HEAP allocating %#zx (aligned %#zx+%#zx)\n",
size, align, offset );
while ( 1 ) {
/* Search through blocks for the first one with enough space */
list_for_each_entry ( block, &heap->blocks, list ) {
pre_size = ( ( actual_offset - virt_to_phys ( block ) )
& align_mask );
if ( ( block->size < pre_size ) ||
( ( block->size - pre_size ) < actual_size ) )
continue;
post_size = ( block->size - pre_size - actual_size );
/* Split block into pre-block, block, and
* post-block. After this split, the "pre"
* block is the one currently linked into the
* free list.
*/
pre = block;
block = ( ( ( void * ) pre ) + pre_size );
post = ( ( ( void * ) block ) + actual_size );
DBGC2 ( heap, "HEAP splitting [%p,%p) -> [%p,%p) "
"+ [%p,%p)\n", pre,
( ( ( void * ) pre ) + pre->size ), pre, block,
post, ( ( ( void * ) pre ) + pre->size ) );
/* If there is a "post" block, add it in to
* the free list.
*/
if ( post_size ) {
assert ( post_size >= sizeof ( *block ) );
assert ( ( post_size &
( heap->align - 1 ) ) == 0 );
VALGRIND_MAKE_MEM_UNDEFINED ( post,
sizeof ( *post ));
post->size = post_size;
list_add ( &post->list, &pre->list );
}
/* Shrink "pre" block, leaving the main block
* isolated and no longer part of the free
* list.
*/
pre->size = pre_size;
/* If there is no "pre" block, remove it from
* the list.
*/
if ( ! pre_size ) {
list_del ( &pre->list );
VALGRIND_MAKE_MEM_NOACCESS ( pre,
sizeof ( *pre ) );
} else {
assert ( pre_size >= sizeof ( *block ) );
assert ( ( pre_size &
( heap->align - 1 ) ) == 0 );
}
/* Update memory usage statistics */
heap->freemem -= actual_size;
heap->usedmem += actual_size;
if ( heap->usedmem > heap->maxusedmem )
heap->maxusedmem = heap->usedmem;
/* Return allocated block */
ptr = ( ( ( void * ) block ) + offset - actual_offset );
DBGC2 ( heap, "HEAP allocated [%p,%p) within "
"[%p,%p)\n", ptr, ( ptr + size ), block,
( ( ( void * ) block ) + actual_size ) );
VALGRIND_MAKE_MEM_UNDEFINED ( ptr, size );
goto done;
}
/* Attempt to grow heap to satisfy allocation */
DBGC ( heap, "HEAP attempting to grow for %#zx (aligned "
"%#zx+%zx), used %zdkB\n", size, align, offset,
( heap->usedmem >> 10 ) );
valgrind_make_blocks_noaccess ( heap );
grown = ( heap->grow ? heap->grow ( actual_size ) : 0 );
valgrind_make_blocks_defined ( heap );
check_blocks ( heap );
if ( ! grown ) {
/* Heap did not grow: fail allocation */
DBGC ( heap, "HEAP failed to allocate %#zx (aligned "
"%#zx)\n", size, align );
ptr = NULL;
goto done;
}
}
done:
check_blocks ( heap );
valgrind_make_blocks_noaccess ( heap );
return ptr;
}
/**
* Free a memory block
*
* @v heap Heap
* @v ptr Memory allocated by heap_alloc_block(), or NULL
* @v size Size of the memory
*
* If @c ptr is NULL, no action is taken.
*/
static void heap_free_block ( struct heap *heap, void *ptr, size_t size ) {
struct memory_block *freeing;
struct memory_block *block;
struct memory_block *tmp;
size_t sub_offset;
size_t actual_size;
ssize_t gap_before;
ssize_t gap_after = -1;
/* Allow for ptr==NULL */
if ( ! ptr )
return;
VALGRIND_MAKE_MEM_NOACCESS ( ptr, size );
/* Sanity checks */
valgrind_make_blocks_defined ( heap );
check_blocks ( heap );
/* Round up to match actual block that heap_alloc_block() would
* have allocated.
