blob: b40596beae753eb346256c791a7067235f07dd43 [file] [log] [blame]
/**************************************************************************
*
* Etherboot driver for Level 5 Etherfabric network cards
*
* Written by Michael Brown <mbrown@fensystems.co.uk>
*
* Copyright Fen Systems Ltd. 2005
* Copyright Level 5 Networks Inc. 2005
*
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL), incorporated herein by
* reference. Drivers based on or derived from this code fall under
* the GPL and must retain the authorship, copyright and license
* notice.
*
**************************************************************************
*/
FILE_LICENCE ( GPL_ANY );
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <assert.h>
#include <byteswap.h>
#include <ipxe/io.h>
#include <ipxe/pci.h>
#include <ipxe/malloc.h>
#include <ipxe/ethernet.h>
#include <ipxe/iobuf.h>
#include <ipxe/netdevice.h>
#include <ipxe/timer.h>
#include <mii.h>
#include "etherfabric.h"
#include "etherfabric_nic.h"
/**************************************************************************
*
* Constants and macros
*
**************************************************************************
*/
#define EFAB_REGDUMP(...)
#define EFAB_TRACE(...) DBGP(__VA_ARGS__)
// printf() is not allowed within drivers. Use DBG() instead.
#define EFAB_LOG(...) DBG(__VA_ARGS__)
#define EFAB_ERR(...) DBG(__VA_ARGS__)
#define FALCON_USE_IO_BAR 0
#define HZ 100
#define EFAB_BYTE 1
/**************************************************************************
*
* Hardware data structures and sizing
*
**************************************************************************
*/
extern int __invalid_queue_size;
#define FQS(_prefix, _x) \
( ( (_x) == 512 ) ? _prefix ## _SIZE_512 : \
( ( (_x) == 1024 ) ? _prefix ## _SIZE_1K : \
( ( (_x) == 2048 ) ? _prefix ## _SIZE_2K : \
( ( (_x) == 4096) ? _prefix ## _SIZE_4K : \
__invalid_queue_size ) ) ) )
#define EFAB_MAX_FRAME_LEN(mtu) \
( ( ( ( mtu ) + 4/* FCS */ ) + 7 ) & ~7 )
/**************************************************************************
*
* GMII routines
*
**************************************************************************
*/
static void falcon_mdio_write (struct efab_nic *efab, int device,
int location, int value );
static int falcon_mdio_read ( struct efab_nic *efab, int device, int location );
/* GMII registers */
#define GMII_PSSR 0x11 /* PHY-specific status register */
/* Pseudo extensions to the link partner ability register */
#define LPA_EF_1000FULL 0x00020000
#define LPA_EF_1000HALF 0x00010000
#define LPA_EF_10000FULL 0x00040000
#define LPA_EF_10000HALF 0x00080000
#define LPA_EF_1000 ( LPA_EF_1000FULL | LPA_EF_1000HALF )
#define LPA_EF_10000 ( LPA_EF_10000FULL | LPA_EF_10000HALF )
#define LPA_EF_DUPLEX ( LPA_10FULL | LPA_100FULL | LPA_EF_1000FULL | \
LPA_EF_10000FULL )
/* Mask of bits not associated with speed or duplexity. */
#define LPA_OTHER ~( LPA_10FULL | LPA_10HALF | LPA_100FULL | \
LPA_100HALF | LPA_EF_1000FULL | LPA_EF_1000HALF )
/* PHY-specific status register */
#define PSSR_LSTATUS 0x0400 /* Bit 10 - link status */
/**
* Retrieve GMII autonegotiation advertised abilities
*
*/
static unsigned int
gmii_autoneg_advertised ( struct efab_nic *efab )
{
unsigned int mii_advertise;
unsigned int gmii_advertise;
/* Extended bits are in bits 8 and 9 of MII_CTRL1000 */
mii_advertise = falcon_mdio_read ( efab, 0, MII_ADVERTISE );
gmii_advertise = ( ( falcon_mdio_read ( efab, 0, MII_CTRL1000 ) >> 8 )
& 0x03 );
return ( ( gmii_advertise << 16 ) | mii_advertise );
}
/**
* Retrieve GMII autonegotiation link partner abilities
*
*/
static unsigned int
gmii_autoneg_lpa ( struct efab_nic *efab )
{
unsigned int mii_lpa;
unsigned int gmii_lpa;
/* Extended bits are in bits 10 and 11 of MII_STAT1000 */
mii_lpa = falcon_mdio_read ( efab, 0, MII_LPA );
gmii_lpa = ( falcon_mdio_read ( efab, 0, MII_STAT1000 ) >> 10 ) & 0x03;
return ( ( gmii_lpa << 16 ) | mii_lpa );
}
/**
* Calculate GMII autonegotiated link technology
*
*/
static unsigned int
gmii_nway_result ( unsigned int negotiated )
{
unsigned int other_bits;
/* Mask out the speed and duplexity bits */
other_bits = negotiated & LPA_OTHER;
if ( negotiated & LPA_EF_1000FULL )
return ( other_bits | LPA_EF_1000FULL );
else if ( negotiated & LPA_EF_1000HALF )
return ( other_bits | LPA_EF_1000HALF );
else if ( negotiated & LPA_100FULL )
return ( other_bits | LPA_100FULL );
else if ( negotiated & LPA_100BASE4 )
return ( other_bits | LPA_100BASE4 );
else if ( negotiated & LPA_100HALF )
return ( other_bits | LPA_100HALF );
else if ( negotiated & LPA_10FULL )
return ( other_bits | LPA_10FULL );
else return ( other_bits | LPA_10HALF );
}
/**
* Check GMII PHY link status
*
*/
static int
gmii_link_ok ( struct efab_nic *efab )
{
int status;
int phy_status;
/* BMSR is latching - it returns "link down" if the link has
* been down at any point since the last read. To get a
* real-time status, we therefore read the register twice and
* use the result of the second read.
*/
(void) falcon_mdio_read ( efab, 0, MII_BMSR );
status = falcon_mdio_read ( efab, 0, MII_BMSR );
/* Read the PHY-specific Status Register. This is
* non-latching, so we need do only a single read.
*/
phy_status = falcon_mdio_read ( efab, 0, GMII_PSSR );
return ( ( status & BMSR_LSTATUS ) && ( phy_status & PSSR_LSTATUS ) );
}
/**************************************************************************
*
* MDIO routines
*
**************************************************************************
*/
/* Numbering of the MDIO Manageable Devices (MMDs) */
/* Physical Medium Attachment/ Physical Medium Dependent sublayer */
#define MDIO_MMD_PMAPMD (1)
/* WAN Interface Sublayer */
#define MDIO_MMD_WIS (2)
/* Physical Coding Sublayer */
#define MDIO_MMD_PCS (3)
/* PHY Extender Sublayer */
#define MDIO_MMD_PHYXS (4)
/* Extender Sublayer */
#define MDIO_MMD_DTEXS (5)
/* Transmission convergence */
#define MDIO_MMD_TC (6)
/* Auto negotiation */
#define MDIO_MMD_AN (7)
/* Generic register locations */
#define MDIO_MMDREG_CTRL1 (0)
#define MDIO_MMDREG_STAT1 (1)
#define MDIO_MMDREG_DEVS0 (5)
#define MDIO_MMDREG_STAT2 (8)
/* Bits in MMDREG_CTRL1 */
/* Reset */
#define MDIO_MMDREG_CTRL1_RESET_LBN (15)
#define MDIO_MMDREG_CTRL1_RESET_WIDTH (1)
/* Bits in MMDREG_STAT1 */
#define MDIO_MMDREG_STAT1_FAULT_LBN (7)
#define MDIO_MMDREG_STAT1_FAULT_WIDTH (1)
/* Link state */
#define MDIO_MMDREG_STAT1_LINK_LBN (2)
#define MDIO_MMDREG_STAT1_LINK_WIDTH (1)
/* Bits in MMDREG_DEVS0. */
#define DEV_PRESENT_BIT(_b) (1 << _b)
#define MDIO_MMDREG_DEVS0_DTEXS DEV_PRESENT_BIT(MDIO_MMD_DTEXS)
#define MDIO_MMDREG_DEVS0_PHYXS DEV_PRESENT_BIT(MDIO_MMD_PHYXS)
#define MDIO_MMDREG_DEVS0_PCS DEV_PRESENT_BIT(MDIO_MMD_PCS)
#define MDIO_MMDREG_DEVS0_WIS DEV_PRESENT_BIT(MDIO_MMD_WIS)
#define MDIO_MMDREG_DEVS0_PMAPMD DEV_PRESENT_BIT(MDIO_MMD_PMAPMD)
#define MDIO_MMDREG_DEVS0_AN DEV_PRESENT_BIT(MDIO_MMD_AN)
/* Bits in MMDREG_STAT2 */
#define MDIO_MMDREG_STAT2_PRESENT_VAL (2)
#define MDIO_MMDREG_STAT2_PRESENT_LBN (14)
#define MDIO_MMDREG_STAT2_PRESENT_WIDTH (2)
/* PHY XGXS lane state */
#define MDIO_PHYXS_LANE_STATE (0x18)
#define MDIO_PHYXS_LANE_ALIGNED_LBN (12)
#define MDIO_PHYXS_LANE_SYNC0_LBN (0)
#define MDIO_PHYXS_LANE_SYNC1_LBN (1)
#define MDIO_PHYXS_LANE_SYNC2_LBN (2)
#define MDIO_PHYXS_LANE_SYNC3_LBN (3)
/* This ought to be ridiculous overkill. We expect it to fail rarely */
#define MDIO45_RESET_TRIES 100
#define MDIO45_RESET_SPINTIME 10
static int
mdio_clause45_wait_reset_mmds ( struct efab_nic* efab )
{
int tries = MDIO45_RESET_TRIES;
int in_reset;
while(tries) {
int mask = efab->phy_op->mmds;
int mmd = 0;
in_reset = 0;
while(mask) {
if (mask & 1) {
int stat = falcon_mdio_read ( efab, mmd,
MDIO_MMDREG_CTRL1 );
if (stat < 0) {
EFAB_ERR("Failed to read status of MMD %d\n",
mmd );
in_reset = 1;
break;
}
if (stat & (1 << MDIO_MMDREG_CTRL1_RESET_LBN))
in_reset |= (1 << mmd);
}
mask = mask >> 1;
mmd++;
}
if (!in_reset)
break;
tries--;
mdelay ( MDIO45_RESET_SPINTIME );
}
if (in_reset != 0) {
EFAB_ERR("Not all MMDs came out of reset in time. MMDs "
"still in reset: %x\n", in_reset);
return -ETIMEDOUT;
}
return 0;
}
static int
mdio_clause45_reset_mmd ( struct efab_nic *efab, int mmd )
{
int tries = MDIO45_RESET_TRIES;
int ctrl;
falcon_mdio_write ( efab, mmd, MDIO_MMDREG_CTRL1,
( 1 << MDIO_MMDREG_CTRL1_RESET_LBN ) );
/* Wait for the reset bit to clear. */
do {
mdelay ( MDIO45_RESET_SPINTIME );
ctrl = falcon_mdio_read ( efab, mmd, MDIO_MMDREG_CTRL1 );
if ( ~ctrl & ( 1 << MDIO_MMDREG_CTRL1_RESET_LBN ) )
return 0;
} while ( --tries );
EFAB_ERR ( "Failed to reset mmd %d\n", mmd );
return -ETIMEDOUT;
}
static int
mdio_clause45_links_ok(struct efab_nic *efab )
{
int status, good;
int ok = 1;
int mmd = 0;
int mmd_mask = efab->phy_op->mmds;
while (mmd_mask) {
if (mmd_mask & 1) {
/* Double reads because link state is latched, and a
* read moves the current state into the register */
status = falcon_mdio_read ( efab, mmd,
MDIO_MMDREG_STAT1 );
status = falcon_mdio_read ( efab, mmd,
MDIO_MMDREG_STAT1 );
good = status & (1 << MDIO_MMDREG_STAT1_LINK_LBN);
ok = ok && good;
}
mmd_mask = (mmd_mask >> 1);
mmd++;
}
return ok;
}
static int
mdio_clause45_check_mmds ( struct efab_nic *efab )
{
int mmd = 0;
int devices = falcon_mdio_read ( efab, MDIO_MMD_PHYXS,
MDIO_MMDREG_DEVS0 );
int mmd_mask = efab->phy_op->mmds;
/* Check all the expected MMDs are present */
if ( devices < 0 ) {
EFAB_ERR ( "Failed to read devices present\n" );
return -EIO;
}
if ( ( devices & mmd_mask ) != mmd_mask ) {
EFAB_ERR ( "required MMDs not present: got %x, wanted %x\n",
devices, mmd_mask );
return -EIO;
}
/* Check all required MMDs are responding and happy. */
while ( mmd_mask ) {
if ( mmd_mask & 1 ) {
efab_dword_t reg;
int status;
reg.opaque = falcon_mdio_read ( efab, mmd,
MDIO_MMDREG_STAT2 );
status = EFAB_DWORD_FIELD ( reg,
MDIO_MMDREG_STAT2_PRESENT );
if ( status != MDIO_MMDREG_STAT2_PRESENT_VAL ) {
return -EIO;
}
}
mmd_mask >>= 1;
mmd++;
}
return 0;
}
/* I/O BAR address register */
#define FCN_IOM_IND_ADR_REG 0x0
/* I/O BAR data register */
#define FCN_IOM_IND_DAT_REG 0x4
/* Address region register */
#define FCN_ADR_REGION_REG_KER 0x00
#define FCN_ADR_REGION0_LBN 0
#define FCN_ADR_REGION0_WIDTH 18
#define FCN_ADR_REGION1_LBN 32
#define FCN_ADR_REGION1_WIDTH 18
#define FCN_ADR_REGION2_LBN 64
#define FCN_ADR_REGION2_WIDTH 18
#define FCN_ADR_REGION3_LBN 96
#define FCN_ADR_REGION3_WIDTH 18
/* Interrupt enable register */
#define FCN_INT_EN_REG_KER 0x0010
#define FCN_MEM_PERR_INT_EN_KER_LBN 5
#define FCN_MEM_PERR_INT_EN_KER_WIDTH 1
#define FCN_KER_INT_CHAR_LBN 4
#define FCN_KER_INT_CHAR_WIDTH 1
#define FCN_KER_INT_KER_LBN 3
#define FCN_KER_INT_KER_WIDTH 1
#define FCN_ILL_ADR_ERR_INT_EN_KER_LBN 2
#define FCN_ILL_ADR_ERR_INT_EN_KER_WIDTH 1
#define FCN_SRM_PERR_INT_EN_KER_LBN 1
#define FCN_SRM_PERR_INT_EN_KER_WIDTH 1
#define FCN_DRV_INT_EN_KER_LBN 0
#define FCN_DRV_INT_EN_KER_WIDTH 1
/* Interrupt status register */
#define FCN_INT_ADR_REG_KER 0x0030
#define FCN_INT_ADR_KER_LBN 0
#define FCN_INT_ADR_KER_WIDTH EFAB_DMA_TYPE_WIDTH ( 64 )
/* Interrupt status register (B0 only) */
#define INT_ISR0_B0 0x90
#define INT_ISR1_B0 0xA0
/* Interrupt acknowledge register (A0/A1 only) */
#define FCN_INT_ACK_KER_REG_A1 0x0050
#define INT_ACK_DUMMY_DATA_LBN 0
#define INT_ACK_DUMMY_DATA_WIDTH 32
/* Interrupt acknowledge work-around register (A0/A1 only )*/
#define WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1 0x0070
/* Hardware initialisation register */
#define FCN_HW_INIT_REG_KER 0x00c0
#define FCN_BCSR_TARGET_MASK_LBN 101
#define FCN_BCSR_TARGET_MASK_WIDTH 4
/* SPI host command register */
#define FCN_EE_SPI_HCMD_REG 0x0100
#define FCN_EE_SPI_HCMD_CMD_EN_LBN 31
#define FCN_EE_SPI_HCMD_CMD_EN_WIDTH 1
#define FCN_EE_WR_TIMER_ACTIVE_LBN 28
#define FCN_EE_WR_TIMER_ACTIVE_WIDTH 1
#define FCN_EE_SPI_HCMD_SF_SEL_LBN 24
#define FCN_EE_SPI_HCMD_SF_SEL_WIDTH 1
#define FCN_EE_SPI_EEPROM 0
#define FCN_EE_SPI_FLASH 1
#define FCN_EE_SPI_HCMD_DABCNT_LBN 16
#define FCN_EE_SPI_HCMD_DABCNT_WIDTH 5
#define FCN_EE_SPI_HCMD_READ_LBN 15
#define FCN_EE_SPI_HCMD_READ_WIDTH 1
#define FCN_EE_SPI_READ 1
#define FCN_EE_SPI_WRITE 0
#define FCN_EE_SPI_HCMD_DUBCNT_LBN 12
#define FCN_EE_SPI_HCMD_DUBCNT_WIDTH 2
#define FCN_EE_SPI_HCMD_ADBCNT_LBN 8
#define FCN_EE_SPI_HCMD_ADBCNT_WIDTH 2
#define FCN_EE_SPI_HCMD_ENC_LBN 0
#define FCN_EE_SPI_HCMD_ENC_WIDTH 8
/* SPI host address register */
#define FCN_EE_SPI_HADR_REG 0x0110
#define FCN_EE_SPI_HADR_DUBYTE_LBN 24
#define FCN_EE_SPI_HADR_DUBYTE_WIDTH 8
