blob: c30300eb41a4dc8bc7133d44d130441cbc5e8f9e [file] [log] [blame]
/*
* Copyright (C) 2012 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* You can also choose to distribute this program under the terms of
* the Unmodified Binary Distribution Licence (as given in the file
* COPYING.UBDL), provided that you have satisfied its requirements.
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
/** @file
*
* SHA-256 algorithm
*
*/
#include <stdint.h>
#include <string.h>
#include <byteswap.h>
#include <assert.h>
#include <ipxe/rotate.h>
#include <ipxe/crypto.h>
#include <ipxe/sha256.h>
/** SHA-256 variables */
struct sha256_variables {
/* This layout matches that of struct sha256_digest_data,
* allowing for efficient endianness-conversion,
*/
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
uint32_t e;
uint32_t f;
uint32_t g;
uint32_t h;
uint32_t w[SHA256_ROUNDS];
} __attribute__ (( packed ));
/** SHA-256 constants */
static const uint32_t k[SHA256_ROUNDS] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/** SHA-256 initial digest values */
static const struct sha256_digest sha256_init_digest = {
.h = {
cpu_to_be32 ( 0x6a09e667 ),
cpu_to_be32 ( 0xbb67ae85 ),
cpu_to_be32 ( 0x3c6ef372 ),
cpu_to_be32 ( 0xa54ff53a ),
cpu_to_be32 ( 0x510e527f ),
cpu_to_be32 ( 0x9b05688c ),
cpu_to_be32 ( 0x1f83d9ab ),
cpu_to_be32 ( 0x5be0cd19 ),
},
};
/**
* Initialise SHA-256 family algorithm
*
* @v context SHA-256 context
* @v init Initial digest values
* @v digestsize Digest size
*/
void sha256_family_init ( struct sha256_context *context,
const struct sha256_digest *init,
size_t digestsize ) {
context->len = 0;
context->digestsize = digestsize;
memcpy ( &context->ddd.dd.digest, init,
sizeof ( context->ddd.dd.digest ) );
}
/**
* Initialise SHA-256 algorithm
*
* @v ctx SHA-256 context
*/
static void sha256_init ( void *ctx ) {
struct sha256_context *context = ctx;
sha256_family_init ( context, &sha256_init_digest,
sizeof ( struct sha256_digest ) );
}
/**
* Calculate SHA-256 digest of accumulated data
*
* @v context SHA-256 context
*/
static void sha256_digest ( struct sha256_context *context ) {
union {
union sha256_digest_data_dwords ddd;
struct sha256_variables v;
} u;
uint32_t *a = &u.v.a;
uint32_t *b = &u.v.b;
uint32_t *c = &u.v.c;
uint32_t *d = &u.v.d;
uint32_t *e = &u.v.e;
uint32_t *f = &u.v.f;
uint32_t *g = &u.v.g;
uint32_t *h = &u.v.h;
uint32_t *w = u.v.w;
uint32_t s0;
uint32_t s1;
uint32_t maj;
uint32_t t1;
uint32_t t2;
uint32_t ch;
unsigned int i;
/* Sanity checks */
assert ( ( context->len % sizeof ( context->ddd.dd.data ) ) == 0 );
build_assert ( &u.ddd.dd.digest.h[0] == a );
build_assert ( &u.ddd.dd.digest.h[1] == b );
build_assert ( &u.ddd.dd.digest.h[2] == c );
build_assert ( &u.ddd.dd.digest.h[3] == d );
build_assert ( &u.ddd.dd.digest.h[4] == e );
build_assert ( &u.ddd.dd.digest.h[5] == f );
build_assert ( &u.ddd.dd.digest.h[6] == g );
build_assert ( &u.ddd.dd.digest.h[7] == h );
build_assert ( &u.ddd.dd.data.dword[0] == w );
DBGC ( context, "SHA256 digesting:\n" );
DBGC_HDA ( context, 0, &context->ddd.dd.digest,
sizeof ( context->ddd.dd.digest ) );