*/
assert ( size != 0 );
sub_offset = ( virt_to_phys ( ptr ) & ( heap->align - 1 ) );
freeing = ( ptr - sub_offset );
actual_size = ( ( size + sub_offset + heap->align - 1 ) &
~( heap->align - 1 ) );
DBGC2 ( heap, "HEAP freeing [%p,%p) within [%p,%p)\n",
ptr, ( ptr + size ), freeing,
( ( ( void * ) freeing ) + actual_size ) );
VALGRIND_MAKE_MEM_UNDEFINED ( freeing, sizeof ( *freeing ) );
/* Check that this block does not overlap the free list */
if ( ASSERTING ) {
list_for_each_entry ( block, &heap->blocks, list ) {
if ( ( ( ( void * ) block ) <
( ( void * ) freeing + actual_size ) ) &&
( ( void * ) freeing <
( ( void * ) block + block->size ) ) ) {
assert ( 0 );
DBGC ( heap, "HEAP double free of [%p,%p) "
"overlapping [%p,%p) detected from %p\n",
freeing,
( ( ( void * ) freeing ) + size ), block,
( ( void * ) block + block->size ),
__builtin_return_address ( 0 ) );
}
}
}
/* Insert/merge into free list */
freeing->size = actual_size;
list_for_each_entry_safe ( block, tmp, &heap->blocks, list ) {
/* Calculate gaps before and after the "freeing" block */
gap_before = ( ( ( void * ) freeing ) -
( ( ( void * ) block ) + block->size ) );
gap_after = ( ( ( void * ) block ) -
( ( ( void * ) freeing ) + freeing->size ) );
/* Merge with immediately preceding block, if possible */
if ( gap_before == 0 ) {
DBGC2 ( heap, "HEAP merging [%p,%p) + [%p,%p) -> "
"[%p,%p)\n", block,
( ( ( void * ) block ) + block->size ), freeing,
( ( ( void * ) freeing ) + freeing->size ),
block,
( ( ( void * ) freeing ) + freeing->size ) );
block->size += actual_size;
list_del ( &block->list );
VALGRIND_MAKE_MEM_NOACCESS ( freeing,
sizeof ( *freeing ) );
freeing = block;
}
/* Stop processing as soon as we reach a following block */
if ( gap_after >= 0 )
break;
}
/* Insert before the immediately following block. If
* possible, merge the following block into the "freeing"
* block.
*/
DBGC2 ( heap, "HEAP freed [%p,%p)\n",
freeing, ( ( ( void * ) freeing ) + freeing->size ) );
list_add_tail ( &freeing->list, &block->list );
if ( gap_after == 0 ) {
DBGC2 ( heap, "HEAP merging [%p,%p) + [%p,%p) -> [%p,%p)\n",
freeing, ( ( ( void * ) freeing ) + freeing->size ),
block, ( ( ( void * ) block ) + block->size ), freeing,
( ( ( void * ) block ) + block->size ) );
freeing->size += block->size;
list_del ( &block->list );
VALGRIND_MAKE_MEM_NOACCESS ( block, sizeof ( *block ) );
}
/* Update memory usage statistics */
heap->freemem += actual_size;
heap->usedmem -= actual_size;
/* Allow heap to shrink */
if ( heap->shrink && heap->shrink ( freeing, freeing->size ) ) {
list_del ( &freeing->list );
heap->freemem -= freeing->size;
VALGRIND_MAKE_MEM_UNDEFINED ( freeing, freeing->size );
}
/* Sanity checks */
check_blocks ( heap );
valgrind_make_blocks_noaccess ( heap );
}
/**
* Reallocate memory
*
* @v heap Heap
* @v old_ptr Memory previously allocated by heap_realloc(), or NULL
* @v new_size Requested size
* @ret new_ptr Allocated memory, or NULL
*
* Allocates memory with no particular alignment requirement. @c
* new_ptr will be aligned to at least a multiple of sizeof(void*).
* If @c old_ptr is non-NULL, then the contents of the newly allocated
* memory will be the same as the contents of the previously allocated
* memory, up to the minimum of the old and new sizes. The old memory
* will be freed.