#define FCN_EE_SPI_HADR_ADR_LBN 0
#define FCN_EE_SPI_HADR_ADR_WIDTH 24
/* SPI host data register */
#define FCN_EE_SPI_HDATA_REG 0x0120
#define FCN_EE_SPI_HDATA3_LBN 96
#define FCN_EE_SPI_HDATA3_WIDTH 32
#define FCN_EE_SPI_HDATA2_LBN 64
#define FCN_EE_SPI_HDATA2_WIDTH 32
#define FCN_EE_SPI_HDATA1_LBN 32
#define FCN_EE_SPI_HDATA1_WIDTH 32
#define FCN_EE_SPI_HDATA0_LBN 0
#define FCN_EE_SPI_HDATA0_WIDTH 32
/* VPD Config 0 Register register */
#define FCN_EE_VPD_CFG_REG 0x0140
#define FCN_EE_VPD_EN_LBN 0
#define FCN_EE_VPD_EN_WIDTH 1
#define FCN_EE_VPD_EN_AD9_MODE_LBN 1
#define FCN_EE_VPD_EN_AD9_MODE_WIDTH 1
#define FCN_EE_EE_CLOCK_DIV_LBN 112
#define FCN_EE_EE_CLOCK_DIV_WIDTH 7
#define FCN_EE_SF_CLOCK_DIV_LBN 120
#define FCN_EE_SF_CLOCK_DIV_WIDTH 7
/* NIC status register */
#define FCN_NIC_STAT_REG 0x0200
#define FCN_ONCHIP_SRAM_LBN 16
#define FCN_ONCHIP_SRAM_WIDTH 1
#define FCN_SF_PRST_LBN 9
#define FCN_SF_PRST_WIDTH 1
#define FCN_EE_PRST_LBN 8
#define FCN_EE_PRST_WIDTH 1
#define FCN_EE_STRAP_LBN 7
#define FCN_EE_STRAP_WIDTH 1
#define FCN_PCI_PCIX_MODE_LBN 4
#define FCN_PCI_PCIX_MODE_WIDTH 3
#define FCN_PCI_PCIX_MODE_PCI33_DECODE 0
#define FCN_PCI_PCIX_MODE_PCI66_DECODE 1
#define FCN_PCI_PCIX_MODE_PCIX66_DECODE 5
#define FCN_PCI_PCIX_MODE_PCIX100_DECODE 6
#define FCN_PCI_PCIX_MODE_PCIX133_DECODE 7
#define FCN_STRAP_ISCSI_EN_LBN 3
#define FCN_STRAP_ISCSI_EN_WIDTH 1
#define FCN_STRAP_PINS_LBN 0
#define FCN_STRAP_PINS_WIDTH 3
#define FCN_STRAP_10G_LBN 2
#define FCN_STRAP_10G_WIDTH 1
#define FCN_STRAP_DUAL_PORT_LBN 1
#define FCN_STRAP_DUAL_PORT_WIDTH 1
#define FCN_STRAP_PCIE_LBN 0
#define FCN_STRAP_PCIE_WIDTH 1
/* Falcon revisions */
#define FALCON_REV_A0 0
#define FALCON_REV_A1 1
#define FALCON_REV_B0 2
/* GPIO control register */
#define FCN_GPIO_CTL_REG_KER 0x0210
#define FCN_GPIO_CTL_REG_KER 0x0210
#define FCN_GPIO3_OEN_LBN 27
#define FCN_GPIO3_OEN_WIDTH 1
#define FCN_GPIO2_OEN_LBN 26
#define FCN_GPIO2_OEN_WIDTH 1
#define FCN_GPIO1_OEN_LBN 25
#define FCN_GPIO1_OEN_WIDTH 1
#define FCN_GPIO0_OEN_LBN 24
#define FCN_GPIO0_OEN_WIDTH 1
#define FCN_GPIO3_OUT_LBN 19
#define FCN_GPIO3_OUT_WIDTH 1
#define FCN_GPIO2_OUT_LBN 18
#define FCN_GPIO2_OUT_WIDTH 1
#define FCN_GPIO1_OUT_LBN 17
#define FCN_GPIO1_OUT_WIDTH 1
#define FCN_GPIO0_OUT_LBN 16
#define FCN_GPIO0_OUT_WIDTH 1
#define FCN_GPIO3_IN_LBN 11
#define FCN_GPIO3_IN_WIDTH 1
#define FCN_GPIO2_IN_LBN 10
#define FCN_GPIO2_IN_WIDTH 1
#define FCN_GPIO1_IN_LBN 9
#define FCN_GPIO1_IN_WIDTH 1
#define FCN_GPIO0_IN_LBN 8
#define FCN_GPIO0_IN_WIDTH 1
#define FCN_FLASH_PRESENT_LBN 7
#define FCN_FLASH_PRESENT_WIDTH 1
#define FCN_EEPROM_PRESENT_LBN 6
#define FCN_EEPROM_PRESENT_WIDTH 1
#define FCN_BOOTED_USING_NVDEVICE_LBN 3
#define FCN_BOOTED_USING_NVDEVICE_WIDTH 1
/* Defines for extra non-volatile storage */
#define FCN_NV_MAGIC_NUMBER 0xFA1C
/* Global control register */
#define FCN_GLB_CTL_REG_KER 0x0220
#define FCN_EXT_PHY_RST_CTL_LBN 63
#define FCN_EXT_PHY_RST_CTL_WIDTH 1
#define FCN_PCIE_SD_RST_CTL_LBN 61
#define FCN_PCIE_SD_RST_CTL_WIDTH 1
#define FCN_PCIE_STCK_RST_CTL_LBN 59
#define FCN_PCIE_STCK_RST_CTL_WIDTH 1
#define FCN_PCIE_NSTCK_RST_CTL_LBN 58
#define FCN_PCIE_NSTCK_RST_CTL_WIDTH 1
#define FCN_PCIE_CORE_RST_CTL_LBN 57
#define FCN_PCIE_CORE_RST_CTL_WIDTH 1
#define FCN_EE_RST_CTL_LBN 49
#define FCN_EE_RST_CTL_WIDTH 1
#define FCN_RST_EXT_PHY_LBN 31
#define FCN_RST_EXT_PHY_WIDTH 1
#define FCN_EXT_PHY_RST_DUR_LBN 1
#define FCN_EXT_PHY_RST_DUR_WIDTH 3
#define FCN_SWRST_LBN 0
#define FCN_SWRST_WIDTH 1
#define INCLUDE_IN_RESET 0
#define EXCLUDE_FROM_RESET 1
/* FPGA build version */
#define FCN_ALTERA_BUILD_REG_KER 0x0300
#define FCN_VER_MAJOR_LBN 24
#define FCN_VER_MAJOR_WIDTH 8
#define FCN_VER_MINOR_LBN 16
#define FCN_VER_MINOR_WIDTH 8
#define FCN_VER_BUILD_LBN 0
#define FCN_VER_BUILD_WIDTH 16
#define FCN_VER_ALL_LBN 0
#define FCN_VER_ALL_WIDTH 32
/* Spare EEPROM bits register (flash 0x390) */
#define FCN_SPARE_REG_KER 0x310
#define FCN_MEM_PERR_EN_TX_DATA_LBN 72
#define FCN_MEM_PERR_EN_TX_DATA_WIDTH 2
/* Timer table for kernel access */
#define FCN_TIMER_CMD_REG_KER 0x420
#define FCN_TIMER_MODE_LBN 12
#define FCN_TIMER_MODE_WIDTH 2
#define FCN_TIMER_MODE_DIS 0
#define FCN_TIMER_MODE_INT_HLDOFF 1
#define FCN_TIMER_VAL_LBN 0
#define FCN_TIMER_VAL_WIDTH 12
/* Receive configuration register */
#define FCN_RX_CFG_REG_KER 0x800
#define FCN_RX_XOFF_EN_LBN 0
#define FCN_RX_XOFF_EN_WIDTH 1
/* SRAM receive descriptor cache configuration register */
#define FCN_SRM_RX_DC_CFG_REG_KER 0x610
#define FCN_SRM_RX_DC_BASE_ADR_LBN 0
#define FCN_SRM_RX_DC_BASE_ADR_WIDTH 21
/* SRAM transmit descriptor cache configuration register */
#define FCN_SRM_TX_DC_CFG_REG_KER 0x620
#define FCN_SRM_TX_DC_BASE_ADR_LBN 0
#define FCN_SRM_TX_DC_BASE_ADR_WIDTH 21
/* SRAM configuration register */
#define FCN_SRM_CFG_REG_KER 0x630
#define FCN_SRAM_OOB_ADR_INTEN_LBN 5
#define FCN_SRAM_OOB_ADR_INTEN_WIDTH 1
#define FCN_SRAM_OOB_BUF_INTEN_LBN 4
#define FCN_SRAM_OOB_BUF_INTEN_WIDTH 1
#define FCN_SRAM_OOB_BT_INIT_EN_LBN 3
#define FCN_SRAM_OOB_BT_INIT_EN_WIDTH 1
#define FCN_SRM_NUM_BANK_LBN 2
#define FCN_SRM_NUM_BANK_WIDTH 1
#define FCN_SRM_BANK_SIZE_LBN 0
#define FCN_SRM_BANK_SIZE_WIDTH 2
#define FCN_SRM_NUM_BANKS_AND_BANK_SIZE_LBN 0
#define FCN_SRM_NUM_BANKS_AND_BANK_SIZE_WIDTH 3
#define FCN_RX_CFG_REG_KER 0x800
#define FCN_RX_INGR_EN_B0_LBN 47
#define FCN_RX_INGR_EN_B0_WIDTH 1
#define FCN_RX_USR_BUF_SIZE_B0_LBN 19
#define FCN_RX_USR_BUF_SIZE_B0_WIDTH 9
#define FCN_RX_XON_MAC_TH_B0_LBN 10
#define FCN_RX_XON_MAC_TH_B0_WIDTH 9
#define FCN_RX_XOFF_MAC_TH_B0_LBN 1
#define FCN_RX_XOFF_MAC_TH_B0_WIDTH 9
#define FCN_RX_XOFF_MAC_EN_B0_LBN 0
#define FCN_RX_XOFF_MAC_EN_B0_WIDTH 1
#define FCN_RX_USR_BUF_SIZE_A1_LBN 11
#define FCN_RX_USR_BUF_SIZE_A1_WIDTH 9
#define FCN_RX_XON_MAC_TH_A1_LBN 6
#define FCN_RX_XON_MAC_TH_A1_WIDTH 5
#define FCN_RX_XOFF_MAC_TH_A1_LBN 1
#define FCN_RX_XOFF_MAC_TH_A1_WIDTH 5
#define FCN_RX_XOFF_MAC_EN_A1_LBN 0
#define FCN_RX_XOFF_MAC_EN_A1_WIDTH 1
#define FCN_RX_USR_BUF_SIZE_A1_LBN 11
#define FCN_RX_USR_BUF_SIZE_A1_WIDTH 9
#define FCN_RX_XOFF_MAC_EN_A1_LBN 0
#define FCN_RX_XOFF_MAC_EN_A1_WIDTH 1
/* Receive filter control register */
#define FCN_RX_FILTER_CTL_REG_KER 0x810
#define FCN_UDP_FULL_SRCH_LIMIT_LBN 32
#define FCN_UDP_FULL_SRCH_LIMIT_WIDTH 8
#define FCN_NUM_KER_LBN 24
#define FCN_NUM_KER_WIDTH 2
#define FCN_UDP_WILD_SRCH_LIMIT_LBN 16
#define FCN_UDP_WILD_SRCH_LIMIT_WIDTH 8
#define FCN_TCP_WILD_SRCH_LIMIT_LBN 8
#define FCN_TCP_WILD_SRCH_LIMIT_WIDTH 8
#define FCN_TCP_FULL_SRCH_LIMIT_LBN 0
#define FCN_TCP_FULL_SRCH_LIMIT_WIDTH 8
/* RX queue flush register */
#define FCN_RX_FLUSH_DESCQ_REG_KER 0x0820
#define FCN_RX_FLUSH_DESCQ_CMD_LBN 24
#define FCN_RX_FLUSH_DESCQ_CMD_WIDTH 1
#define FCN_RX_FLUSH_DESCQ_LBN 0
#define FCN_RX_FLUSH_DESCQ_WIDTH 12
/* Receive descriptor update register */
#define FCN_RX_DESC_UPD_REG_KER 0x0830
#define FCN_RX_DESC_WPTR_LBN 96
#define FCN_RX_DESC_WPTR_WIDTH 12
#define FCN_RX_DESC_UPD_REG_KER_DWORD ( FCN_RX_DESC_UPD_REG_KER + 12 )
#define FCN_RX_DESC_WPTR_DWORD_LBN 0
#define FCN_RX_DESC_WPTR_DWORD_WIDTH 12
/* Receive descriptor cache configuration register */
#define FCN_RX_DC_CFG_REG_KER 0x840
#define FCN_RX_DC_SIZE_LBN 0
#define FCN_RX_DC_SIZE_WIDTH 2
#define FCN_RX_SELF_RST_REG_KER 0x890
#define FCN_RX_ISCSI_DIS_LBN 17
#define FCN_RX_ISCSI_DIS_WIDTH 1
#define FCN_RX_NODESC_WAIT_DIS_LBN 9
#define FCN_RX_NODESC_WAIT_DIS_WIDTH 1
#define FCN_RX_RECOVERY_EN_LBN 8
#define FCN_RX_RECOVERY_EN_WIDTH 1
/* TX queue flush register */
#define FCN_TX_FLUSH_DESCQ_REG_KER 0x0a00
#define FCN_TX_FLUSH_DESCQ_CMD_LBN 12
#define FCN_TX_FLUSH_DESCQ_CMD_WIDTH 1
#define FCN_TX_FLUSH_DESCQ_LBN 0
#define FCN_TX_FLUSH_DESCQ_WIDTH 12
/* Transmit configuration register 2 */
#define FCN_TX_CFG2_REG_KER 0xa80
#define FCN_TX_DIS_NON_IP_EV_LBN 17
#define FCN_TX_DIS_NON_IP_EV_WIDTH 1
/* Transmit descriptor update register */
#define FCN_TX_DESC_UPD_REG_KER 0x0a10
#define FCN_TX_DESC_WPTR_LBN 96
#define FCN_TX_DESC_WPTR_WIDTH 12
#define FCN_TX_DESC_UPD_REG_KER_DWORD ( FCN_TX_DESC_UPD_REG_KER + 12 )
#define FCN_TX_DESC_WPTR_DWORD_LBN 0
#define FCN_TX_DESC_WPTR_DWORD_WIDTH 12
/* Transmit descriptor cache configuration register */
#define FCN_TX_DC_CFG_REG_KER 0xa20
#define FCN_TX_DC_SIZE_LBN 0
#define FCN_TX_DC_SIZE_WIDTH 2
/* PHY management transmit data register */
#define FCN_MD_TXD_REG_KER 0xc00
#define FCN_MD_TXD_LBN 0
#define FCN_MD_TXD_WIDTH 16
/* PHY management receive data register */
#define FCN_MD_RXD_REG_KER 0xc10
#define FCN_MD_RXD_LBN 0
#define FCN_MD_RXD_WIDTH 16
/* PHY management configuration & status register */
#define FCN_MD_CS_REG_KER 0xc20
#define FCN_MD_GC_LBN 4
#define FCN_MD_GC_WIDTH 1
#define FCN_MD_RIC_LBN 2
#define FCN_MD_RIC_WIDTH 1
#define FCN_MD_RDC_LBN 1
#define FCN_MD_RDC_WIDTH 1
#define FCN_MD_WRC_LBN 0
#define FCN_MD_WRC_WIDTH 1
/* PHY management PHY address register */
#define FCN_MD_PHY_ADR_REG_KER 0xc30
#define FCN_MD_PHY_ADR_LBN 0
#define FCN_MD_PHY_ADR_WIDTH 16
/* PHY management ID register */
#define FCN_MD_ID_REG_KER 0xc40
#define FCN_MD_PRT_ADR_LBN 11
#define FCN_MD_PRT_ADR_WIDTH 5
#define FCN_MD_DEV_ADR_LBN 6
#define FCN_MD_DEV_ADR_WIDTH 5
/* PHY management status & mask register */
#define FCN_MD_STAT_REG_KER 0xc50
#define FCN_MD_PINT_LBN 4
#define FCN_MD_PINT_WIDTH 1
#define FCN_MD_DONE_LBN 3
#define FCN_MD_DONE_WIDTH 1
#define FCN_MD_BSERR_LBN 2
#define FCN_MD_BSERR_WIDTH 1
#define FCN_MD_LNFL_LBN 1
#define FCN_MD_LNFL_WIDTH 1
#define FCN_MD_BSY_LBN 0
#define FCN_MD_BSY_WIDTH 1
/* Port 0 and 1 MAC control registers */
#define FCN_MAC0_CTRL_REG_KER 0xc80
#define FCN_MAC1_CTRL_REG_KER 0xc90
#define FCN_MAC_XOFF_VAL_LBN 16
#define FCN_MAC_XOFF_VAL_WIDTH 16
#define FCN_MAC_BCAD_ACPT_LBN 4
#define FCN_MAC_BCAD_ACPT_WIDTH 1
#define FCN_MAC_UC_PROM_LBN 3
#define FCN_MAC_UC_PROM_WIDTH 1
#define FCN_MAC_LINK_STATUS_LBN 2
#define FCN_MAC_LINK_STATUS_WIDTH 1
#define FCN_MAC_SPEED_LBN 0
#define FCN_MAC_SPEED_WIDTH 2
/* 10Gig Xaui XGXS Default Values */
#define XX_TXDRV_DEQ_DEFAULT 0xe /* deq=.6 */
#define XX_TXDRV_DTX_DEFAULT 0x5 /* 1.25 */
#define XX_SD_CTL_DRV_DEFAULT 0 /* 20mA */
/* GMAC registers */
#define FALCON_GMAC_REGBANK 0xe00
#define FALCON_GMAC_REGBANK_SIZE 0x200
#define FALCON_GMAC_REG_SIZE 0x10
/* XGMAC registers */
#define FALCON_XMAC_REGBANK 0x1200
#define FALCON_XMAC_REGBANK_SIZE 0x200
#define FALCON_XMAC_REG_SIZE 0x10
/* XGMAC address register low */
#define FCN_XM_ADR_LO_REG_MAC 0x00
#define FCN_XM_ADR_3_LBN 24
#define FCN_XM_ADR_3_WIDTH 8
#define FCN_XM_ADR_2_LBN 16
#define FCN_XM_ADR_2_WIDTH 8
#define FCN_XM_ADR_1_LBN 8
#define FCN_XM_ADR_1_WIDTH 8
#define FCN_XM_ADR_0_LBN 0
#define FCN_XM_ADR_0_WIDTH 8
/* XGMAC address register high */
#define FCN_XM_ADR_HI_REG_MAC 0x01
#define FCN_XM_ADR_5_LBN 8
#define FCN_XM_ADR_5_WIDTH 8
#define FCN_XM_ADR_4_LBN 0
#define FCN_XM_ADR_4_WIDTH 8
/* XGMAC global configuration - port 0*/
#define FCN_XM_GLB_CFG_REG_MAC 0x02
#define FCN_XM_RX_STAT_EN_LBN 11
#define FCN_XM_RX_STAT_EN_WIDTH 1
#define FCN_XM_TX_STAT_EN_LBN 10
#define FCN_XM_TX_STAT_EN_WIDTH 1
#define FCN_XM_RX_JUMBO_MODE_LBN 6
#define FCN_XM_RX_JUMBO_MODE_WIDTH 1
#define FCN_XM_CORE_RST_LBN 0
#define FCN_XM_CORE_RST_WIDTH 1
/* XGMAC transmit configuration - port 0 */
#define FCN_XM_TX_CFG_REG_MAC 0x03
#define FCN_XM_IPG_LBN 16
#define FCN_XM_IPG_WIDTH 4
#define FCN_XM_FCNTL_LBN 10
#define FCN_XM_FCNTL_WIDTH 1
#define FCN_XM_TXCRC_LBN 8
#define FCN_XM_TXCRC_WIDTH 1
#define FCN_XM_AUTO_PAD_LBN 5
#define FCN_XM_AUTO_PAD_WIDTH 1
#define FCN_XM_TX_PRMBL_LBN 2
#define FCN_XM_TX_PRMBL_WIDTH 1
#define FCN_XM_TXEN_LBN 1
#define FCN_XM_TXEN_WIDTH 1
/* XGMAC receive configuration - port 0 */
#define FCN_XM_RX_CFG_REG_MAC 0x04
#define FCN_XM_PASS_CRC_ERR_LBN 25
#define FCN_XM_PASS_CRC_ERR_WIDTH 1
#define FCN_XM_AUTO_DEPAD_LBN 8
#define FCN_XM_AUTO_DEPAD_WIDTH 1
#define FCN_XM_RXEN_LBN 1
#define FCN_XM_RXEN_WIDTH 1
/* XGMAC management interrupt mask register */
#define FCN_XM_MGT_INT_MSK_REG_MAC_B0 0x5
#define FCN_XM_MSK_PRMBLE_ERR_LBN 2
#define FCN_XM_MSK_PRMBLE_ERR_WIDTH 1
#define FCN_XM_MSK_RMTFLT_LBN 1
#define FCN_XM_MSK_RMTFLT_WIDTH 1
#define FCN_XM_MSK_LCLFLT_LBN 0
#define FCN_XM_MSK_LCLFLT_WIDTH 1
/* XGMAC flow control register */
#define FCN_XM_FC_REG_MAC 0x7
#define FCN_XM_PAUSE_TIME_LBN 16
#define FCN_XM_PAUSE_TIME_WIDTH 16
#define FCN_XM_DIS_FCNTL_LBN 0
#define FCN_XM_DIS_FCNTL_WIDTH 1
/* XGMAC transmit parameter register */
#define FCN_XM_TX_PARAM_REG_MAC 0x0d
#define FCN_XM_TX_JUMBO_MODE_LBN 31