DBGC_HDA ( context, context->len, &context->ddd.dd.data,
sizeof ( context->ddd.dd.data ) );
/* Convert h[0..7] to host-endian, and initialise a, b, c, d,
* e, f, g, h, and w[0..15]
*/
for ( i = 0 ; i < ( sizeof ( u.ddd.dword ) /
sizeof ( u.ddd.dword[0] ) ) ; i++ ) {
be32_to_cpus ( &context->ddd.dword[i] );
u.ddd.dword[i] = context->ddd.dword[i];
}
/* Initialise w[16..63] */
for ( i = 16 ; i < SHA256_ROUNDS ; i++ ) {
s0 = ( ror32 ( w[i-15], 7 ) ^ ror32 ( w[i-15], 18 ) ^
( w[i-15] >> 3 ) );
s1 = ( ror32 ( w[i-2], 17 ) ^ ror32 ( w[i-2], 19 ) ^
( w[i-2] >> 10 ) );
w[i] = ( w[i-16] + s0 + w[i-7] + s1 );
}
/* Main loop */
for ( i = 0 ; i < SHA256_ROUNDS ; i++ ) {
s0 = ( ror32 ( *a, 2 ) ^ ror32 ( *a, 13 ) ^ ror32 ( *a, 22 ) );
maj = ( ( *a & *b ) ^ ( *a & *c ) ^ ( *b & *c ) );
t2 = ( s0 + maj );
s1 = ( ror32 ( *e, 6 ) ^ ror32 ( *e, 11 ) ^ ror32 ( *e, 25 ) );
ch = ( ( *e & *f ) ^ ( (~*e) & *g ) );
t1 = ( *h + s1 + ch + k[i] + w[i] );
*h = *g;
*g = *f;
*f = *e;
*e = ( *d + t1 );
*d = *c;
*c = *b;
*b = *a;
*a = ( t1 + t2 );
DBGC2 ( context, "%2d : %08x %08x %08x %08x %08x %08x %08x "
"%08x\n", i, *a, *b, *c, *d, *e, *f, *g, *h );
}
/* Add chunk to hash and convert back to big-endian */
for ( i = 0 ; i < 8 ; i++ ) {
context->ddd.dd.digest.h[i] =
cpu_to_be32 ( context->ddd.dd.digest.h[i] +
u.ddd.dd.digest.h[i] );
}
DBGC ( context, "SHA256 digested:\n" );
DBGC_HDA ( context, 0, &context->ddd.dd.digest,
sizeof ( context->ddd.dd.digest ) );
}
/**
* Accumulate data with SHA-256 algorithm
*
* @v ctx SHA-256 context
* @v data Data
* @v len Length of data
*/
void sha256_update ( void *ctx, const void *data, size_t len ) {
struct sha256_context *context = ctx;
const uint8_t *byte = data;
size_t offset;
/* Accumulate data a byte at a time, performing the digest
* whenever we fill the data buffer
*/
while ( len-- ) {
offset = ( context->len % sizeof ( context->ddd.dd.data ) );
context->ddd.dd.data.byte[offset] = *(byte++);
context->len++;
if ( ( context->len % sizeof ( context->ddd.dd.data ) ) == 0 )
sha256_digest ( context );
}
}
/**
* Generate SHA-256 digest
*
* @v ctx SHA-256 context
* @v out Output buffer
*/
void sha256_final ( void *ctx, void *out ) {
struct sha256_context *context = ctx;
uint64_t len_bits;
uint8_t pad;
/* Record length before pre-processing */
len_bits = cpu_to_be64 ( ( ( uint64_t ) context->len ) * 8 );
/* Pad with a single "1" bit followed by as many "0" bits as required */
pad = 0x80;
do {
sha256_update ( ctx, &pad, sizeof ( pad ) );
pad = 0x00;
} while ( ( context->len % sizeof ( context->ddd.dd.data ) ) !=
offsetof ( typeof ( context->ddd.dd.data ), final.len ) );
/* Append length (in bits) */
sha256_update ( ctx, &len_bits, sizeof ( len_bits ) );
assert ( ( context->len % sizeof ( context->ddd.dd.data ) ) == 0 );
/* Copy out final digest */
memcpy ( out, &context->ddd.dd.digest, context->digestsize );
}
/** SHA-256 algorithm */
struct digest_algorithm sha256_algorithm = {
.name = "sha256",
.ctxsize = sizeof ( struct sha256_context ),
.blocksize = sizeof ( union sha256_block ),
.digestsize = sizeof ( struct sha256_digest ),
.init = sha256_init,
.update = sha256_update,
.final = sha256_final,
};