*
* If allocation fails the previously allocated block is left
* untouched and NULL is returned.
*
* Calling heap_realloc() with a new size of zero is a valid way to
* free a memory block.
*/
void * heap_realloc ( struct heap *heap, void *old_ptr, size_t new_size ) {
struct autosized_block *old_block;
struct autosized_block *new_block;
size_t old_total_size;
size_t new_total_size;
size_t old_size;
size_t offset = offsetof ( struct autosized_block, data );
void *new_ptr = NOWHERE;
/* Allocate new memory if necessary. If allocation fails,
* return without touching the old block.
*/
if ( new_size ) {
new_total_size = ( new_size + offset );
if ( new_total_size < new_size )
return NULL;
new_block = heap_alloc_block ( heap, new_total_size,
heap->ptr_align, -offset );
if ( ! new_block )
return NULL;
new_block->size = new_total_size;
VALGRIND_MAKE_MEM_NOACCESS ( &new_block->size,
sizeof ( new_block->size ) );
new_ptr = &new_block->data;
VALGRIND_MALLOCLIKE_BLOCK ( new_ptr, new_size, 0, 0 );
assert ( ( ( ( intptr_t ) new_ptr ) &
( heap->ptr_align - 1 ) ) == 0 );
}
/* Copy across relevant part of the old data region (if any),
* then free it. Note that at this point either (a) new_ptr
* is valid, or (b) new_size is 0; either way, the memcpy() is
* valid.
*/
if ( old_ptr && ( old_ptr != NOWHERE ) ) {
old_block = container_of ( old_ptr, struct autosized_block,
data );
VALGRIND_MAKE_MEM_DEFINED ( &old_block->size,
sizeof ( old_block->size ) );
old_total_size = old_block->size;
assert ( old_total_size != 0 );
old_size = ( old_total_size - offset );
memcpy ( new_ptr, old_ptr,
( ( old_size < new_size ) ? old_size : new_size ) );
VALGRIND_FREELIKE_BLOCK ( old_ptr, 0 );
heap_free_block ( heap, old_block, old_total_size );
}
if ( ASSERTED ) {
DBGC ( heap, "HEAP detected possible memory corruption "
"from %p\n", __builtin_return_address ( 0 ) );
}
return new_ptr;
}
/** The global heap */
static struct heap heap = {
.blocks = LIST_HEAD_INIT ( heap.blocks ),
.align = MIN_MEMBLOCK_ALIGN,
.ptr_align = sizeof ( void * ),
.grow = discard_cache,
};
/**
* Reallocate memory
*
* @v old_ptr Memory previously allocated by malloc(), or NULL
* @v new_size Requested size
* @ret new_ptr Allocated memory, or NULL
*/
void * realloc ( void *old_ptr, size_t new_size ) {
return heap_realloc ( &heap, old_ptr, new_size );
}
/**
* Allocate memory
*
* @v size Requested size
* @ret ptr Memory, or NULL
*
* Allocates memory with no particular alignment requirement. @c ptr
* will be aligned to at least a multiple of sizeof(void*).
*/
void * malloc ( size_t size ) {
void *ptr;
ptr = realloc ( NULL, size );
if ( ASSERTED ) {
DBGC ( &heap, "HEAP detected possible memory corruption "
"from %p\n", __builtin_return_address ( 0 ) );
}
return ptr;
}
/**
* Free memory
*
* @v ptr Memory allocated by malloc(), or NULL
*
* Memory allocated with malloc_phys() cannot be freed with free(); it
* must be freed with free_phys() instead.
*
* If @c ptr is NULL, no action is taken.
*/
void free ( void *ptr ) {
realloc ( ptr, 0 );
if ( ASSERTED ) {
DBGC ( &heap, "HEAP detected possible memory corruption "
"from %p\n", __builtin_return_address ( 0 ) );
}
}
/**
* Allocate cleared memory
*
* @v size Requested size
* @ret ptr Allocated memory
*
* Allocate memory as per malloc(), and zero it.
*
* This function name is non-standard, but pretty intuitive.