#define FCN_XM_TX_JUMBO_MODE_WIDTH 1
#define FCN_XM_MAX_TX_FRM_SIZE_LBN 16
#define FCN_XM_MAX_TX_FRM_SIZE_WIDTH 14
#define FCN_XM_ACPT_ALL_MCAST_LBN 11
#define FCN_XM_ACPT_ALL_MCAST_WIDTH 1
/* XGMAC receive parameter register */
#define FCN_XM_RX_PARAM_REG_MAC 0x0e
#define FCN_XM_MAX_RX_FRM_SIZE_LBN 0
#define FCN_XM_MAX_RX_FRM_SIZE_WIDTH 14
/* XGMAC management interrupt status register */
#define FCN_XM_MGT_INT_REG_MAC_B0 0x0f
#define FCN_XM_PRMBLE_ERR 2
#define FCN_XM_PRMBLE_WIDTH 1
#define FCN_XM_RMTFLT_LBN 1
#define FCN_XM_RMTFLT_WIDTH 1
#define FCN_XM_LCLFLT_LBN 0
#define FCN_XM_LCLFLT_WIDTH 1
/* XAUI XGXS core status register */
#define FCN_XX_ALIGN_DONE_LBN 20
#define FCN_XX_ALIGN_DONE_WIDTH 1
#define FCN_XX_CORE_STAT_REG_MAC 0x16
#define FCN_XX_SYNC_STAT_LBN 16
#define FCN_XX_SYNC_STAT_WIDTH 4
#define FCN_XX_SYNC_STAT_DECODE_SYNCED 0xf
#define FCN_XX_COMMA_DET_LBN 12
#define FCN_XX_COMMA_DET_WIDTH 4
#define FCN_XX_COMMA_DET_RESET 0xf
#define FCN_XX_CHARERR_LBN 4
#define FCN_XX_CHARERR_WIDTH 4
#define FCN_XX_CHARERR_RESET 0xf
#define FCN_XX_DISPERR_LBN 0
#define FCN_XX_DISPERR_WIDTH 4
#define FCN_XX_DISPERR_RESET 0xf
/* XGXS/XAUI powerdown/reset register */
#define FCN_XX_PWR_RST_REG_MAC 0x10
#define FCN_XX_PWRDND_EN_LBN 15
#define FCN_XX_PWRDND_EN_WIDTH 1
#define FCN_XX_PWRDNC_EN_LBN 14
#define FCN_XX_PWRDNC_EN_WIDTH 1
#define FCN_XX_PWRDNB_EN_LBN 13
#define FCN_XX_PWRDNB_EN_WIDTH 1
#define FCN_XX_PWRDNA_EN_LBN 12
#define FCN_XX_PWRDNA_EN_WIDTH 1
#define FCN_XX_RSTPLLCD_EN_LBN 9
#define FCN_XX_RSTPLLCD_EN_WIDTH 1
#define FCN_XX_RSTPLLAB_EN_LBN 8
#define FCN_XX_RSTPLLAB_EN_WIDTH 1
#define FCN_XX_RESETD_EN_LBN 7
#define FCN_XX_RESETD_EN_WIDTH 1
#define FCN_XX_RESETC_EN_LBN 6
#define FCN_XX_RESETC_EN_WIDTH 1
#define FCN_XX_RESETB_EN_LBN 5
#define FCN_XX_RESETB_EN_WIDTH 1
#define FCN_XX_RESETA_EN_LBN 4
#define FCN_XX_RESETA_EN_WIDTH 1
#define FCN_XX_RSTXGXSRX_EN_LBN 2
#define FCN_XX_RSTXGXSRX_EN_WIDTH 1
#define FCN_XX_RSTXGXSTX_EN_LBN 1
#define FCN_XX_RSTXGXSTX_EN_WIDTH 1
#define FCN_XX_RST_XX_EN_LBN 0
#define FCN_XX_RST_XX_EN_WIDTH 1
/* XGXS/XAUI powerdown/reset control register */
#define FCN_XX_SD_CTL_REG_MAC 0x11
#define FCN_XX_TERMADJ1_LBN 17
#define FCN_XX_TERMADJ1_WIDTH 1
#define FCN_XX_TERMADJ0_LBN 16
#define FCN_XX_TERMADJ0_WIDTH 1
#define FCN_XX_HIDRVD_LBN 15
#define FCN_XX_HIDRVD_WIDTH 1
#define FCN_XX_LODRVD_LBN 14
#define FCN_XX_LODRVD_WIDTH 1
#define FCN_XX_HIDRVC_LBN 13
#define FCN_XX_HIDRVC_WIDTH 1
#define FCN_XX_LODRVC_LBN 12
#define FCN_XX_LODRVC_WIDTH 1
#define FCN_XX_HIDRVB_LBN 11
#define FCN_XX_HIDRVB_WIDTH 1
#define FCN_XX_LODRVB_LBN 10
#define FCN_XX_LODRVB_WIDTH 1
#define FCN_XX_HIDRVA_LBN 9
#define FCN_XX_HIDRVA_WIDTH 1
#define FCN_XX_LODRVA_LBN 8
#define FCN_XX_LODRVA_WIDTH 1
#define FCN_XX_LPBKD_LBN 3
#define FCN_XX_LPBKD_WIDTH 1
#define FCN_XX_LPBKC_LBN 2
#define FCN_XX_LPBKC_WIDTH 1
#define FCN_XX_LPBKB_LBN 1
#define FCN_XX_LPBKB_WIDTH 1
#define FCN_XX_LPBKA_LBN 0
#define FCN_XX_LPBKA_WIDTH 1
#define FCN_XX_TXDRV_CTL_REG_MAC 0x12
#define FCN_XX_DEQD_LBN 28
#define FCN_XX_DEQD_WIDTH 4
#define FCN_XX_DEQC_LBN 24
#define FCN_XX_DEQC_WIDTH 4
#define FCN_XX_DEQB_LBN 20
#define FCN_XX_DEQB_WIDTH 4
#define FCN_XX_DEQA_LBN 16
#define FCN_XX_DEQA_WIDTH 4
#define FCN_XX_DTXD_LBN 12
#define FCN_XX_DTXD_WIDTH 4
#define FCN_XX_DTXC_LBN 8
#define FCN_XX_DTXC_WIDTH 4
#define FCN_XX_DTXB_LBN 4
#define FCN_XX_DTXB_WIDTH 4
#define FCN_XX_DTXA_LBN 0
#define FCN_XX_DTXA_WIDTH 4
/* Receive filter table */
#define FCN_RX_FILTER_TBL0 0xF00000
/* Receive descriptor pointer table */
#define FCN_RX_DESC_PTR_TBL_KER_A1 0x11800
#define FCN_RX_DESC_PTR_TBL_KER_B0 0xF40000
#define FCN_RX_ISCSI_DDIG_EN_LBN 88
#define FCN_RX_ISCSI_DDIG_EN_WIDTH 1
#define FCN_RX_ISCSI_HDIG_EN_LBN 87
#define FCN_RX_ISCSI_HDIG_EN_WIDTH 1
#define FCN_RX_DESCQ_BUF_BASE_ID_LBN 36
#define FCN_RX_DESCQ_BUF_BASE_ID_WIDTH 20
#define FCN_RX_DESCQ_EVQ_ID_LBN 24
#define FCN_RX_DESCQ_EVQ_ID_WIDTH 12
#define FCN_RX_DESCQ_OWNER_ID_LBN 10
#define FCN_RX_DESCQ_OWNER_ID_WIDTH 14
#define FCN_RX_DESCQ_SIZE_LBN 3
#define FCN_RX_DESCQ_SIZE_WIDTH 2
#define FCN_RX_DESCQ_SIZE_4K 3
#define FCN_RX_DESCQ_SIZE_2K 2
#define FCN_RX_DESCQ_SIZE_1K 1
#define FCN_RX_DESCQ_SIZE_512 0
#define FCN_RX_DESCQ_TYPE_LBN 2
#define FCN_RX_DESCQ_TYPE_WIDTH 1
#define FCN_RX_DESCQ_JUMBO_LBN 1
#define FCN_RX_DESCQ_JUMBO_WIDTH 1
#define FCN_RX_DESCQ_EN_LBN 0
#define FCN_RX_DESCQ_EN_WIDTH 1
/* Transmit descriptor pointer table */
#define FCN_TX_DESC_PTR_TBL_KER_A1 0x11900
#define FCN_TX_DESC_PTR_TBL_KER_B0 0xF50000
#define FCN_TX_NON_IP_DROP_DIS_B0_LBN 91
#define FCN_TX_NON_IP_DROP_DIS_B0_WIDTH 1
#define FCN_TX_DESCQ_EN_LBN 88
#define FCN_TX_DESCQ_EN_WIDTH 1
#define FCN_TX_ISCSI_DDIG_EN_LBN 87
#define FCN_TX_ISCSI_DDIG_EN_WIDTH 1
#define FCN_TX_ISCSI_HDIG_EN_LBN 86
#define FCN_TX_ISCSI_HDIG_EN_WIDTH 1
#define FCN_TX_DESCQ_BUF_BASE_ID_LBN 36
#define FCN_TX_DESCQ_BUF_BASE_ID_WIDTH 20
#define FCN_TX_DESCQ_EVQ_ID_LBN 24
#define FCN_TX_DESCQ_EVQ_ID_WIDTH 12
#define FCN_TX_DESCQ_OWNER_ID_LBN 10
#define FCN_TX_DESCQ_OWNER_ID_WIDTH 14
#define FCN_TX_DESCQ_SIZE_LBN 3
#define FCN_TX_DESCQ_SIZE_WIDTH 2
#define FCN_TX_DESCQ_SIZE_4K 3
#define FCN_TX_DESCQ_SIZE_2K 2
#define FCN_TX_DESCQ_SIZE_1K 1
#define FCN_TX_DESCQ_SIZE_512 0
#define FCN_TX_DESCQ_TYPE_LBN 1
#define FCN_TX_DESCQ_TYPE_WIDTH 2
#define FCN_TX_DESCQ_FLUSH_LBN 0
#define FCN_TX_DESCQ_FLUSH_WIDTH 1
/* Event queue pointer */
#define FCN_EVQ_PTR_TBL_KER_A1 0x11a00
#define FCN_EVQ_PTR_TBL_KER_B0 0xf60000
#define FCN_EVQ_EN_LBN 23
#define FCN_EVQ_EN_WIDTH 1
#define FCN_EVQ_SIZE_LBN 20
#define FCN_EVQ_SIZE_WIDTH 3
#define FCN_EVQ_SIZE_32K 6
#define FCN_EVQ_SIZE_16K 5
#define FCN_EVQ_SIZE_8K 4
#define FCN_EVQ_SIZE_4K 3
#define FCN_EVQ_SIZE_2K 2
#define FCN_EVQ_SIZE_1K 1
#define FCN_EVQ_SIZE_512 0
#define FCN_EVQ_BUF_BASE_ID_LBN 0
#define FCN_EVQ_BUF_BASE_ID_WIDTH 20
/* RSS indirection table */
#define FCN_RX_RSS_INDIR_TBL_B0 0xFB0000
/* Event queue read pointer */
#define FCN_EVQ_RPTR_REG_KER_A1 0x11b00
#define FCN_EVQ_RPTR_REG_KER_B0 0xfa0000
#define FCN_EVQ_RPTR_LBN 0
#define FCN_EVQ_RPTR_WIDTH 14
#define FCN_EVQ_RPTR_REG_KER_DWORD_A1 ( FCN_EVQ_RPTR_REG_KER_A1 + 0 )
#define FCN_EVQ_RPTR_REG_KER_DWORD_B0 ( FCN_EVQ_RPTR_REG_KER_B0 + 0 )
#define FCN_EVQ_RPTR_DWORD_LBN 0
#define FCN_EVQ_RPTR_DWORD_WIDTH 14
/* Special buffer descriptors */
#define FCN_BUF_FULL_TBL_KER_A1 0x18000
#define FCN_BUF_FULL_TBL_KER_B0 0x800000
#define FCN_IP_DAT_BUF_SIZE_LBN 50
#define FCN_IP_DAT_BUF_SIZE_WIDTH 1
#define FCN_IP_DAT_BUF_SIZE_8K 1
#define FCN_IP_DAT_BUF_SIZE_4K 0
#define FCN_BUF_ADR_FBUF_LBN 14
#define FCN_BUF_ADR_FBUF_WIDTH 34
#define FCN_BUF_OWNER_ID_FBUF_LBN 0
#define FCN_BUF_OWNER_ID_FBUF_WIDTH 14
/** Offset of a GMAC register within Falcon */
#define FALCON_GMAC_REG( efab, mac_reg ) \
( FALCON_GMAC_REGBANK + \
( (mac_reg) * FALCON_GMAC_REG_SIZE ) )
/** Offset of an XMAC register within Falcon */
#define FALCON_XMAC_REG( efab_port, mac_reg ) \
( FALCON_XMAC_REGBANK + \
( (mac_reg) * FALCON_XMAC_REG_SIZE ) )
#define FCN_MAC_DATA_LBN 0
#define FCN_MAC_DATA_WIDTH 32
/* Transmit descriptor */
#define FCN_TX_KER_PORT_LBN 63
#define FCN_TX_KER_PORT_WIDTH 1
#define FCN_TX_KER_BYTE_CNT_LBN 48
#define FCN_TX_KER_BYTE_CNT_WIDTH 14
#define FCN_TX_KER_BUF_ADR_LBN 0
#define FCN_TX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 )
/* Receive descriptor */
#define FCN_RX_KER_BUF_SIZE_LBN 48
#define FCN_RX_KER_BUF_SIZE_WIDTH 14
#define FCN_RX_KER_BUF_ADR_LBN 0
#define FCN_RX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 )
/* Event queue entries */
#define FCN_EV_CODE_LBN 60
#define FCN_EV_CODE_WIDTH 4
#define FCN_RX_IP_EV_DECODE 0
#define FCN_TX_IP_EV_DECODE 2
#define FCN_DRIVER_EV_DECODE 5
/* Receive events */
#define FCN_RX_EV_PKT_OK_LBN 56
#define FCN_RX_EV_PKT_OK_WIDTH 1
#define FCN_RX_PORT_LBN 30
#define FCN_RX_PORT_WIDTH 1
#define FCN_RX_EV_BYTE_CNT_LBN 16
#define FCN_RX_EV_BYTE_CNT_WIDTH 14
#define FCN_RX_EV_DESC_PTR_LBN 0
#define FCN_RX_EV_DESC_PTR_WIDTH 12
/* Transmit events */
#define FCN_TX_EV_DESC_PTR_LBN 0
#define FCN_TX_EV_DESC_PTR_WIDTH 12
/*******************************************************************************
*
*
* Low-level hardware access
*
*
*******************************************************************************/
#define FCN_REVISION_REG(efab, reg) \
( ( efab->pci_revision == FALCON_REV_B0 ) ? reg ## _B0 : reg ## _A1 )
#define EFAB_SET_OWORD_FIELD_VER(efab, reg, field, val) \
if ( efab->pci_revision == FALCON_REV_B0 ) \
EFAB_SET_OWORD_FIELD ( reg, field ## _B0, val ); \
else \
EFAB_SET_OWORD_FIELD ( reg, field ## _A1, val );
#if FALCON_USE_IO_BAR
/* Write dword via the I/O BAR */
static inline void _falcon_writel ( struct efab_nic *efab, uint32_t value,
unsigned int reg ) {
outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG );
outl ( value, efab->iobase + FCN_IOM_IND_DAT_REG );
}
/* Read dword via the I/O BAR */
static inline uint32_t _falcon_readl ( struct efab_nic *efab,
unsigned int reg ) {
outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG );
return inl ( efab->iobase + FCN_IOM_IND_DAT_REG );
}
#else /* FALCON_USE_IO_BAR */
#define _falcon_writel( efab, value, reg ) \
writel ( (value), (efab)->membase + (reg) )
#define _falcon_readl( efab, reg ) readl ( (efab)->membase + (reg) )
#endif /* FALCON_USE_IO_BAR */
/**
* Write to a Falcon register
*
*/
static inline void
falcon_write ( struct efab_nic *efab, efab_oword_t *value, unsigned int reg )
{
EFAB_REGDUMP ( "Writing register %x with " EFAB_OWORD_FMT "\n",
reg, EFAB_OWORD_VAL ( *value ) );
_falcon_writel ( efab, value->u32[0], reg + 0 );
_falcon_writel ( efab, value->u32[1], reg + 4 );
_falcon_writel ( efab, value->u32[2], reg + 8 );
wmb();
_falcon_writel ( efab, value->u32[3], reg + 12 );
wmb();
}
/**
* Write to Falcon SRAM
*
*/
static inline void
falcon_write_sram ( struct efab_nic *efab, efab_qword_t *value,
unsigned int index )
{
unsigned int reg = ( FCN_REVISION_REG ( efab, FCN_BUF_FULL_TBL_KER ) +
( index * sizeof ( *value ) ) );
EFAB_REGDUMP ( "Writing SRAM register %x with " EFAB_QWORD_FMT "\n",
reg, EFAB_QWORD_VAL ( *value ) );
_falcon_writel ( efab, value->u32[0], reg + 0 );
_falcon_writel ( efab, value->u32[1], reg + 4 );
wmb();
}
/**
* Write dword to Falcon register that allows partial writes
*
*/
static inline void
falcon_writel ( struct efab_nic *efab, efab_dword_t *value, unsigned int reg )
{
EFAB_REGDUMP ( "Writing partial register %x with " EFAB_DWORD_FMT "\n",
reg, EFAB_DWORD_VAL ( *value ) );
_falcon_writel ( efab, value->u32[0], reg );
}
/**
* Read from a Falcon register
*
*/
static inline void
falcon_read ( struct efab_nic *efab, efab_oword_t *value, unsigned int reg )
{
value->u32[0] = _falcon_readl ( efab, reg + 0 );
wmb();
value->u32[1] = _falcon_readl ( efab, reg + 4 );
value->u32[2] = _falcon_readl ( efab, reg + 8 );
value->u32[3] = _falcon_readl ( efab, reg + 12 );
EFAB_REGDUMP ( "Read from register %x, got " EFAB_OWORD_FMT "\n",
reg, EFAB_OWORD_VAL ( *value ) );
}
/**
* Read from Falcon SRAM
*
*/
static inline void
falcon_read_sram ( struct efab_nic *efab, efab_qword_t *value,
unsigned int index )
{
unsigned int reg = ( FCN_REVISION_REG ( efab, FCN_BUF_FULL_TBL_KER ) +
( index * sizeof ( *value ) ) );
value->u32[0] = _falcon_readl ( efab, reg + 0 );
value->u32[1] = _falcon_readl ( efab, reg + 4 );
EFAB_REGDUMP ( "Read from SRAM register %x, got " EFAB_QWORD_FMT "\n",
reg, EFAB_QWORD_VAL ( *value ) );
}
/**
* Read dword from a portion of a Falcon register
*
*/
static inline void
falcon_readl ( struct efab_nic *efab, efab_dword_t *value, unsigned int reg )
{
value->u32[0] = _falcon_readl ( efab, reg );
EFAB_REGDUMP ( "Read from register %x, got " EFAB_DWORD_FMT "\n",
reg, EFAB_DWORD_VAL ( *value ) );
}
#define FCN_DUMP_REG( efab, _reg ) do { \
efab_oword_t reg; \
falcon_read ( efab, &reg, _reg ); \
EFAB_LOG ( #_reg " = " EFAB_OWORD_FMT "\n", \
EFAB_OWORD_VAL ( reg ) ); \
} while ( 0 );
#define FCN_DUMP_MAC_REG( efab, _mac_reg ) do { \
efab_dword_t reg; \
efab->mac_op->mac_readl ( efab, &reg, _mac_reg ); \
EFAB_LOG ( #_mac_reg " = " EFAB_DWORD_FMT "\n", \
EFAB_DWORD_VAL ( reg ) ); \
} while ( 0 );
/**
* See if an event is present
*
* @v event Falcon event structure
* @ret True An event is pending
* @ret False No event is pending
*
* We check both the high and low dword of the event for all ones. We
* wrote all ones when we cleared the event, and no valid event can
* have all ones in either its high or low dwords. This approach is
* robust against reordering.
*
* Note that using a single 64-bit comparison is incorrect; even
* though the CPU read will be atomic, the DMA write may not be.
*/
static inline int
falcon_event_present ( falcon_event_t* event )
{
return ( ! ( EFAB_DWORD_IS_ALL_ONES ( event->dword[0] ) |
EFAB_DWORD_IS_ALL_ONES ( event->dword[1] ) ) );
}
static void
falcon_eventq_read_ack ( struct efab_nic *efab, struct efab_ev_queue *ev_queue )
{
efab_dword_t reg;
EFAB_POPULATE_DWORD_1 ( reg, FCN_EVQ_RPTR_DWORD, ev_queue->read_ptr );
falcon_writel ( efab, &reg,
FCN_REVISION_REG ( efab, FCN_EVQ_RPTR_REG_KER_DWORD ) );
}
#if 0
/**
* Dump register contents (for debugging)
*
* Marked as static inline so that it will not be compiled in if not
* used.
*/
static inline void
falcon_dump_regs ( struct efab_nic *efab )
{
FCN_DUMP_REG ( efab, FCN_INT_EN_REG_KER );
FCN_DUMP_REG ( efab, FCN_INT_ADR_REG_KER );
FCN_DUMP_REG ( efab, FCN_GLB_CTL_REG_KER );
FCN_DUMP_REG ( efab, FCN_TIMER_CMD_REG_KER );
FCN_DUMP_REG ( efab, FCN_SRM_RX_DC_CFG_REG_KER );
FCN_DUMP_REG ( efab, FCN_SRM_TX_DC_CFG_REG_KER );
FCN_DUMP_REG ( efab, FCN_RX_FILTER_CTL_REG_KER );
FCN_DUMP_REG ( efab, FCN_RX_DC_CFG_REG_KER );
FCN_DUMP_REG ( efab, FCN_TX_DC_CFG_REG_KER );
FCN_DUMP_REG ( efab, FCN_MAC0_CTRL_REG_KER );
FCN_DUMP_REG ( efab, FCN_MAC1_CTRL_REG_KER );
FCN_DUMP_REG ( efab, FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) );
FCN_DUMP_REG ( efab, FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) );
FCN_DUMP_REG ( efab, FCN_REVISION_REG ( efab, FCN_EVQ_PTR_TBL_KER ) );
FCN_DUMP_MAC_REG ( efab, GM_CFG1_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GM_CFG2_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GM_MAX_FLEN_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GM_MII_MGMT_CFG_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GM_ADR1_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GM_ADR2_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG0_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG1_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG2_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG3_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG4_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG5_REG_MAC );
}
#endif
static void
falcon_interrupts ( struct efab_nic *efab, int enabled, int force )
{
efab_oword_t int_en_reg_ker;
EFAB_POPULATE_OWORD_2 ( int_en_reg_ker,
FCN_KER_INT_KER, force,
FCN_DRV_INT_EN_KER, enabled );
falcon_write ( efab, &int_en_reg_ker, FCN_INT_EN_REG_KER );
}
/*******************************************************************************
*
*
* SPI access
*
*
*******************************************************************************/
/** Maximum length for a single SPI transaction */
#define FALCON_SPI_MAX_LEN 16
static int
falcon_spi_wait ( struct efab_nic *efab )
{
efab_oword_t reg;
int count;
count = 0;
do {
udelay ( 100 );
falcon_read ( efab, &reg, FCN_EE_SPI_HCMD_REG );
if ( EFAB_OWORD_FIELD ( reg, FCN_EE_SPI_HCMD_CMD_EN ) == 0 )
return 0;
} while ( ++count < 1000 );
EFAB_ERR ( "Timed out waiting for SPI\n" );
return -ETIMEDOUT;
}
static int
falcon_spi_rw ( struct spi_bus* bus, struct spi_device *device,
unsigned int command, int address,
const void* data_out, void *data_in, size_t len )
{
struct efab_nic *efab = container_of ( bus, struct efab_nic, spi_bus );
int address_len, rc, device_id, read_cmd;
efab_oword_t reg;
/* falcon_init_spi_device() should have reduced the block size
* down so this constraint holds */
assert ( len <= FALCON_SPI_MAX_LEN );
/* Is this the FLASH or EEPROM device? */
if ( device == &efab->spi_flash )
device_id = FCN_EE_SPI_FLASH;
else if ( device == &efab->spi_eeprom )
device_id = FCN_EE_SPI_EEPROM;
else {
EFAB_ERR ( "Unknown device %p\n", device );
return -EINVAL;
}
EFAB_TRACE ( "Executing spi command %d on device %d at %d for %zd bytes\n",
command, device_id, address, len );
/* The bus must be idle */
rc = falcon_spi_wait ( efab );
if ( rc )
goto fail1;
/* Copy data out */
if ( data_out ) {
memcpy ( &reg, data_out, len );
falcon_write ( efab, &reg, FCN_EE_SPI_HDATA_REG );
}
/* Program address register */
if ( address >= 0 ) {
EFAB_POPULATE_OWORD_1 ( reg, FCN_EE_SPI_HADR_ADR, address );
falcon_write ( efab, &reg, FCN_EE_SPI_HADR_REG );
}
/* Issue command */
address_len = ( address >= 0 ) ? device->address_len / 8 : 0;
read_cmd = ( data_in ? FCN_EE_SPI_READ : FCN_EE_SPI_WRITE );
EFAB_POPULATE_OWORD_7 ( reg,
FCN_EE_SPI_HCMD_CMD_EN, 1,
FCN_EE_SPI_HCMD_SF_SEL, device_id,
FCN_EE_SPI_HCMD_DABCNT, len,
FCN_EE_SPI_HCMD_READ, read_cmd,
FCN_EE_SPI_HCMD_DUBCNT, 0,
FCN_EE_SPI_HCMD_ADBCNT, address_len,
FCN_EE_SPI_HCMD_ENC, command );
falcon_write ( efab, &reg, FCN_EE_SPI_HCMD_REG );
/* Wait for the command to complete */
rc = falcon_spi_wait ( efab );
if ( rc )
goto fail2;
/* Copy data in */
if ( data_in ) {
falcon_read ( efab, &reg, FCN_EE_SPI_HDATA_REG );
memcpy ( data_in, &reg, len );
}
return 0;
fail2:
fail1:
EFAB_ERR ( "Failed SPI command %d to device %d address 0x%x len 0x%zx\n",
command, device_id, address, len );
return rc;
}
/*******************************************************************************
*
*
* Falcon bit-bashed I2C interface
*
*
*******************************************************************************/
static void
falcon_i2c_bit_write ( struct bit_basher *basher, unsigned int bit_id,
unsigned long data )
{
struct efab_nic *efab = container_of ( basher, struct efab_nic,
i2c_bb.basher );
efab_oword_t reg;
falcon_read ( efab, &reg, FCN_GPIO_CTL_REG_KER );
switch ( bit_id ) {
case I2C_BIT_SCL:
EFAB_SET_OWORD_FIELD ( reg, FCN_GPIO0_OEN, ( data ? 0 : 1 ) );
break;
case I2C_BIT_SDA:
EFAB_SET_OWORD_FIELD ( reg, FCN_GPIO3_OEN, ( data ? 0 : 1 ) );
break;
default:
EFAB_ERR ( "%s bit=%d\n", __func__, bit_id );
break;
}
falcon_write ( efab, &reg, FCN_GPIO_CTL_REG_KER );
}
static int
falcon_i2c_bit_read ( struct bit_basher *basher, unsigned int bit_id )
{
struct efab_nic *efab = container_of ( basher, struct efab_nic,
i2c_bb.basher );
efab_oword_t reg;
falcon_read ( efab, &reg, FCN_GPIO_CTL_REG_KER );
switch ( bit_id ) {
case I2C_BIT_SCL:
return EFAB_OWORD_FIELD ( reg, FCN_GPIO0_IN );
break;
case I2C_BIT_SDA:
return EFAB_OWORD_FIELD ( reg, FCN_GPIO3_IN );
break;
default:
EFAB_ERR ( "%s bit=%d\n", __func__, bit_id );
break;
}
return -1;
}
static struct bit_basher_operations falcon_i2c_bit_ops = {
.read = falcon_i2c_bit_read,
.write = falcon_i2c_bit_write,
};
/*******************************************************************************
*
*
* MDIO access
*
*
*******************************************************************************/
static int
falcon_gmii_wait ( struct efab_nic *efab )
{
efab_dword_t md_stat;
int count;
/* wait up to 10ms */
for (count = 0; count < 1000; count++) {
falcon_readl ( efab, &md_stat, FCN_MD_STAT_REG_KER );
if ( EFAB_DWORD_FIELD ( md_stat, FCN_MD_BSY ) == 0 ) {
if ( EFAB_DWORD_FIELD ( md_stat, FCN_MD_LNFL ) != 0 ||
EFAB_DWORD_FIELD ( md_stat, FCN_MD_BSERR ) != 0 ) {
EFAB_ERR ( "Error from GMII access "
EFAB_DWORD_FMT"\n",
EFAB_DWORD_VAL ( md_stat ));
return -EIO;
}
return 0;
}
udelay(10);
}
EFAB_ERR ( "Timed out waiting for GMII\n" );
return -ETIMEDOUT;
}
static void
falcon_mdio_write ( struct efab_nic *efab, int device,
int location, int value )
{
efab_oword_t reg;
EFAB_TRACE ( "Writing GMII %d register %02x with %04x\n",
device, location, value );
/* Check MII not currently being accessed */
if ( falcon_gmii_wait ( efab ) )
return;
/* Write the address/ID register */
EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, location );
falcon_write ( efab, &reg, FCN_MD_PHY_ADR_REG_KER );
if ( efab->phy_10g ) {
/* clause45 */
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_PRT_ADR, efab->phy_addr,
FCN_MD_DEV_ADR, device );
}
else {
/* clause22 */
assert ( device == 0 );
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_PRT_ADR, efab->phy_addr,
FCN_MD_DEV_ADR, location );
}
falcon_write ( efab, &reg, FCN_MD_ID_REG_KER );
/* Write data */
EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_TXD, value );
falcon_write ( efab, &reg, FCN_MD_TXD_REG_KER );
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_WRC, 1,
FCN_MD_GC, ( efab->phy_10g ? 0 : 1 ) );
falcon_write ( efab, &reg, FCN_MD_CS_REG_KER );
/* Wait for data to be written */
if ( falcon_gmii_wait ( efab ) ) {
/* Abort the write operation */
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_WRC, 0,
FCN_MD_GC, 1);
falcon_write ( efab, &reg, FCN_MD_CS_REG_KER );
udelay(10);
}
}
static int
falcon_mdio_read ( struct efab_nic *efab, int device, int location )
{
efab_oword_t reg;
int value;
/* Check MII not currently being accessed */
if ( falcon_gmii_wait ( efab ) )
return -1;
if ( efab->phy_10g ) {
/* clause45 */
EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, location );
falcon_write ( efab, &reg, FCN_MD_PHY_ADR_REG_KER );
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_PRT_ADR, efab->phy_addr,
FCN_MD_DEV_ADR, device );
falcon_write ( efab, &reg, FCN_MD_ID_REG_KER);
/* request data to be read */
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_RDC, 1,
FCN_MD_GC, 0 );
}
else {
/* clause22 */
assert ( device == 0 );
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_PRT_ADR, efab->phy_addr,
FCN_MD_DEV_ADR, location );
falcon_write ( efab, &reg, FCN_MD_ID_REG_KER );
/* Request data to be read */
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_RIC, 1,
FCN_MD_GC, 1 );
}
falcon_write ( efab, &reg, FCN_MD_CS_REG_KER );
/* Wait for data to become available */
if ( falcon_gmii_wait ( efab ) ) {
/* Abort the read operation */
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_RIC, 0,
FCN_MD_GC, 1 );
falcon_write ( efab, &reg, FCN_MD_CS_REG_KER );
udelay ( 10 );
value = -1;
}
else {
/* Read the data */
falcon_read ( efab, &reg, FCN_MD_RXD_REG_KER );
value = EFAB_OWORD_FIELD ( reg, FCN_MD_RXD );
}
EFAB_TRACE ( "Read from GMII %d register %02x, got %04x\n",
device, location, value );
return value;
}
/*******************************************************************************
*
*
* MAC wrapper
*
*
*******************************************************************************/
static void
falcon_reconfigure_mac_wrapper ( struct efab_nic *efab )
{
efab_oword_t reg;
int link_speed;
if ( efab->link_options & LPA_EF_10000 ) {
link_speed = 0x3;
} else if ( efab->link_options & LPA_EF_1000 ) {
link_speed = 0x2;
} else if ( efab->link_options & LPA_100 ) {
link_speed = 0x1;
} else {
link_speed = 0x0;
}
EFAB_POPULATE_OWORD_5 ( reg,
FCN_MAC_XOFF_VAL, 0xffff /* datasheet */,
FCN_MAC_BCAD_ACPT, 1,
FCN_MAC_UC_PROM, 0,
FCN_MAC_LINK_STATUS, 1,
FCN_MAC_SPEED, link_speed );
falcon_write ( efab, &reg, FCN_MAC0_CTRL_REG_KER );
}
/*******************************************************************************
*
*
* GMAC handling
*
*
*******************************************************************************/
/* GMAC configuration register 1 */
#define GM_CFG1_REG_MAC 0x00
#define GM_SW_RST_LBN 31
#define GM_SW_RST_WIDTH 1
#define GM_RX_FC_EN_LBN 5
#define GM_RX_FC_EN_WIDTH 1
#define GM_TX_FC_EN_LBN 4
#define GM_TX_FC_EN_WIDTH 1
#define GM_RX_EN_LBN 2
#define GM_RX_EN_WIDTH 1
#define GM_TX_EN_LBN 0
#define GM_TX_EN_WIDTH 1
/* GMAC configuration register 2 */
#define GM_CFG2_REG_MAC 0x01
#define GM_PAMBL_LEN_LBN 12
#define GM_PAMBL_LEN_WIDTH 4
#define GM_IF_MODE_LBN 8
#define GM_IF_MODE_WIDTH 2
#define GM_PAD_CRC_EN_LBN 2
#define GM_PAD_CRC_EN_WIDTH 1
#define GM_FD_LBN 0
#define GM_FD_WIDTH 1
/* GMAC maximum frame length register */
#define GM_MAX_FLEN_REG_MAC 0x04
#define GM_MAX_FLEN_LBN 0
#define GM_MAX_FLEN_WIDTH 16
/* GMAC MII management configuration register */
#define GM_MII_MGMT_CFG_REG_MAC 0x08
#define GM_MGMT_CLK_SEL_LBN 0
#define GM_MGMT_CLK_SEL_WIDTH 3
/* GMAC MII management command register */
#define GM_MII_MGMT_CMD_REG_MAC 0x09
#define GM_MGMT_SCAN_CYC_LBN 1
#define GM_MGMT_SCAN_CYC_WIDTH 1
#define GM_MGMT_RD_CYC_LBN 0
#define GM_MGMT_RD_CYC_WIDTH 1
/* GMAC MII management address register */
#define GM_MII_MGMT_ADR_REG_MAC 0x0a
#define GM_MGMT_PHY_ADDR_LBN 8
#define GM_MGMT_PHY_ADDR_WIDTH 5
#define GM_MGMT_REG_ADDR_LBN 0
#define GM_MGMT_REG_ADDR_WIDTH 5
/* GMAC MII management control register */
#define GM_MII_MGMT_CTL_REG_MAC 0x0b
#define GM_MGMT_CTL_LBN 0
#define GM_MGMT_CTL_WIDTH 16
/* GMAC MII management status register */
#define GM_MII_MGMT_STAT_REG_MAC 0x0c
#define GM_MGMT_STAT_LBN 0
#define GM_MGMT_STAT_WIDTH 16
/* GMAC MII management indicators register */
#define GM_MII_MGMT_IND_REG_MAC 0x0d
#define GM_MGMT_BUSY_LBN 0
#define GM_MGMT_BUSY_WIDTH 1
/* GMAC station address register 1 */
#define GM_ADR1_REG_MAC 0x10
#define GM_HWADDR_5_LBN 24
#define GM_HWADDR_5_WIDTH 8
#define GM_HWADDR_4_LBN 16
#define GM_HWADDR_4_WIDTH 8
#define GM_HWADDR_3_LBN 8
#define GM_HWADDR_3_WIDTH 8
#define GM_HWADDR_2_LBN 0
#define GM_HWADDR_2_WIDTH 8
/* GMAC station address register 2 */
#define GM_ADR2_REG_MAC 0x11
#define GM_HWADDR_1_LBN 24
#define GM_HWADDR_1_WIDTH 8
#define GM_HWADDR_0_LBN 16
#define GM_HWADDR_0_WIDTH 8
/* GMAC FIFO configuration register 0 */
#define GMF_CFG0_REG_MAC 0x12
#define GMF_FTFENREQ_LBN 12
#define GMF_FTFENREQ_WIDTH 1
#define GMF_STFENREQ_LBN 11
#define GMF_STFENREQ_WIDTH 1
#define GMF_FRFENREQ_LBN 10
#define GMF_FRFENREQ_WIDTH 1
#define GMF_SRFENREQ_LBN 9
#define GMF_SRFENREQ_WIDTH 1
#define GMF_WTMENREQ_LBN 8
#define GMF_WTMENREQ_WIDTH 1
/* GMAC FIFO configuration register 1 */
#define GMF_CFG1_REG_MAC 0x13
#define GMF_CFGFRTH_LBN 16
#define GMF_CFGFRTH_WIDTH 5
#define GMF_CFGXOFFRTX_LBN 0
#define GMF_CFGXOFFRTX_WIDTH 16
/* GMAC FIFO configuration register 2 */
#define GMF_CFG2_REG_MAC 0x14
#define GMF_CFGHWM_LBN 16
#define GMF_CFGHWM_WIDTH 6
#define GMF_CFGLWM_LBN 0
#define GMF_CFGLWM_WIDTH 6
/* GMAC FIFO configuration register 3 */
#define GMF_CFG3_REG_MAC 0x15
#define GMF_CFGHWMFT_LBN 16
#define GMF_CFGHWMFT_WIDTH 6
#define GMF_CFGFTTH_LBN 0
#define GMF_CFGFTTH_WIDTH 6
/* GMAC FIFO configuration register 4 */
#define GMF_CFG4_REG_MAC 0x16
#define GMF_HSTFLTRFRM_PAUSE_LBN 12
#define GMF_HSTFLTRFRM_PAUSE_WIDTH 12
/* GMAC FIFO configuration register 5 */
#define GMF_CFG5_REG_MAC 0x17
#define GMF_CFGHDPLX_LBN 22
#define GMF_CFGHDPLX_WIDTH 1
#define GMF_CFGBYTMODE_LBN 19
#define GMF_CFGBYTMODE_WIDTH 1
#define GMF_HSTDRPLT64_LBN 18
#define GMF_HSTDRPLT64_WIDTH 1
#define GMF_HSTFLTRFRMDC_PAUSE_LBN 12
#define GMF_HSTFLTRFRMDC_PAUSE_WIDTH 1
static void
falcon_gmac_writel ( struct efab_nic *efab, efab_dword_t *value,
unsigned int mac_reg )
{
efab_oword_t temp;
EFAB_POPULATE_OWORD_1 ( temp, FCN_MAC_DATA,
EFAB_DWORD_FIELD ( *value, FCN_MAC_DATA ) );
falcon_write ( efab, &temp, FALCON_GMAC_REG ( efab, mac_reg ) );
}
static void
falcon_gmac_readl ( struct efab_nic *efab, efab_dword_t *value,
unsigned int mac_reg )
{
efab_oword_t temp;
falcon_read ( efab, &temp, FALCON_GMAC_REG ( efab, mac_reg ) );
EFAB_POPULATE_DWORD_1 ( *value, FCN_MAC_DATA,
EFAB_OWORD_FIELD ( temp, FCN_MAC_DATA ) );
}
static void
mentormac_reset ( struct efab_nic *efab )
{
efab_dword_t reg;
/* Take into reset */
EFAB_POPULATE_DWORD_1 ( reg, GM_SW_RST, 1 );
falcon_gmac_writel ( efab, &reg, GM_CFG1_REG_MAC );
udelay ( 1000 );
/* Take out of reset */
EFAB_POPULATE_DWORD_1 ( reg, GM_SW_RST, 0 );
falcon_gmac_writel ( efab, &reg, GM_CFG1_REG_MAC );
udelay ( 1000 );
/* Configure GMII interface so PHY is accessible. Note that
* GMII interface is connected only to port 0, and that on
* Falcon this is a no-op.