* zalloc(size) is always equivalent to calloc(1,size)
*/
void * zalloc ( size_t size ) {
void *data;
data = malloc ( size );
if ( data )
memset ( data, 0, size );
if ( ASSERTED ) {
DBGC ( &heap, "HEAP detected possible memory corruption "
"from %p\n", __builtin_return_address ( 0 ) );
}
return data;
}
/**
* Allocate memory with specified physical alignment and offset
*
* @v size Requested size
* @v align Physical alignment
* @v offset Offset from physical alignment
* @ret ptr Memory, or NULL
*
* @c align must be a power of two. @c size may not be zero.
*/
void * malloc_phys_offset ( size_t size, size_t phys_align, size_t offset ) {
void * ptr;
ptr = heap_alloc_block ( &heap, size, phys_align, offset );
if ( ptr && size ) {
assert ( ( phys_align == 0 ) ||
( ( ( virt_to_phys ( ptr ) ^ offset ) &
( phys_align - 1 ) ) == 0 ) );
VALGRIND_MALLOCLIKE_BLOCK ( ptr, size, 0, 0 );
}
return ptr;
}
/**
* Allocate memory with specified physical alignment
*
* @v size Requested size
* @v align Physical alignment
* @ret ptr Memory, or NULL
*
* @c align must be a power of two. @c size may not be zero.
*/
void * malloc_phys ( size_t size, size_t phys_align ) {
return malloc_phys_offset ( size, phys_align, 0 );
}
/**
* Free memory allocated with malloc_phys()
*
* @v ptr Memory allocated by malloc_phys(), or NULL
* @v size Size of memory, as passed to malloc_phys()
*
* Memory allocated with malloc_phys() can only be freed with
* free_phys(); it cannot be freed with the standard free().
*
* If @c ptr is NULL, no action is taken.
*/
void free_phys ( void *ptr, size_t size ) {
VALGRIND_FREELIKE_BLOCK ( ptr, 0 );
heap_free_block ( &heap, ptr, size );
}
/**
* Add memory to allocation pool
*
* @v heap Heap
* @v start Start address
* @v len Length of memory
*
* Adds a block of memory to the allocation pool. The memory must be
* aligned to the heap's required free memory block alignment.
*/
void heap_populate ( struct heap *heap, void *start, size_t len ) {
/* Sanity checks */
assert ( ( virt_to_phys ( start ) & ( heap->align - 1 ) ) == 0 );
assert ( ( len & ( heap->align - 1 ) ) == 0 );
/* Add to allocation pool */
heap_free_block ( heap, start, len );
/* Fix up memory usage statistics */
heap->usedmem += len;
}
/**
* Initialise the heap
*
*/
static void init_heap ( void ) {
/* Sanity check */
build_assert ( MIN_MEMBLOCK_ALIGN >= sizeof ( struct memory_block ) );
/* Populate heap */
VALGRIND_MAKE_MEM_NOACCESS ( heap_area, sizeof ( heap_area ) );
VALGRIND_MAKE_MEM_NOACCESS ( &heap.blocks, sizeof ( heap.blocks ) );
heap_populate ( &heap, heap_area, sizeof ( heap_area ) );
}
/** Memory allocator initialisation function */
struct init_fn heap_init_fn __init_fn ( INIT_EARLY ) = {
.name = "heap",
.initialise = init_heap,
};
/**
* Discard all cached data on shutdown
*
*/
static void shutdown_cache ( int booting __unused ) {
discard_all_cache();
DBGC ( &heap, "HEAP maximum usage %zdkB\n",
( heap.maxusedmem >> 10 ) );
}
/** Memory allocator shutdown function */
struct startup_fn heap_startup_fn __startup_fn ( STARTUP_EARLY ) = {
.name = "heap",
.shutdown = shutdown_cache,
};
/**
* Dump free block list (for debugging)
*
*/
void heap_dump ( struct heap *heap ) {
struct memory_block *block;
dbg_printf ( "HEAP free block list:\n" );
list_for_each_entry ( block, &heap->blocks, list ) {
dbg_printf ( "...[%p,%p] (size %#zx)\n", block,
( ( ( void * ) block ) + block->size ),
block->size );
}
}