*/
EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_CLK_SEL, 0x4 );
falcon_gmac_writel ( efab, &reg, GM_MII_MGMT_CFG_REG_MAC );
udelay ( 10 );
}
static void
mentormac_init ( struct efab_nic *efab )
{
int pause, if_mode, full_duplex, bytemode, half_duplex;
efab_dword_t reg;
/* Configuration register 1 */
pause = ( efab->link_options & LPA_PAUSE_CAP ) ? 1 : 0;
if ( ! ( efab->link_options & LPA_EF_DUPLEX ) ) {
/* Half-duplex operation requires TX flow control */
pause = 1;
}
EFAB_POPULATE_DWORD_4 ( reg,
GM_TX_EN, 1,
GM_TX_FC_EN, pause,
GM_RX_EN, 1,
GM_RX_FC_EN, 1 );
falcon_gmac_writel ( efab, &reg, GM_CFG1_REG_MAC );
udelay ( 10 );
/* Configuration register 2 */
if_mode = ( efab->link_options & LPA_EF_1000 ) ? 2 : 1;
full_duplex = ( efab->link_options & LPA_EF_DUPLEX ) ? 1 : 0;
EFAB_POPULATE_DWORD_4 ( reg,
GM_IF_MODE, if_mode,
GM_PAD_CRC_EN, 1,
GM_FD, full_duplex,
GM_PAMBL_LEN, 0x7 /* ? */ );
falcon_gmac_writel ( efab, &reg, GM_CFG2_REG_MAC );
udelay ( 10 );
/* Max frame len register */
EFAB_POPULATE_DWORD_1 ( reg, GM_MAX_FLEN,
EFAB_MAX_FRAME_LEN ( ETH_FRAME_LEN ) );
falcon_gmac_writel ( efab, &reg, GM_MAX_FLEN_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 0 */
EFAB_POPULATE_DWORD_5 ( reg,
GMF_FTFENREQ, 1,
GMF_STFENREQ, 1,
GMF_FRFENREQ, 1,
GMF_SRFENREQ, 1,
GMF_WTMENREQ, 1 );
falcon_gmac_writel ( efab, &reg, GMF_CFG0_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 1 */
EFAB_POPULATE_DWORD_2 ( reg,
GMF_CFGFRTH, 0x12,
GMF_CFGXOFFRTX, 0xffff );
falcon_gmac_writel ( efab, &reg, GMF_CFG1_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 2 */
EFAB_POPULATE_DWORD_2 ( reg,
GMF_CFGHWM, 0x3f,
GMF_CFGLWM, 0xa );
falcon_gmac_writel ( efab, &reg, GMF_CFG2_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 3 */
EFAB_POPULATE_DWORD_2 ( reg,
GMF_CFGHWMFT, 0x1c,
GMF_CFGFTTH, 0x08 );
falcon_gmac_writel ( efab, &reg, GMF_CFG3_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 4 */
EFAB_POPULATE_DWORD_1 ( reg, GMF_HSTFLTRFRM_PAUSE, 1 );
falcon_gmac_writel ( efab, &reg, GMF_CFG4_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 5 */
bytemode = ( efab->link_options & LPA_EF_1000 ) ? 1 : 0;
half_duplex = ( efab->link_options & LPA_EF_DUPLEX ) ? 0 : 1;
falcon_gmac_readl ( efab, &reg, GMF_CFG5_REG_MAC );
EFAB_SET_DWORD_FIELD ( reg, GMF_CFGBYTMODE, bytemode );
EFAB_SET_DWORD_FIELD ( reg, GMF_CFGHDPLX, half_duplex );
EFAB_SET_DWORD_FIELD ( reg, GMF_HSTDRPLT64, half_duplex );
EFAB_SET_DWORD_FIELD ( reg, GMF_HSTFLTRFRMDC_PAUSE, 0 );
falcon_gmac_writel ( efab, &reg, GMF_CFG5_REG_MAC );
udelay ( 10 );
/* MAC address */
EFAB_POPULATE_DWORD_4 ( reg,
GM_HWADDR_5, efab->mac_addr[5],
GM_HWADDR_4, efab->mac_addr[4],
GM_HWADDR_3, efab->mac_addr[3],
GM_HWADDR_2, efab->mac_addr[2] );
falcon_gmac_writel ( efab, &reg, GM_ADR1_REG_MAC );
udelay ( 10 );
EFAB_POPULATE_DWORD_2 ( reg,
GM_HWADDR_1, efab->mac_addr[1],
GM_HWADDR_0, efab->mac_addr[0] );
falcon_gmac_writel ( efab, &reg, GM_ADR2_REG_MAC );
udelay ( 10 );
}
static int
falcon_init_gmac ( struct efab_nic *efab )
{
/* Reset the MAC */
mentormac_reset ( efab );
/* Initialise PHY */
efab->phy_op->init ( efab );
/* check the link is up */
if ( !efab->link_up )
return -EAGAIN;
/* Initialise MAC */
mentormac_init ( efab );
/* reconfigure the MAC wrapper */
falcon_reconfigure_mac_wrapper ( efab );
return 0;
}
static struct efab_mac_operations falcon_gmac_operations = {
.init = falcon_init_gmac,
};
/*******************************************************************************
*
*
* XMAC handling
*
*
*******************************************************************************/
/**
* Write dword to a Falcon XMAC register
*
*/
static void
falcon_xmac_writel ( struct efab_nic *efab, efab_dword_t *value,
unsigned int mac_reg )
{
efab_oword_t temp;
EFAB_POPULATE_OWORD_1 ( temp, FCN_MAC_DATA,
EFAB_DWORD_FIELD ( *value, FCN_MAC_DATA ) );
falcon_write ( efab, &temp,
FALCON_XMAC_REG ( efab, mac_reg ) );
}
/**
* Read dword from a Falcon XMAC register
*
*/
static void
falcon_xmac_readl ( struct efab_nic *efab, efab_dword_t *value,
unsigned int mac_reg )
{
efab_oword_t temp;
falcon_read ( efab, &temp,
FALCON_XMAC_REG ( efab, mac_reg ) );
EFAB_POPULATE_DWORD_1 ( *value, FCN_MAC_DATA,
EFAB_OWORD_FIELD ( temp, FCN_MAC_DATA ) );
}
/**
* Configure Falcon XAUI output
*/
static void
falcon_setup_xaui ( struct efab_nic *efab )
{
efab_dword_t sdctl, txdrv;
falcon_xmac_readl ( efab, &sdctl, FCN_XX_SD_CTL_REG_MAC );
EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVD, XX_SD_CTL_DRV_DEFAULT );
EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVD, XX_SD_CTL_DRV_DEFAULT );
EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVC, XX_SD_CTL_DRV_DEFAULT );
EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVC, XX_SD_CTL_DRV_DEFAULT );
EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVB, XX_SD_CTL_DRV_DEFAULT );
EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVB, XX_SD_CTL_DRV_DEFAULT );
EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVA, XX_SD_CTL_DRV_DEFAULT );
EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVA, XX_SD_CTL_DRV_DEFAULT );
falcon_xmac_writel ( efab, &sdctl, FCN_XX_SD_CTL_REG_MAC );
EFAB_POPULATE_DWORD_8 ( txdrv,
FCN_XX_DEQD, XX_TXDRV_DEQ_DEFAULT,
FCN_XX_DEQC, XX_TXDRV_DEQ_DEFAULT,
FCN_XX_DEQB, XX_TXDRV_DEQ_DEFAULT,
FCN_XX_DEQA, XX_TXDRV_DEQ_DEFAULT,
FCN_XX_DTXD, XX_TXDRV_DTX_DEFAULT,
FCN_XX_DTXC, XX_TXDRV_DTX_DEFAULT,
FCN_XX_DTXB, XX_TXDRV_DTX_DEFAULT,
FCN_XX_DTXA, XX_TXDRV_DTX_DEFAULT);
falcon_xmac_writel ( efab, &txdrv, FCN_XX_TXDRV_CTL_REG_MAC);
}
static int
falcon_xgmii_status ( struct efab_nic *efab )
{
efab_dword_t reg;
if ( efab->pci_revision < FALCON_REV_B0 )
return 1;
/* The ISR latches, so clear it and re-read */
falcon_xmac_readl ( efab, &reg, FCN_XM_MGT_INT_REG_MAC_B0 );
falcon_xmac_readl ( efab, &reg, FCN_XM_MGT_INT_REG_MAC_B0 );
if ( EFAB_DWORD_FIELD ( reg, FCN_XM_LCLFLT ) ||
EFAB_DWORD_FIELD ( reg, FCN_XM_RMTFLT ) ) {
EFAB_TRACE ( "MGT_INT: "EFAB_DWORD_FMT"\n",
EFAB_DWORD_VAL ( reg ) );
return 0;
}
return 1;
}
static void
falcon_mask_status_intr ( struct efab_nic *efab, int enable )
{
efab_dword_t reg;
if ( efab->pci_revision < FALCON_REV_B0 )
return;
/* Flush the ISR */
if ( enable )
falcon_xmac_readl ( efab, &reg, FCN_XM_MGT_INT_REG_MAC_B0 );
EFAB_POPULATE_DWORD_2 ( reg,
FCN_XM_MSK_RMTFLT, !enable,
FCN_XM_MSK_LCLFLT, !enable);
falcon_xmac_readl ( efab, &reg, FCN_XM_MGT_INT_MSK_REG_MAC_B0 );
}
/**
* Reset 10G MAC connected to port
*
*/
static int
falcon_reset_xmac ( struct efab_nic *efab )
{
efab_dword_t reg;
int count;
EFAB_POPULATE_DWORD_1 ( reg, FCN_XM_CORE_RST, 1 );
falcon_xmac_writel ( efab, &reg, FCN_XM_GLB_CFG_REG_MAC );
for ( count = 0 ; count < 1000 ; count++ ) {
udelay ( 10 );
falcon_xmac_readl ( efab, &reg,
FCN_XM_GLB_CFG_REG_MAC );
if ( EFAB_DWORD_FIELD ( reg, FCN_XM_CORE_RST ) == 0 )
return 0;
}
return -ETIMEDOUT;
}
static int
falcon_reset_xaui ( struct efab_nic *efab )
{
efab_dword_t reg;
int count;
if (!efab->is_asic)
return 0;
EFAB_POPULATE_DWORD_1 ( reg, FCN_XX_RST_XX_EN, 1 );
falcon_xmac_writel ( efab, &reg, FCN_XX_PWR_RST_REG_MAC );
/* Give some time for the link to establish */
for (count = 0; count < 1000; count++) { /* wait up to 10ms */
falcon_xmac_readl ( efab, &reg, FCN_XX_PWR_RST_REG_MAC );
if ( EFAB_DWORD_FIELD ( reg, FCN_XX_RST_XX_EN ) == 0 ) {
falcon_setup_xaui ( efab );
return 0;
}
udelay(10);
}
EFAB_ERR ( "timed out waiting for XAUI/XGXS reset\n" );
return -ETIMEDOUT;
}
static int
falcon_xaui_link_ok ( struct efab_nic *efab )
{
efab_dword_t reg;
int align_done, lane_status, sync;
int has_phyxs;
int link_ok = 1;
/* Read Falcon XAUI side */
if ( efab->is_asic ) {
/* Read link status */
falcon_xmac_readl ( efab, &reg, FCN_XX_CORE_STAT_REG_MAC );
align_done = EFAB_DWORD_FIELD ( reg, FCN_XX_ALIGN_DONE );
sync = EFAB_DWORD_FIELD ( reg, FCN_XX_SYNC_STAT );
sync = ( sync == FCN_XX_SYNC_STAT_DECODE_SYNCED );
link_ok = align_done && sync;
}
/* Clear link status ready for next read */
EFAB_SET_DWORD_FIELD ( reg, FCN_XX_COMMA_DET, FCN_XX_COMMA_DET_RESET );
EFAB_SET_DWORD_FIELD ( reg, FCN_XX_CHARERR, FCN_XX_CHARERR_RESET);
EFAB_SET_DWORD_FIELD ( reg, FCN_XX_DISPERR, FCN_XX_DISPERR_RESET);
falcon_xmac_writel ( efab, &reg, FCN_XX_CORE_STAT_REG_MAC );
has_phyxs = ( efab->phy_op->mmds & ( 1 << MDIO_MMD_PHYXS ) );
if ( link_ok && has_phyxs ) {
lane_status = falcon_mdio_read ( efab, MDIO_MMD_PHYXS,
MDIO_PHYXS_LANE_STATE );
link_ok = ( lane_status & ( 1 << MDIO_PHYXS_LANE_ALIGNED_LBN ) );
if (!link_ok )
EFAB_LOG ( "XGXS lane status: %x\n", lane_status );
}
return link_ok;
}
/**
* Initialise XMAC
*
*/
static void
falcon_reconfigure_xmac ( struct efab_nic *efab )
{
efab_dword_t reg;
int max_frame_len;
/* Configure MAC - cut-thru mode is hard wired on */
EFAB_POPULATE_DWORD_3 ( reg,
FCN_XM_RX_JUMBO_MODE, 1,
FCN_XM_TX_STAT_EN, 1,
FCN_XM_RX_STAT_EN, 1);
falcon_xmac_writel ( efab, &reg, FCN_XM_GLB_CFG_REG_MAC );
/* Configure TX */
EFAB_POPULATE_DWORD_6 ( reg,
FCN_XM_TXEN, 1,
FCN_XM_TX_PRMBL, 1,
FCN_XM_AUTO_PAD, 1,
FCN_XM_TXCRC, 1,
FCN_XM_FCNTL, 1,
FCN_XM_IPG, 0x3 );
falcon_xmac_writel ( efab, &reg, FCN_XM_TX_CFG_REG_MAC );
/* Configure RX */
EFAB_POPULATE_DWORD_4 ( reg,
FCN_XM_RXEN, 1,
FCN_XM_AUTO_DEPAD, 0,
FCN_XM_ACPT_ALL_MCAST, 1,
FCN_XM_PASS_CRC_ERR, 1 );
falcon_xmac_writel ( efab, &reg, FCN_XM_RX_CFG_REG_MAC );
/* Set frame length */
max_frame_len = EFAB_MAX_FRAME_LEN ( ETH_FRAME_LEN );
EFAB_POPULATE_DWORD_1 ( reg,
FCN_XM_MAX_RX_FRM_SIZE, max_frame_len );
falcon_xmac_writel ( efab, &reg, FCN_XM_RX_PARAM_REG_MAC );
EFAB_POPULATE_DWORD_2 ( reg,
FCN_XM_MAX_TX_FRM_SIZE, max_frame_len,
FCN_XM_TX_JUMBO_MODE, 1 );
falcon_xmac_writel ( efab, &reg, FCN_XM_TX_PARAM_REG_MAC );
/* Enable flow control receipt */
EFAB_POPULATE_DWORD_2 ( reg,
FCN_XM_PAUSE_TIME, 0xfffe,
FCN_XM_DIS_FCNTL, 0 );
falcon_xmac_writel ( efab, &reg, FCN_XM_FC_REG_MAC );
/* Set MAC address */
EFAB_POPULATE_DWORD_4 ( reg,
FCN_XM_ADR_0, efab->mac_addr[0],
FCN_XM_ADR_1, efab->mac_addr[1],
FCN_XM_ADR_2, efab->mac_addr[2],
FCN_XM_ADR_3, efab->mac_addr[3] );
falcon_xmac_writel ( efab, &reg, FCN_XM_ADR_LO_REG_MAC );
EFAB_POPULATE_DWORD_2 ( reg,
FCN_XM_ADR_4, efab->mac_addr[4],
FCN_XM_ADR_5, efab->mac_addr[5] );
falcon_xmac_writel ( efab, &reg, FCN_XM_ADR_HI_REG_MAC );
}
static int
falcon_init_xmac ( struct efab_nic *efab )
{
int count, rc;
/* Mask the PHY management interrupt */
falcon_mask_status_intr ( efab, 0 );
/* Initialise the PHY to instantiate the clock. */
rc = efab->phy_op->init ( efab );
if ( rc ) {
EFAB_ERR ( "unable to initialise PHY\n" );
goto fail1;
}
falcon_reset_xaui ( efab );
/* Give the PHY and MAC time to faff */
mdelay ( 100 );
/* Reset and reconfigure the XMAC */
rc = falcon_reset_xmac ( efab );
if ( rc )
goto fail2;
falcon_reconfigure_xmac ( efab );
falcon_reconfigure_mac_wrapper ( efab );
/**
* Now wait for the link to come up. This may take a while
* for some slower PHY's.
*/
for (count=0; count<50; count++) {
int link_ok = 1;
/* Wait a while for the link to come up. */
mdelay ( 100 );
if ((count % 5) == 0)
putchar ( '.' );
/* Does the PHY think the wire-side link is up? */
link_ok = mdio_clause45_links_ok ( efab );
/* Ensure the XAUI link to the PHY is good */
if ( link_ok ) {
link_ok = falcon_xaui_link_ok ( efab );
if ( !link_ok )
falcon_reset_xaui ( efab );
}
/* Check fault indication */
if ( link_ok )
link_ok = falcon_xgmii_status ( efab );
efab->link_up = link_ok;
if ( link_ok ) {
/* unmask the status interrupt */
falcon_mask_status_intr ( efab, 1 );
return 0;
}
}
/* Link failed to come up, but initialisation was fine. */
rc = -ETIMEDOUT;
fail2:
fail1:
return rc;
}
static struct efab_mac_operations falcon_xmac_operations = {
.init = falcon_init_xmac,
};
/*******************************************************************************
*
*
* Null PHY handling
*
*
*******************************************************************************/
static int
falcon_xaui_phy_init ( struct efab_nic *efab )
{
/* CX4 is always 10000FD only */
efab->link_options = LPA_EF_10000FULL;
/* There is no PHY! */
return 0;
}
static struct efab_phy_operations falcon_xaui_phy_ops = {
.init = falcon_xaui_phy_init,
.mmds = 0,
};
/*******************************************************************************
*
*
* Alaska PHY
*
*
*******************************************************************************/
/**
* Initialise Alaska PHY
*
*/
static int
alaska_init ( struct efab_nic *efab )
{
unsigned int advertised, lpa;
/* Read link up status */
efab->link_up = gmii_link_ok ( efab );
if ( ! efab->link_up )
return -EIO;
/* Determine link options from PHY. */
advertised = gmii_autoneg_advertised ( efab );
lpa = gmii_autoneg_lpa ( efab );
efab->link_options = gmii_nway_result ( advertised & lpa );
return 0;
}
static struct efab_phy_operations falcon_alaska_phy_ops = {
.init = alaska_init,
};
/*******************************************************************************
*
*
* xfp
*
*
*******************************************************************************/
#define XFP_REQUIRED_DEVS ( MDIO_MMDREG_DEVS0_PCS | \
MDIO_MMDREG_DEVS0_PMAPMD | \
MDIO_MMDREG_DEVS0_PHYXS )
static int
falcon_xfp_phy_init ( struct efab_nic *efab )
{
int rc;
/* Optical link is always 10000FD only */
efab->link_options = LPA_EF_10000FULL;
/* Reset the PHY */
rc = mdio_clause45_reset_mmd ( efab, MDIO_MMD_PHYXS );
if ( rc )
return rc;
return 0;
}
static struct efab_phy_operations falcon_xfp_phy_ops = {
.init = falcon_xfp_phy_init,
.mmds = XFP_REQUIRED_DEVS,
};
/*******************************************************************************
*
*
* txc43128
*
*
*******************************************************************************/
/* Command register */
#define TXC_GLRGS_GLCMD (0xc004)
#define TXC_GLCMD_LMTSWRST_LBN (14)
/* Amplitude on lanes 0+1, 2+3 */
#define TXC_ALRGS_ATXAMP0 (0xc041)
#define TXC_ALRGS_ATXAMP1 (0xc042)
/* Bit position of value for lane 0+2, 1+3 */
#define TXC_ATXAMP_LANE02_LBN (3)
#define TXC_ATXAMP_LANE13_LBN (11)
#define TXC_ATXAMP_1280_mV (0)
#define TXC_ATXAMP_1200_mV (8)
#define TXC_ATXAMP_1120_mV (12)
#define TXC_ATXAMP_1060_mV (14)
#define TXC_ATXAMP_0820_mV (25)
#define TXC_ATXAMP_0720_mV (26)
#define TXC_ATXAMP_0580_mV (27)
#define TXC_ATXAMP_0440_mV (28)
#define TXC_ATXAMP_0820_BOTH ( (TXC_ATXAMP_0820_mV << TXC_ATXAMP_LANE02_LBN) | \
(TXC_ATXAMP_0820_mV << TXC_ATXAMP_LANE13_LBN) )
#define TXC_ATXAMP_DEFAULT (0x6060) /* From databook */
/* Preemphasis on lanes 0+1, 2+3 */
#define TXC_ALRGS_ATXPRE0 (0xc043)
#define TXC_ALRGS_ATXPRE1 (0xc044)
#define TXC_ATXPRE_NONE (0)
#define TXC_ATXPRE_DEFAULT (0x1010) /* From databook */
#define TXC_REQUIRED_DEVS ( MDIO_MMDREG_DEVS0_PCS | \
MDIO_MMDREG_DEVS0_PMAPMD | \
MDIO_MMDREG_DEVS0_PHYXS )
static int
falcon_txc_logic_reset ( struct efab_nic *efab )
{
int val;
int tries = 50;
val = falcon_mdio_read ( efab, MDIO_MMD_PCS, TXC_GLRGS_GLCMD );
val |= (1 << TXC_GLCMD_LMTSWRST_LBN);
falcon_mdio_write ( efab, MDIO_MMD_PCS, TXC_GLRGS_GLCMD, val );
while ( tries--) {
val = falcon_mdio_read ( efab, MDIO_MMD_PCS, TXC_GLRGS_GLCMD );
if ( ~val & ( 1 << TXC_GLCMD_LMTSWRST_LBN ) )
return 0;
udelay(1);
}
EFAB_ERR ( "logic reset failed\n" );
return -ETIMEDOUT;
}
static int
falcon_txc_phy_init ( struct efab_nic *efab )
{
int rc;
/* CX4 is always 10000FD only */
efab->link_options = LPA_EF_10000FULL;
/* reset the phy */
rc = mdio_clause45_reset_mmd ( efab, MDIO_MMD_PMAPMD );
if ( rc )
goto fail1;
rc = mdio_clause45_check_mmds ( efab );
if ( rc )
goto fail2;
/* Turn amplitude down and preemphasis off on the host side
* (PHY<->MAC) as this is believed less likely to upset falcon
* and no adverse effects have been noted. It probably also
* saves a picowatt or two */
/* Turn off preemphasis */
falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXPRE0,
TXC_ATXPRE_NONE );
falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXPRE1,
TXC_ATXPRE_NONE );
/* Turn down the amplitude */
falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXAMP0,
TXC_ATXAMP_0820_BOTH );
falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXAMP1,
TXC_ATXAMP_0820_BOTH );
/* Set the line side amplitude and preemphasis to the databook
* defaults as an erratum causes them to be 0 on at least some
* PHY rev.s */
falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXPRE0,
TXC_ATXPRE_DEFAULT );
falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXPRE1,
TXC_ATXPRE_DEFAULT );
falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXAMP0,
TXC_ATXAMP_DEFAULT );
falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXAMP1,
TXC_ATXAMP_DEFAULT );
rc = falcon_txc_logic_reset ( efab );
if ( rc )
goto fail3;
return 0;
fail3:
fail2:
fail1:
return rc;
}
static struct efab_phy_operations falcon_txc_phy_ops = {
.init = falcon_txc_phy_init,
.mmds = TXC_REQUIRED_DEVS,
};
/*******************************************************************************
*
*
* tenxpress
*
*
*******************************************************************************/
#define TENXPRESS_REQUIRED_DEVS ( MDIO_MMDREG_DEVS0_PMAPMD | \
MDIO_MMDREG_DEVS0_PCS | \
MDIO_MMDREG_DEVS0_PHYXS )
#define PCS_TEST_SELECT_REG 0xd807 /* PRM 10.5.8 */
#define CLK312_EN_LBN 3
#define CLK312_EN_WIDTH 1
#define PCS_CLOCK_CTRL_REG 0xd801
#define PLL312_RST_N_LBN 2
/* Special Software reset register */
#define PMA_PMD_EXT_CTRL_REG 49152
#define PMA_PMD_EXT_SSR_LBN 15
/* Boot status register */
#define PCS_BOOT_STATUS_REG 0xd000
#define PCS_BOOT_FATAL_ERR_LBN 0
#define PCS_BOOT_PROGRESS_LBN 1
#define PCS_BOOT_PROGRESS_WIDTH 2
#define PCS_BOOT_COMPLETE_LBN 3
#define PCS_SOFT_RST2_REG 0xd806
#define SERDES_RST_N_LBN 13
#define XGXS_RST_N_LBN 12
static int
falcon_tenxpress_check_c11 ( struct efab_nic *efab )
{
int count;
uint32_t boot_stat;
/* Check that the C11 CPU has booted */
for (count=0; count<10; count++) {
boot_stat = falcon_mdio_read ( efab, MDIO_MMD_PCS,
PCS_BOOT_STATUS_REG );
if ( boot_stat & ( 1 << PCS_BOOT_COMPLETE_LBN ) )
return 0;
udelay(10);
}
EFAB_ERR ( "C11 failed to boot\n" );
return -ETIMEDOUT;
}
static int
falcon_tenxpress_phy_init ( struct efab_nic *efab )
{
int rc, reg;
/* 10XPRESS is always 10000FD (at the moment) */
efab->link_options = LPA_EF_10000FULL;
/* Wait for the blocks to come out of reset */
rc = mdio_clause45_wait_reset_mmds ( efab );
if ( rc )
goto fail1;
rc = mdio_clause45_check_mmds ( efab );
if ( rc )
goto fail2;
/* Turn on the clock */
reg = (1 << CLK312_EN_LBN);
falcon_mdio_write ( efab, MDIO_MMD_PCS, PCS_TEST_SELECT_REG, reg);
/* Wait 200ms for the PHY to boot */
mdelay(200);
rc = falcon_tenxpress_check_c11 ( efab );
if ( rc )
goto fail3;
return 0;
fail3:
fail2:
fail1:
return rc;
}
static struct efab_phy_operations falcon_tenxpress_phy_ops = {
.init = falcon_tenxpress_phy_init,
.mmds = TENXPRESS_REQUIRED_DEVS,
};
/*******************************************************************************
*
*
* PM8358
*
*
*******************************************************************************/
/* The PM8358 just presents a DTE XS */
#define PM8358_REQUIRED_DEVS (MDIO_MMDREG_DEVS0_DTEXS)
/* PHY-specific definitions */
/* Master ID and Global Performance Monitor Update */
#define PMC_MASTER_REG (0xd000)
/* Analog Tx Rx settings under software control */
#define PMC_MASTER_ANLG_CTRL (1<< 11)
/* Master Configuration register 2 */
#define PMC_MCONF2_REG (0xd002)
/* Drive Tx off centre of data eye (1) vs. clock edge (0) */
#define PMC_MCONF2_TEDGE (1 << 2)
/* Drive Rx off centre of data eye (1) vs. clock edge (0) */
#define PMC_MCONF2_REDGE (1 << 3)
/* Analog Rx settings */
#define PMC_ANALOG_RX_CFG0 (0xd025)
#define PMC_ANALOG_RX_CFG1 (0xd02d)
#define PMC_ANALOG_RX_CFG2 (0xd035)
#define PMC_ANALOG_RX_CFG3 (0xd03d)
#define PMC_ANALOG_RX_TERM (1 << 15) /* Bit 15 of RX CFG: 0 for 100 ohms float,
1 for 50 to 1.2V */
#define PMC_ANALOG_RX_EQ_MASK (3 << 8)
#define PMC_ANALOG_RX_EQ_NONE (0 << 8)
#define PMC_ANALOG_RX_EQ_HALF (1 << 8)
#define PMC_ANALOG_RX_EQ_FULL (2 << 8)
#define PMC_ANALOG_RX_EQ_RSVD (3 << 8)
static int
falcon_pm8358_phy_init ( struct efab_nic *efab )
{
int rc, reg, i;
/* This is a XAUI retimer part */
efab->link_options = LPA_EF_10000FULL;
rc = mdio_clause45_reset_mmd ( efab, MDIO_MMDREG_DEVS0_DTEXS );
if ( rc )
return rc;
/* Enable software control of analogue settings */
reg = falcon_mdio_read ( efab, MDIO_MMD_DTEXS, PMC_MASTER_REG );
reg |= PMC_MASTER_ANLG_CTRL;
falcon_mdio_write ( efab, MDIO_MMD_DTEXS, PMC_MASTER_REG, reg );
/* Turn rx eq on for all channels */
for (i=0; i< 3; i++) {
/* The analog CFG registers are evenly spaced 8 apart */
uint16_t addr = PMC_ANALOG_RX_CFG0 + 8*i;
reg = falcon_mdio_read ( efab, MDIO_MMD_DTEXS, addr );
reg = ( reg & ~PMC_ANALOG_RX_EQ_MASK ) | PMC_ANALOG_RX_EQ_FULL;
falcon_mdio_write ( efab, MDIO_MMD_DTEXS, addr, reg );
}
/* Set TEDGE, clear REDGE */
reg = falcon_mdio_read ( efab, MDIO_MMD_DTEXS, PMC_MCONF2_REG );
reg = ( reg & ~PMC_MCONF2_REDGE) | PMC_MCONF2_TEDGE;
falcon_mdio_write ( efab, MDIO_MMD_DTEXS, PMC_MCONF2_REG, reg );
return 0;
}
static struct efab_phy_operations falcon_pm8358_phy_ops = {
.init = falcon_pm8358_phy_init,
.mmds = PM8358_REQUIRED_DEVS,
};
/*******************************************************************************
*
*
* SFE4001 support
*
*
*******************************************************************************/
#define MAX_TEMP_THRESH 90
/* I2C Expander */
#define PCA9539 0x74
#define P0_IN 0x00
#define P0_OUT 0x02
#define P0_CONFIG 0x06
#define P0_EN_1V0X_LBN 0
#define P0_EN_1V0X_WIDTH 1
#define P0_EN_1V2_LBN 1
#define P0_EN_1V2_WIDTH 1
#define P0_EN_2V5_LBN 2
#define P0_EN_2V5_WIDTH 1
#define P0_EN_3V3X_LBN 3
#define P0_EN_3V3X_WIDTH 1
#define P0_EN_5V_LBN 4
#define P0_EN_5V_WIDTH 1
#define P0_X_TRST_LBN 6
#define P0_X_TRST_WIDTH 1
#define P1_IN 0x01
#define P1_CONFIG 0x07
#define P1_AFE_PWD_LBN 0
#define P1_AFE_PWD_WIDTH 1
#define P1_DSP_PWD25_LBN 1
#define P1_DSP_PWD25_WIDTH 1
#define P1_SPARE_LBN 4
#define P1_SPARE_WIDTH 4
/* Temperature Sensor */
#define MAX6647 0x4e
#define RSL 0x02
#define RLHN 0x05
#define WLHO 0x0b
static struct i2c_device i2c_pca9539 = {
.dev_addr = PCA9539,
.dev_addr_len = 1,
.word_addr_len = 1,
};
static struct i2c_device i2c_max6647 = {
.dev_addr = MAX6647,
.dev_addr_len = 1,
.word_addr_len = 1,
};
static int
sfe4001_init ( struct efab_nic *efab )
{
struct i2c_interface *i2c = &efab->i2c_bb.i2c;
efab_dword_t reg;
uint8_t in, cfg, out;
int count, rc;
EFAB_LOG ( "Initialise SFE4001 board\n" );
/* Ensure XGXS and XAUI SerDes are held in reset */
EFAB_POPULATE_DWORD_7 ( reg,
FCN_XX_PWRDNA_EN, 1,
FCN_XX_PWRDNB_EN, 1,
FCN_XX_RSTPLLAB_EN, 1,
FCN_XX_RESETA_EN, 1,
FCN_XX_RESETB_EN, 1,
FCN_XX_RSTXGXSRX_EN, 1,
FCN_XX_RSTXGXSTX_EN, 1 );
falcon_xmac_writel ( efab, &reg, FCN_XX_PWR_RST_REG_MAC);
udelay(10);
/* Set DSP over-temperature alert threshold */
cfg = MAX_TEMP_THRESH;
rc = i2c->write ( i2c, &i2c_max6647, WLHO, &cfg, EFAB_BYTE );
if ( rc )
goto fail1;
/* Read it back and verify */
rc = i2c->read ( i2c, &i2c_max6647, RLHN, &in, EFAB_BYTE );
if ( rc )
goto fail2;
if ( in != MAX_TEMP_THRESH ) {
EFAB_ERR ( "Unable to verify MAX6647 limit (requested=%d "
"confirmed=%d)\n", cfg, in );
rc = -EIO;
goto fail3;
}
/* Clear any previous over-temperature alert */
rc = i2c->read ( i2c, &i2c_max6647, RSL, &in, EFAB_BYTE );
if ( rc )
goto fail4;
/* Enable port 0 and 1 outputs on IO expander */
cfg = 0x00;
rc = i2c->write ( i2c, &i2c_pca9539, P0_CONFIG, &cfg, EFAB_BYTE );
if ( rc )
goto fail5;
cfg = 0xff & ~(1 << P1_SPARE_LBN);
rc = i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &cfg, EFAB_BYTE );
if ( rc )
goto fail6;
/* Turn all power off then wait 1 sec. This ensures PHY is reset */
out = 0xff & ~((0 << P0_EN_1V2_LBN) | (0 << P0_EN_2V5_LBN) |
(0 << P0_EN_3V3X_LBN) | (0 << P0_EN_5V_LBN) |
(0 << P0_EN_1V0X_LBN));
rc = i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE );
if ( rc )
goto fail7;
mdelay(1000);
for (count=0; count<20; count++) {
/* Turn on 1.2V, 2.5V, 3.3V and 5V power rails */
out = 0xff & ~( (1 << P0_EN_1V2_LBN) | (1 << P0_EN_2V5_LBN) |
(1 << P0_EN_3V3X_LBN) | (1 << P0_EN_5V_LBN) |
(1 << P0_X_TRST_LBN) );
rc = i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE );
if ( rc )
goto fail8;
mdelay ( 10 );
/* Turn on the 1V power rail */
out &= ~( 1 << P0_EN_1V0X_LBN );
rc = i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE );
if ( rc )
goto fail9;
EFAB_LOG ( "Waiting for power...(attempt %d)\n", count);
mdelay ( 1000 );
/* Check DSP is powered */
rc = i2c->read ( i2c, &i2c_pca9539, P1_IN, &in, EFAB_BYTE );
if ( rc )
goto fail10;
if ( in & ( 1 << P1_AFE_PWD_LBN ) )
return 0;
}
rc = -ETIMEDOUT;
fail10:
fail9:
fail8:
fail7:
/* Turn off power rails */
out = 0xff;
(void) i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE );
/* Disable port 1 outputs on IO expander */
out = 0xff;
(void) i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &out, EFAB_BYTE );
fail6:
/* Disable port 0 outputs */
out = 0xff;
(void) i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &out, EFAB_BYTE );
fail5:
fail4:
fail3:
fail2:
fail1:
EFAB_ERR ( "Failed initialising SFE4001 board\n" );
return rc;
}
static void
sfe4001_fini ( struct efab_nic *efab )
{
struct i2c_interface *i2c = &efab->i2c_bb.i2c;
uint8_t in, cfg, out;
EFAB_ERR ( "Turning off SFE4001\n" );
/* Turn off all power rails */
out = 0xff;
(void) i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE );
/* Disable port 1 outputs on IO expander */
cfg = 0xff;
(void) i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &cfg, EFAB_BYTE );
/* Disable port 0 outputs on IO expander */
cfg = 0xff;
(void) i2c->write ( i2c, &i2c_pca9539, P0_CONFIG, &cfg, EFAB_BYTE );
/* Clear any over-temperature alert */
(void) i2c->read ( i2c, &i2c_max6647, RSL, &in, EFAB_BYTE );
}
struct efab_board_operations sfe4001_ops = {
.init = sfe4001_init,
.fini = sfe4001_fini,
};
static int sfe4002_init ( struct efab_nic *efab __attribute__((unused)) )
{
return 0;
}
static void sfe4002_fini ( struct efab_nic *efab __attribute__((unused)) )
{
}
struct efab_board_operations sfe4002_ops = {
.init = sfe4002_init,
.fini = sfe4002_fini,
};
static int sfe4003_init ( struct efab_nic *efab __attribute__((unused)) )
{
return 0;
}
static void sfe4003_fini ( struct efab_nic *efab __attribute__((unused)) )
{
}
struct efab_board_operations sfe4003_ops = {
.init = sfe4003_init,
.fini = sfe4003_fini,
};
/*******************************************************************************
*
*
* Hardware initialisation
*
*
*******************************************************************************/
static void
falcon_free_special_buffer ( void *p )
{
/* We don't bother cleaning up the buffer table entries -
* we're hardly limited */
free_phys ( p, EFAB_BUF_ALIGN );
}
static void*
falcon_alloc_special_buffer ( struct efab_nic *efab, int bytes,
struct efab_special_buffer *entry )
{
void* buffer;
int remaining;
efab_qword_t buf_desc;
unsigned long dma_addr;
/* Allocate the buffer, aligned on a buffer address boundary */
buffer = malloc_phys ( bytes, EFAB_BUF_ALIGN );
if ( ! buffer )
return NULL;
/* Push buffer table entries to back the buffer */
entry->id = efab->buffer_head;
entry->dma_addr = dma_addr = virt_to_bus ( buffer );
assert ( ( dma_addr & ( EFAB_BUF_ALIGN - 1 ) ) == 0 );
remaining = bytes;
while ( remaining > 0 ) {
EFAB_POPULATE_QWORD_3 ( buf_desc,
FCN_IP_DAT_BUF_SIZE, FCN_IP_DAT_BUF_SIZE_4K,
FCN_BUF_ADR_FBUF, ( dma_addr >> 12 ),
FCN_BUF_OWNER_ID_FBUF, 0 );
falcon_write_sram ( efab, &buf_desc, efab->buffer_head );
++efab->buffer_head;
dma_addr += EFAB_BUF_ALIGN;
remaining -= EFAB_BUF_ALIGN;
}
EFAB_TRACE ( "Allocated 0x%x bytes at %p backed by buffer table "
"entries 0x%x..0x%x\n", bytes, buffer, entry->id,
efab->buffer_head - 1 );
return buffer;
}
static void
clear_b0_fpga_memories ( struct efab_nic *efab)
{
efab_oword_t blanko, temp;
int offset;
EFAB_ZERO_OWORD ( blanko );
/* Clear the address region register */
EFAB_POPULATE_OWORD_4 ( temp,
FCN_ADR_REGION0, 0,
FCN_ADR_REGION1, ( 1 << 16 ),
FCN_ADR_REGION2, ( 2 << 16 ),
FCN_ADR_REGION3, ( 3 << 16 ) );
falcon_write ( efab, &temp, FCN_ADR_REGION_REG_KER );
EFAB_TRACE ( "Clearing filter and RSS tables\n" );
for ( offset = FCN_RX_FILTER_TBL0 ;
offset < FCN_RX_RSS_INDIR_TBL_B0+0x800 ;
offset += 0x10 ) {
falcon_write ( efab, &blanko, offset );
}
EFAB_TRACE ( "Wiping buffer tables\n" );
/* Notice the 8 byte access mode */
for ( offset = 0x2800000 ;
offset < 0x3000000 ;
offset += 0x8) {
_falcon_writel ( efab, 0, offset );
_falcon_writel ( efab, 0, offset + 4 );
wmb();
}
}
static int
falcon_reset ( struct efab_nic *efab )
{
efab_oword_t glb_ctl_reg_ker;
/* Initiate software reset */
EFAB_POPULATE_OWORD_6 ( glb_ctl_reg_ker,
FCN_PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
FCN_PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
FCN_PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
FCN_EE_RST_CTL, EXCLUDE_FROM_RESET,
FCN_EXT_PHY_RST_DUR, 0x7, /* 10ms */
FCN_SWRST, 1 );
falcon_write ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER );
/* Allow 50ms for reset */
mdelay ( 50 );
/* Check for device reset complete */
falcon_read ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER );
if ( EFAB_OWORD_FIELD ( glb_ctl_reg_ker, FCN_SWRST ) != 0 ) {
EFAB_ERR ( "Reset failed\n" );
return -ETIMEDOUT;
}
if ( ( efab->pci_revision == FALCON_REV_B0 ) && !efab->is_asic ) {
clear_b0_fpga_memories ( efab );
}
return 0;
}
/** Offset of MAC address within EEPROM or Flash */
#define FALCON_MAC_ADDRESS_OFFSET 0x310
/*
* Falcon EEPROM structure
*/
#define SF_NV_CONFIG_BASE 0x300
#define SF_NV_CONFIG_EXTRA 0xA0
struct falcon_nv_config_ver2 {
uint16_t nports;
uint8_t port0_phy_addr;
uint8_t port0_phy_type;
uint8_t port1_phy_addr;
uint8_t port1_phy_type;
uint16_t asic_sub_revision;
uint16_t board_revision;
uint8_t mac_location;
};
struct falcon_nv_extra {
uint16_t magicnumber;
uint16_t structure_version;
uint16_t checksum;
union {
struct falcon_nv_config_ver2 ver2;
} ver_specific;
};
#define BOARD_TYPE(_rev) (_rev >> 8)
static void
falcon_probe_nic_variant ( struct efab_nic *efab, struct pci_device *pci )
{
efab_oword_t altera_build, nic_stat;
int fpga_version;
uint8_t revision;
/* PCI revision */
pci_read_config_byte ( pci, PCI_REVISION, &revision );
efab->pci_revision = revision;
/* Asic vs FPGA */
falcon_read ( efab, &altera_build, FCN_ALTERA_BUILD_REG_KER );
fpga_version = EFAB_OWORD_FIELD ( altera_build, FCN_VER_ALL );
efab->is_asic = (fpga_version == 0);
/* MAC and PCI type */
falcon_read ( efab, &nic_stat, FCN_NIC_STAT_REG );
if ( efab->pci_revision == FALCON_REV_B0 ) {
efab->phy_10g = EFAB_OWORD_FIELD ( nic_stat, FCN_STRAP_10G );
}
else if ( efab->is_asic ) {
efab->phy_10g = EFAB_OWORD_FIELD ( nic_stat, FCN_STRAP_10G );
}
else {
int minor = EFAB_OWORD_FIELD ( altera_build, FCN_VER_MINOR );
efab->phy_10g = ( minor == 0x14 );
}
}
static void
falcon_init_spi_device ( struct efab_nic *efab, struct spi_device *spi )
{
/* Falcon's SPI interface only supports reads/writes of up to 16 bytes.
* Reduce the nvs block size down to satisfy this - which means callers
* should use the nvs_* functions rather than spi_*. */
if ( spi->nvs.block_size > FALCON_SPI_MAX_LEN )
spi->nvs.block_size = FALCON_SPI_MAX_LEN;
spi->bus = &efab->spi_bus;
efab->spi = spi;
}
static int
falcon_probe_spi ( struct efab_nic *efab )
{
efab_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
int has_flash, has_eeprom, ad9bit;
falcon_read ( efab, &nic_stat, FCN_NIC_STAT_REG );
falcon_read ( efab, &gpio_ctl, FCN_GPIO_CTL_REG_KER );
falcon_read ( efab, &ee_vpd_cfg, FCN_EE_VPD_CFG_REG );
/* determine if FLASH / EEPROM is present */
if ( ( efab->pci_revision >= FALCON_REV_B0 ) || efab->is_asic ) {
has_flash = EFAB_OWORD_FIELD ( nic_stat, FCN_SF_PRST );
has_eeprom = EFAB_OWORD_FIELD ( nic_stat, FCN_EE_PRST );
} else {
has_flash = EFAB_OWORD_FIELD ( gpio_ctl, FCN_FLASH_PRESENT );
has_eeprom = EFAB_OWORD_FIELD ( gpio_ctl, FCN_EEPROM_PRESENT );
}
ad9bit = EFAB_OWORD_FIELD ( ee_vpd_cfg, FCN_EE_VPD_EN_AD9_MODE );
/* Configure the SPI and I2C bus */
efab->spi_bus.rw = falcon_spi_rw;
init_i2c_bit_basher ( &efab->i2c_bb, &falcon_i2c_bit_ops );
/* Configure the EEPROM SPI device. Generally, an Atmel 25040
* (or similar) is used, but this is only possible if there is also
* a flash device present to store the boot-time chip configuration.
*/
if ( has_eeprom ) {
if ( has_flash && ad9bit )
init_at25040 ( &efab->spi_eeprom );
else
init_mc25xx640 ( &efab->spi_eeprom );
falcon_init_spi_device ( efab, &efab->spi_eeprom );
}
/* Configure the FLASH SPI device */
if ( has_flash ) {
init_at25f1024 ( &efab->spi_flash );
falcon_init_spi_device ( efab, &efab->spi_flash );
}
EFAB_LOG ( "flash is %s, EEPROM is %s%s\n",
( has_flash ? "present" : "absent" ),
( has_eeprom ? "present " : "absent" ),
( has_eeprom ? (ad9bit ? "(9bit)" : "(16bit)") : "") );
/* The device MUST have flash or eeprom */
if ( ! efab->spi ) {
EFAB_ERR ( "Device appears to have no flash or eeprom\n" );
return -EIO;
}
/* If the device has EEPROM attached, then advertise NVO space */
if ( has_eeprom ) {
nvo_init ( &efab->nvo, &efab->spi_eeprom.nvs, 0x100, 0xf0,
NULL, &efab->netdev->refcnt );
}
return 0;
}
static int
falcon_probe_nvram ( struct efab_nic *efab )
{
struct nvs_device *nvs = &efab->spi->nvs;
struct falcon_nv_extra nv;
int rc, board_revision;
/* Read the MAC address */
rc = nvs_read ( nvs, FALCON_MAC_ADDRESS_OFFSET,
efab->mac_addr, ETH_ALEN );
if ( rc )
return rc;
/* Poke through the NVRAM structure for the PHY type. */
rc = nvs_read ( nvs, SF_NV_CONFIG_BASE + SF_NV_CONFIG_EXTRA,
&nv, sizeof ( nv ) );
if ( rc )
return rc;
/* Handle each supported NVRAM version */
if ( ( le16_to_cpu ( nv.magicnumber ) == FCN_NV_MAGIC_NUMBER ) &&
( le16_to_cpu ( nv.structure_version ) >= 2 ) ) {
struct falcon_nv_config_ver2* ver2 = &nv.ver_specific.ver2;
/* Get the PHY type */
efab->phy_addr = le16_to_cpu ( ver2->port0_phy_addr );
efab->phy_type = le16_to_cpu ( ver2->port0_phy_type );
board_revision = le16_to_cpu ( ver2->board_revision );
}
else {
EFAB_ERR ( "NVram is not recognised\n" );
return -EINVAL;
}
efab->board_type = BOARD_TYPE ( board_revision );
EFAB_TRACE ( "Falcon board %d phy %d @ addr %d\n",
efab->board_type, efab->phy_type, efab->phy_addr );
/* Patch in the board operations */
switch ( efab->board_type ) {
case EFAB_BOARD_SFE4001:
efab->board_op = &sfe4001_ops;
break;
case EFAB_BOARD_SFE4002:
efab->board_op = &sfe4002_ops;
break;
case EFAB_BOARD_SFE4003:
efab->board_op = &sfe4003_ops;
break;
default:
EFAB_ERR ( "Unrecognised board type\n" );
return -EINVAL;
}
/* Patch in MAC operations */
if ( efab->phy_10g )
efab->mac_op = &falcon_xmac_operations;
else
efab->mac_op = &falcon_gmac_operations;
/* Hook in the PHY ops */
switch ( efab->phy_type ) {
case PHY_TYPE_10XPRESS:
efab->phy_op = &falcon_tenxpress_phy_ops;
break;
case PHY_TYPE_CX4:
efab->phy_op = &falcon_xaui_phy_ops;
break;
case PHY_TYPE_XFP:
efab->phy_op = &falcon_xfp_phy_ops;
break;
case PHY_TYPE_CX4_RTMR:
efab->phy_op = &falcon_txc_phy_ops;
break;
case PHY_TYPE_PM8358:
efab->phy_op = &falcon_pm8358_phy_ops;
break;
case PHY_TYPE_1GIG_ALASKA:
efab->phy_op = &falcon_alaska_phy_ops;
break;
default:
EFAB_ERR ( "Unknown PHY type: %d\n", efab->phy_type );
return -EINVAL;
}
return 0;
}
static int
falcon_init_sram ( struct efab_nic *efab )
{
efab_oword_t reg;
int count;
/* use card in internal SRAM mode */
falcon_read ( efab, &reg, FCN_NIC_STAT_REG );
EFAB_SET_OWORD_FIELD ( reg, FCN_ONCHIP_SRAM, 1 );
falcon_write ( efab, &reg, FCN_NIC_STAT_REG );
/* Deactivate any external SRAM that might be present */
EFAB_POPULATE_OWORD_2 ( reg,
FCN_GPIO1_OEN, 1,
FCN_GPIO1_OUT, 1 );
falcon_write ( efab, &reg, FCN_GPIO_CTL_REG_KER );
/* Initiate SRAM reset */
EFAB_POPULATE_OWORD_2 ( reg,
FCN_SRAM_OOB_BT_INIT_EN, 1,
FCN_SRM_NUM_BANKS_AND_BANK_SIZE, 0 );
falcon_write ( efab, &reg, FCN_SRM_CFG_REG_KER );
/* Wait for SRAM reset to complete */
count = 0;
do {
/* SRAM reset is slow; expect around 16ms */
mdelay ( 20 );
/* Check for reset complete */
falcon_read ( efab, &reg, FCN_SRM_CFG_REG_KER );
if ( !EFAB_OWORD_FIELD ( reg, FCN_SRAM_OOB_BT_INIT_EN ) )
return 0;
} while (++count < 20); /* wait up to 0.4 sec */
EFAB_ERR ( "timed out waiting for SRAM reset\n");
return -ETIMEDOUT;
}
static void
falcon_setup_nic ( struct efab_nic *efab )
{
efab_dword_t timer_cmd;
efab_oword_t reg;
int tx_fc, xoff_thresh, xon_thresh;
/* bug5129: Clear the parity enables on the TX data fifos as
* they produce false parity errors because of timing issues
*/
falcon_read ( efab, &reg, FCN_SPARE_REG_KER );
EFAB_SET_OWORD_FIELD ( reg, FCN_MEM_PERR_EN_TX_DATA, 0 );
falcon_write ( efab, &reg, FCN_SPARE_REG_KER );
/* Set up TX and RX descriptor caches in SRAM */
EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_TX_DC_BASE_ADR, 0x130000 );
falcon_write ( efab, &reg, FCN_SRM_TX_DC_CFG_REG_KER );
EFAB_POPULATE_OWORD_1 ( reg, FCN_TX_DC_SIZE, 1 /* 16 descriptors */ );
falcon_write ( efab, &reg, FCN_TX_DC_CFG_REG_KER );
EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_RX_DC_BASE_ADR, 0x100000 );
falcon_write ( efab, &reg, FCN_SRM_RX_DC_CFG_REG_KER );
EFAB_POPULATE_OWORD_1 ( reg, FCN_RX_DC_SIZE, 2 /* 32 descriptors */ );
falcon_write ( efab, &reg, FCN_RX_DC_CFG_REG_KER );
/* Set number of RSS CPUs
* bug7244: Increase filter depth to reduce RX_RESET likelihood
*/
EFAB_POPULATE_OWORD_5 ( reg,
FCN_NUM_KER, 0,
FCN_UDP_FULL_SRCH_LIMIT, 8,
FCN_UDP_WILD_SRCH_LIMIT, 8,
FCN_TCP_WILD_SRCH_LIMIT, 8,
FCN_TCP_FULL_SRCH_LIMIT, 8);
falcon_write ( efab, &reg, FCN_RX_FILTER_CTL_REG_KER );
udelay ( 1000 );
/* Setup RX. Wait for descriptor is broken and must
* be disabled. RXDP recovery shouldn't be needed, but is.
* disable ISCSI parsing because we don't need it
*/
falcon_read ( efab, &reg, FCN_RX_SELF_RST_REG_KER );
EFAB_SET_OWORD_FIELD ( reg, FCN_RX_NODESC_WAIT_DIS, 1 );
EFAB_SET_OWORD_FIELD ( reg, FCN_RX_RECOVERY_EN, 1 );
EFAB_SET_OWORD_FIELD ( reg, FCN_RX_ISCSI_DIS, 1 );
falcon_write ( efab, &reg, FCN_RX_SELF_RST_REG_KER );
/* Determine recommended flow control settings. *
* Flow control is qualified on B0 and A1/1G, not on A1/10G */
if ( efab->pci_revision == FALCON_REV_B0 ) {
tx_fc = 1;
xoff_thresh = 54272; /* ~80Kb - 3*max MTU */
xon_thresh = 27648; /* ~3*max MTU */
}
else if ( !efab->phy_10g ) {
tx_fc = 1;
xoff_thresh = 2048;
xon_thresh = 512;
}
else {
tx_fc = xoff_thresh = xon_thresh = 0;
}
/* Setup TX and RX */
falcon_read ( efab, &reg, FCN_TX_CFG2_REG_KER );
EFAB_SET_OWORD_FIELD ( reg, FCN_TX_DIS_NON_IP_EV, 1 );
falcon_write ( efab, &reg, FCN_TX_CFG2_REG_KER );
falcon_read ( efab, &reg, FCN_RX_CFG_REG_KER );
EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_USR_BUF_SIZE,
(3*4096) / 32 );
if ( efab->pci_revision == FALCON_REV_B0)
EFAB_SET_OWORD_FIELD ( reg, FCN_RX_INGR_EN_B0, 1 );
EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_XON_MAC_TH,
xon_thresh / 256);
EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_XOFF_MAC_TH,
xoff_thresh / 256);
EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_XOFF_MAC_EN, tx_fc);
falcon_write ( efab, &reg, FCN_RX_CFG_REG_KER );
/* Set timer register */
EFAB_POPULATE_DWORD_2 ( timer_cmd,
FCN_TIMER_MODE, FCN_TIMER_MODE_DIS,
FCN_TIMER_VAL, 0 );
falcon_writel ( efab, &timer_cmd, FCN_TIMER_CMD_REG_KER );
}
static void
falcon_init_resources ( struct efab_nic *efab )
{
struct efab_ev_queue *ev_queue = &efab->ev_queue;
struct efab_rx_queue *rx_queue = &efab->rx_queue;
struct efab_tx_queue *tx_queue = &efab->tx_queue;
efab_oword_t reg;
int jumbo;
/* Initialise the ptrs */
tx_queue->read_ptr = tx_queue->write_ptr = 0;
rx_queue->read_ptr = rx_queue->write_ptr = 0;
ev_queue->read_ptr = 0;
/* Push the event queue to the hardware */
EFAB_POPULATE_OWORD_3 ( reg,
FCN_EVQ_EN, 1,
FCN_EVQ_SIZE, FQS(FCN_EVQ, EFAB_EVQ_SIZE),
FCN_EVQ_BUF_BASE_ID, ev_queue->entry.id );
falcon_write ( efab, &reg,
FCN_REVISION_REG ( efab, FCN_EVQ_PTR_TBL_KER ) );
/* Push the tx queue to the hardware */
EFAB_POPULATE_OWORD_8 ( reg,
FCN_TX_DESCQ_EN, 1,
FCN_TX_ISCSI_DDIG_EN, 0,
FCN_TX_ISCSI_DDIG_EN, 0,
FCN_TX_DESCQ_BUF_BASE_ID, tx_queue->entry.id,
FCN_TX_DESCQ_EVQ_ID, 0,
FCN_TX_DESCQ_SIZE, FQS(FCN_TX_DESCQ, EFAB_TXD_SIZE),
FCN_TX_DESCQ_TYPE, 0 /* kernel queue */,
FCN_TX_NON_IP_DROP_DIS_B0, 1 );
falcon_write ( efab, &reg,
FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) );
/* Push the rx queue to the hardware */
jumbo = ( efab->pci_revision == FALCON_REV_B0 ) ? 0 : 1;
EFAB_POPULATE_OWORD_8 ( reg,
FCN_RX_ISCSI_DDIG_EN, 0,
FCN_RX_ISCSI_HDIG_EN, 0,
FCN_RX_DESCQ_BUF_BASE_ID, rx_queue->entry.id,
FCN_RX_DESCQ_EVQ_ID, 0,
FCN_RX_DESCQ_SIZE, FQS(FCN_RX_DESCQ, EFAB_RXD_SIZE),
FCN_RX_DESCQ_TYPE, 0 /* kernel queue */,
FCN_RX_DESCQ_JUMBO, jumbo,
FCN_RX_DESCQ_EN, 1 );
falcon_write ( efab, &reg,
FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) );
/* Program INT_ADR_REG_KER */
EFAB_POPULATE_OWORD_1 ( reg,
FCN_INT_ADR_KER, virt_to_bus ( &efab->int_ker ) );
falcon_write ( efab, &reg, FCN_INT_ADR_REG_KER );
/* Ack the event queue */
falcon_eventq_read_ack ( efab, ev_queue );
}
static void
falcon_fini_resources ( struct efab_nic *efab )
{
efab_oword_t cmd;
/* Disable interrupts */
falcon_interrupts ( efab, 0, 0 );
/* Flush the dma queues */
EFAB_POPULATE_OWORD_2 ( cmd,
FCN_TX_FLUSH_DESCQ_CMD, 1,
FCN_TX_FLUSH_DESCQ, 0 );
falcon_write ( efab, &cmd,
FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) );
EFAB_POPULATE_OWORD_2 ( cmd,
FCN_RX_FLUSH_DESCQ_CMD, 1,
FCN_RX_FLUSH_DESCQ, 0 );
falcon_write ( efab, &cmd,
FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) );
mdelay ( 100 );
/* Remove descriptor rings from card */
EFAB_ZERO_OWORD ( cmd );
falcon_write ( efab, &cmd,
FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) );
falcon_write ( efab, &cmd,
FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) );
falcon_write ( efab, &cmd,
FCN_REVISION_REG ( efab, FCN_EVQ_PTR_TBL_KER ) );
}
/*******************************************************************************
*
*
* Hardware rx path
*
*
*******************************************************************************/
static void
falcon_build_rx_desc ( falcon_rx_desc_t *rxd, struct io_buffer *iob )
{
EFAB_POPULATE_QWORD_2 ( *rxd,
FCN_RX_KER_BUF_SIZE, EFAB_RX_BUF_SIZE,
FCN_RX_KER_BUF_ADR, virt_to_bus ( iob->data ) );
}
static void
falcon_notify_rx_desc ( struct efab_nic *efab, struct efab_rx_queue *rx_queue )
{
efab_dword_t reg;
int ptr = rx_queue->write_ptr % EFAB_RXD_SIZE;
EFAB_POPULATE_DWORD_1 ( reg, FCN_RX_DESC_WPTR_DWORD, ptr );
falcon_writel ( efab, &reg, FCN_RX_DESC_UPD_REG_KER_DWORD );
}
/*******************************************************************************
*
*
* Hardware tx path
*
*
*******************************************************************************/
static void
falcon_build_tx_desc ( falcon_tx_desc_t *txd, struct io_buffer *iob )
{
EFAB_POPULATE_QWORD_2 ( *txd,
FCN_TX_KER_BYTE_CNT, iob_len ( iob ),
FCN_TX_KER_BUF_ADR, virt_to_bus ( iob->data ) );
}
static void
falcon_notify_tx_desc ( struct efab_nic *efab,
struct efab_tx_queue *tx_queue )
{
efab_dword_t reg;
int ptr = tx_queue->write_ptr % EFAB_TXD_SIZE;
EFAB_POPULATE_DWORD_1 ( reg, FCN_TX_DESC_WPTR_DWORD, ptr );
falcon_writel ( efab, &reg, FCN_TX_DESC_UPD_REG_KER_DWORD );
}
/*******************************************************************************
*
*
* Software receive interface
*
*
*******************************************************************************/
static int
efab_fill_rx_queue ( struct efab_nic *efab,
struct efab_rx_queue *rx_queue )
{
int fill_level = rx_queue->write_ptr - rx_queue->read_ptr;
int space = EFAB_NUM_RX_DESC - fill_level - 1;
int pushed = 0;
while ( space ) {
int buf_id = rx_queue->write_ptr % EFAB_NUM_RX_DESC;
int desc_id = rx_queue->write_ptr % EFAB_RXD_SIZE;
struct io_buffer *iob;
falcon_rx_desc_t *rxd;
assert ( rx_queue->buf[buf_id] == NULL );
iob = alloc_iob ( EFAB_RX_BUF_SIZE );
if ( !iob )
break;
EFAB_TRACE ( "pushing rx_buf[%d] iob %p data %p\n",
buf_id, iob, iob->data );
rx_queue->buf[buf_id] = iob;
rxd = rx_queue->ring + desc_id;
falcon_build_rx_desc ( rxd, iob );
++rx_queue->write_ptr;
++pushed;
--space;
}
if ( pushed ) {
/* Push the ptr to hardware */
falcon_notify_rx_desc ( efab, rx_queue );
fill_level = rx_queue->write_ptr - rx_queue->read_ptr;
EFAB_TRACE ( "pushed %d rx buffers to fill level %d\n",
pushed, fill_level );
}
if ( fill_level == 0 )
return -ENOMEM;
return 0;
}
static void
efab_receive ( struct efab_nic *efab, unsigned int id, int len, int drop )
{
struct efab_rx_queue *rx_queue = &efab->rx_queue;
struct io_buffer *iob;
unsigned int read_ptr = rx_queue->read_ptr % EFAB_RXD_SIZE;
unsigned int buf_ptr = rx_queue->read_ptr % EFAB_NUM_RX_DESC;
assert ( id == read_ptr );
/* Pop this rx buffer out of the software ring */
iob = rx_queue->buf[buf_ptr];
rx_queue->buf[buf_ptr] = NULL;
EFAB_TRACE ( "popping rx_buf[%d] iob %p data %p with %d bytes %s\n",
id, iob, iob->data, len, drop ? "bad" : "ok" );
/* Pass the packet up if required */
if ( drop )
free_iob ( iob );
else {
iob_put ( iob, len );
netdev_rx ( efab->netdev, iob );
}
++rx_queue->read_ptr;
}
/*******************************************************************************
*
*
* Software transmit interface
*
*
*******************************************************************************/
static int
efab_transmit ( struct net_device *netdev, struct io_buffer *iob )
{
struct efab_nic *efab = netdev->priv;
struct efab_tx_queue *tx_queue = &efab->tx_queue;
int fill_level, space;
falcon_tx_desc_t *txd;
int buf_id;
fill_level = tx_queue->write_ptr - tx_queue->read_ptr;
space = EFAB_TXD_SIZE - fill_level - 1;
if ( space < 1 )
return -ENOBUFS;
/* Save the iobuffer for later completion */
buf_id = tx_queue->write_ptr % EFAB_TXD_SIZE;
assert ( tx_queue->buf[buf_id] == NULL );
tx_queue->buf[buf_id] = iob;
EFAB_TRACE ( "tx_buf[%d] for iob %p data %p len %zd\n",
buf_id, iob, iob->data, iob_len ( iob ) );
/* Form the descriptor, and push it to hardware */
txd = tx_queue->ring + buf_id;
falcon_build_tx_desc ( txd, iob );
++tx_queue->write_ptr;
falcon_notify_tx_desc ( efab, tx_queue );
return 0;
}
static int
efab_transmit_done ( struct efab_nic *efab, int id )
{
struct efab_tx_queue *tx_queue = &efab->tx_queue;
unsigned int read_ptr, stop;
/* Complete all buffers from read_ptr up to and including id */
read_ptr = tx_queue->read_ptr % EFAB_TXD_SIZE;
stop = ( id + 1 ) % EFAB_TXD_SIZE;
while ( read_ptr != stop ) {
struct io_buffer *iob = tx_queue->buf[read_ptr];
assert ( iob );
/* Complete the tx buffer */
if ( iob )
netdev_tx_complete ( efab->netdev, iob );
tx_queue->buf[read_ptr] = NULL;
++tx_queue->read_ptr;
read_ptr = tx_queue->read_ptr % EFAB_TXD_SIZE;
}
return 0;
}
/*******************************************************************************
*
*
* Hardware event path
*
*
*******************************************************************************/
static void
falcon_clear_interrupts ( struct efab_nic *efab )
{
efab_dword_t reg;
if ( efab->pci_revision == FALCON_REV_B0 ) {
/* read the ISR */
falcon_readl( efab, &reg, INT_ISR0_B0 );
}
else {
/* write to the INT_ACK register */
EFAB_ZERO_DWORD ( reg );
falcon_writel ( efab, &reg, FCN_INT_ACK_KER_REG_A1 );
mb();
falcon_readl ( efab, &reg,
WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1 );
}
}
static void
falcon_handle_event ( struct efab_nic *efab, falcon_event_t *evt )
{
int ev_code, desc_ptr, len, drop;
/* Decode event */
ev_code = EFAB_QWORD_FIELD ( *evt, FCN_EV_CODE );
switch ( ev_code ) {
case FCN_TX_IP_EV_DECODE:
desc_ptr = EFAB_QWORD_FIELD ( *evt, FCN_TX_EV_DESC_PTR );
efab_transmit_done ( efab, desc_ptr );
break;
case FCN_RX_IP_EV_DECODE:
desc_ptr = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_DESC_PTR );
len = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_BYTE_CNT );
drop = !EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_PKT_OK );
efab_receive ( efab, desc_ptr, len, drop );
break;
default:
EFAB_TRACE ( "Unknown event type %d\n", ev_code );
break;
}
}
/*******************************************************************************
*
*
* Software (polling) interrupt handler
*
*
*******************************************************************************/
static void
efab_poll ( struct net_device *netdev )
{
struct efab_nic *efab = netdev->priv;
struct efab_ev_queue *ev_queue = &efab->ev_queue;
struct efab_rx_queue *rx_queue = &efab->rx_queue;
falcon_event_t *evt;
/* Read the event queue by directly looking for events
* (we don't even bother to read the eventq write ptr) */
evt = ev_queue->ring + ev_queue->read_ptr;
while ( falcon_event_present ( evt ) ) {
EFAB_TRACE ( "Event at index 0x%x address %p is "
EFAB_QWORD_FMT "\n", ev_queue->read_ptr,
evt, EFAB_QWORD_VAL ( *evt ) );
falcon_handle_event ( efab, evt );
/* Clear the event */
EFAB_SET_QWORD ( *evt );
/* Move to the next event. We don't ack the event
* queue until the end */
ev_queue->read_ptr = ( ( ev_queue->read_ptr + 1 ) %
EFAB_EVQ_SIZE );
evt = ev_queue->ring + ev_queue->read_ptr;
}
/* Push more buffers if needed */
(void) efab_fill_rx_queue ( efab, rx_queue );
/* Clear any pending interrupts */
falcon_clear_interrupts ( efab );
/* Ack the event queue */
falcon_eventq_read_ack ( efab, ev_queue );
}
static void
efab_irq ( struct net_device *netdev, int enable )
{
struct efab_nic *efab = netdev->priv;
struct efab_ev_queue *ev_queue = &efab->ev_queue;
switch ( enable ) {
case 0:
falcon_interrupts ( efab, 0, 0 );
break;
case 1:
falcon_interrupts ( efab, 1, 0 );
falcon_eventq_read_ack ( efab, ev_queue );
break;
case 2:
falcon_interrupts ( efab, 1, 1 );
break;
}
}
/*******************************************************************************
*
*
* Software open/close
*
*
*******************************************************************************/
static void
efab_free_resources ( struct efab_nic *efab )
{
struct efab_ev_queue *ev_queue = &efab->ev_queue;
struct efab_rx_queue *rx_queue = &efab->rx_queue;
struct efab_tx_queue *tx_queue = &efab->tx_queue;
int i;
for ( i = 0; i < EFAB_NUM_RX_DESC; i++ ) {
if ( rx_queue->buf[i] )
free_iob ( rx_queue->buf[i] );
}
for ( i = 0; i < EFAB_TXD_SIZE; i++ ) {
if ( tx_queue->buf[i] )
netdev_tx_complete ( efab->netdev, tx_queue->buf[i] );
}
if ( rx_queue->ring )
falcon_free_special_buffer ( rx_queue->ring );
if ( tx_queue->ring )
falcon_free_special_buffer ( tx_queue->ring );
if ( ev_queue->ring )
falcon_free_special_buffer ( ev_queue->ring );
memset ( rx_queue, 0, sizeof ( *rx_queue ) );
memset ( tx_queue, 0, sizeof ( *tx_queue ) );
memset ( ev_queue, 0, sizeof ( *ev_queue ) );
/* Ensure subsequent buffer allocations start at id 0 */
efab->buffer_head = 0;
}
static int
efab_alloc_resources ( struct efab_nic *efab )
{
struct efab_ev_queue *ev_queue = &efab->ev_queue;
struct efab_rx_queue *rx_queue = &efab->rx_queue;
struct efab_tx_queue *tx_queue = &efab->tx_queue;
size_t bytes;
/* Allocate the hardware event queue */
bytes = sizeof ( falcon_event_t ) * EFAB_TXD_SIZE;
ev_queue->ring = falcon_alloc_special_buffer ( efab, bytes,
&ev_queue->entry );
if ( !ev_queue->ring )
goto fail1;
/* Initialise the hardware event queue */
memset ( ev_queue->ring, 0xff, bytes );
/* Allocate the hardware tx queue */
bytes = sizeof ( falcon_tx_desc_t ) * EFAB_TXD_SIZE;
tx_queue->ring = falcon_alloc_special_buffer ( efab, bytes,
&tx_queue->entry );
if ( ! tx_queue->ring )
goto fail2;
/* Allocate the hardware rx queue */
bytes = sizeof ( falcon_rx_desc_t ) * EFAB_RXD_SIZE;
rx_queue->ring = falcon_alloc_special_buffer ( efab, bytes,
&rx_queue->entry );
if ( ! rx_queue->ring )
goto fail3;
return 0;
fail3:
falcon_free_special_buffer ( tx_queue->ring );
tx_queue->ring = NULL;
fail2:
falcon_free_special_buffer ( ev_queue->ring );
ev_queue->ring = NULL;
fail1:
return -ENOMEM;
}
static int
efab_init_mac ( struct efab_nic *efab )
{
int count, rc;
/* This can take several seconds */
EFAB_LOG ( "Waiting for link..\n" );
for ( count=0; count<5; count++ ) {
rc = efab->mac_op->init ( efab );
if ( rc ) {
EFAB_ERR ( "Failed reinitialising MAC, error %s\n",
strerror ( rc ));
return rc;
}
/* Sleep for 2s to wait for the link to settle, either
* because we want to use it, or because we're about
* to reset the mac anyway
*/
mdelay ( 2000 );
if ( ! efab->link_up ) {
EFAB_ERR ( "!\n" );
continue;
}
EFAB_LOG ( "\n%dMbps %s-duplex\n",
( efab->link_options & LPA_EF_10000 ? 10000 :
( efab->link_options & LPA_EF_1000 ? 1000 :
( efab->link_options & LPA_100 ? 100 : 10 ) ) ),
( efab->link_options & LPA_EF_DUPLEX ?
"full" : "half" ) );
/* TODO: Move link state handling to the poll() routine */
netdev_link_up ( efab->netdev );
return 0;
}
EFAB_ERR ( "timed initialising MAC\n" );
return -ETIMEDOUT;
}
static void
efab_close ( struct net_device *netdev )
{
struct efab_nic *efab = netdev->priv;
falcon_fini_resources ( efab );
efab_free_resources ( efab );
efab->board_op->fini ( efab );
falcon_reset ( efab );
}
static int
efab_open ( struct net_device *netdev )
{
struct efab_nic *efab = netdev->priv;
struct efab_rx_queue *rx_queue = &efab->rx_queue;
int rc;
rc = falcon_reset ( efab );
if ( rc )
goto fail1;
rc = efab->board_op->init ( efab );
if ( rc )
goto fail2;
rc = falcon_init_sram ( efab );
if ( rc )
goto fail3;
/* Configure descriptor caches before pushing hardware queues */
falcon_setup_nic ( efab );
rc = efab_alloc_resources ( efab );
if ( rc )
goto fail4;
falcon_init_resources ( efab );
/* Push rx buffers */
rc = efab_fill_rx_queue ( efab, rx_queue );
if ( rc )
goto fail5;
/* Try and bring the interface up */
rc = efab_init_mac ( efab );
if ( rc )
goto fail6;
return 0;
fail6:
fail5:
efab_free_resources ( efab );
fail4:
fail3:
efab->board_op->fini ( efab );
fail2:
falcon_reset ( efab );
fail1:
return rc;
}
static struct net_device_operations efab_operations = {
.open = efab_open,
.close = efab_close,
.transmit = efab_transmit,
.poll = efab_poll,
.irq = efab_irq,
};
static void
efab_remove ( struct pci_device *pci )
{
struct net_device *netdev = pci_get_drvdata ( pci );
struct efab_nic *efab = netdev->priv;
if ( efab->membase ) {
falcon_reset ( efab );
iounmap ( efab->membase );
efab->membase = NULL;
}
if ( efab->nvo.nvs ) {
unregister_nvo ( &efab->nvo );
efab->nvo.nvs = NULL;
}
unregister_netdev ( netdev );
netdev_nullify ( netdev );
netdev_put ( netdev );
}
static int
efab_probe ( struct pci_device *pci )
{
struct net_device *netdev;
struct efab_nic *efab;
unsigned long mmio_start, mmio_len;
int rc;
/* Create the network adapter */
netdev = alloc_etherdev ( sizeof ( struct efab_nic ) );
if ( ! netdev ) {
rc = -ENOMEM;
goto fail1;
}
/* Initialise the network adapter, and initialise private storage */
netdev_init ( netdev, &efab_operations );
pci_set_drvdata ( pci, netdev );
netdev->dev = &pci->dev;
efab = netdev->priv;
memset ( efab, 0, sizeof ( *efab ) );
efab->netdev = netdev;
/* Get iobase/membase */
mmio_start = pci_bar_start ( pci, PCI_BASE_ADDRESS_2 );
mmio_len = pci_bar_size ( pci, PCI_BASE_ADDRESS_2 );
efab->membase = pci_ioremap ( pci, mmio_start, mmio_len );
EFAB_TRACE ( "BAR of %lx bytes at phys %lx mapped at %p\n",
mmio_len, mmio_start, efab->membase );
/* Enable the PCI device */
adjust_pci_device ( pci );
efab->iobase = pci->ioaddr & ~3;
/* Determine the NIC variant */
falcon_probe_nic_variant ( efab, pci );
/* Read the SPI interface and determine the MAC address,
* and the board and phy variant. Hook in the op tables */
rc = falcon_probe_spi ( efab );
if ( rc )
goto fail2;
rc = falcon_probe_nvram ( efab );
if ( rc )
goto fail3;
memcpy ( netdev->hw_addr, efab->mac_addr, ETH_ALEN );
rc = register_netdev ( netdev );
if ( rc )
goto fail4;
netdev_link_up ( netdev );
/* Advertise non-volatile storage */
if ( efab->nvo.nvs ) {
rc = register_nvo ( &efab->nvo, netdev_settings ( netdev ) );
if ( rc )
goto fail5;
}
EFAB_LOG ( "Found %s EtherFabric %s %s revision %d\n", pci->id->name,
efab->is_asic ? "ASIC" : "FPGA",
efab->phy_10g ? "10G" : "1G",
efab->pci_revision );
return 0;
fail5:
unregister_netdev ( netdev );
fail4:
fail3:
fail2:
iounmap ( efab->membase );
efab->membase = NULL;
netdev_put ( netdev );
fail1:
return rc;
}
static struct pci_device_id efab_nics[] = {
PCI_ROM(0x1924, 0x0703, "falcon", "EtherFabric Falcon", 0),
PCI_ROM(0x1924, 0x0710, "falconb0", "EtherFabric FalconB0", 0),
};
struct pci_driver etherfabric_driver __pci_driver = {
.ids = efab_nics,
.id_count = sizeof ( efab_nics ) / sizeof ( efab_nics[0] ),
.probe = efab_probe,
.remove = efab_remove,
};
/*
* Local variables:
* c-basic-offset: 8
* c-indent-level: 8
* tab-width: 8
* End:
*/