blob: ea3ebf68dcbd34da14d552ba518f952c41d13a1a [file] [log] [blame]
/*
* Copyright (C) 2012 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* You can also choose to distribute this program under the terms of
* the Unmodified Binary Distribution Licence (as given in the file
* COPYING.UBDL), provided that you have satisfied its requirements.
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <byteswap.h>
#include <ipxe/netdevice.h>
#include <ipxe/ethernet.h>
#include <ipxe/if_ether.h>
#include <ipxe/iobuf.h>
#include <ipxe/dma.h>
#include <ipxe/pci.h>
#include <ipxe/profile.h>
#include "intel.h"
/** @file
*
* Intel 10/100/1000 network card driver
*
*/
/** VM transmit profiler */
static struct profiler intel_vm_tx_profiler __profiler =
{ .name = "intel.vm_tx" };
/** VM receive refill profiler */
static struct profiler intel_vm_refill_profiler __profiler =
{ .name = "intel.vm_refill" };
/** VM poll profiler */
static struct profiler intel_vm_poll_profiler __profiler =
{ .name = "intel.vm_poll" };
/******************************************************************************
*
* EEPROM interface
*
******************************************************************************
*/
/**
* Read data from EEPROM
*
* @v nvs NVS device
* @v address Address from which to read
* @v data Data buffer
* @v len Length of data buffer
* @ret rc Return status code
*/
static int intel_read_eeprom ( struct nvs_device *nvs, unsigned int address,
void *data, size_t len ) {
struct intel_nic *intel =
container_of ( nvs, struct intel_nic, eeprom );
unsigned int i;
uint32_t value;
uint16_t *data_word = data;
/* Sanity check. We advertise a blocksize of one word, so
* should only ever receive single-word requests.
*/
assert ( len == sizeof ( *data_word ) );
/* Initiate read */
writel ( ( INTEL_EERD_START | ( address << intel->eerd_addr_shift ) ),
intel->regs + INTEL_EERD );
/* Wait for read to complete */
for ( i = 0 ; i < INTEL_EEPROM_MAX_WAIT_MS ; i++ ) {
/* If read is not complete, delay 1ms and retry */
value = readl ( intel->regs + INTEL_EERD );
if ( ! ( value & intel->eerd_done ) ) {
mdelay ( 1 );
continue;
}
/* Extract data */
*data_word = cpu_to_le16 ( INTEL_EERD_DATA ( value ) );
return 0;
}
DBGC ( intel, "INTEL %p timed out waiting for EEPROM read\n", intel );
return -ETIMEDOUT;
}
/**
* Write data to EEPROM
*
* @v nvs NVS device
* @v address Address to which to write
* @v data Data buffer
* @v len Length of data buffer
* @ret rc Return status code
*/
static int intel_write_eeprom ( struct nvs_device *nvs,
unsigned int address __unused,
const void *data __unused,
size_t len __unused ) {
struct intel_nic *intel =
container_of ( nvs, struct intel_nic, eeprom );
DBGC ( intel, "INTEL %p EEPROM write not supported\n", intel );
return -ENOTSUP;
}
/**
* Initialise EEPROM
*
* @v intel Intel device
* @ret rc Return status code
*/
static int intel_init_eeprom ( struct intel_nic *intel ) {
unsigned int i;
uint32_t value;
/* The NIC automatically detects the type of attached EEPROM.
* The EERD register provides access to only a single word at
* a time, so we pretend to have a single-word block size.
*
* The EEPROM size may be larger than the minimum size, but
* this doesn't matter to us since we access only the first
* few words.
*/
intel->eeprom.word_len_log2 = INTEL_EEPROM_WORD_LEN_LOG2;
intel->eeprom.size = INTEL_EEPROM_MIN_SIZE_WORDS;
intel->eeprom.block_size = 1;
intel->eeprom.read = intel_read_eeprom;
intel->eeprom.write = intel_write_eeprom;
/* The layout of the EERD register was changed at some point
* to accommodate larger EEPROMs. Read from address zero (for
* which the request layouts are compatible) to determine
* which type of register we have.
*/
writel ( INTEL_EERD_START, intel->regs + INTEL_EERD );
for ( i = 0 ; i < INTEL_EEPROM_MAX_WAIT_MS ; i++ ) {
value = readl ( intel->regs + INTEL_EERD );
if ( value & INTEL_EERD_DONE_LARGE ) {
DBGC ( intel, "INTEL %p has large-format EERD\n",
intel );
intel->eerd_done = INTEL_EERD_DONE_LARGE;
intel->eerd_addr_shift = INTEL_EERD_ADDR_SHIFT_LARGE;
return 0;
}
if ( value & INTEL_EERD_DONE_SMALL ) {
DBGC ( intel, "INTEL %p has small-format EERD\n",
intel );
intel->eerd_done = INTEL_EERD_DONE_SMALL;
intel->eerd_addr_shift = INTEL_EERD_ADDR_SHIFT_SMALL;
return 0;
}
mdelay ( 1 );
}
DBGC ( intel, "INTEL %p timed out waiting for initial EEPROM read "
"(value %08x)\n", intel, value );
return -ETIMEDOUT;
}
/******************************************************************************
*
* MAC address
*
******************************************************************************
*/
/**
* Fetch initial MAC address from EEPROM
*
* @v intel Intel device
* @v hw_addr Hardware address to fill in
* @ret rc Return status code
*/
static int intel_fetch_mac_eeprom ( struct intel_nic *intel,
uint8_t *hw_addr ) {
int rc;
/* Initialise EEPROM */
if ( ( rc = intel_init_eeprom ( intel ) ) != 0 )
return rc;
/* Read base MAC address from EEPROM */
if ( ( rc = nvs_read ( &intel->eeprom, INTEL_EEPROM_MAC,
hw_addr, ETH_ALEN ) ) != 0 ) {
DBGC ( intel, "INTEL %p could not read EEPROM base MAC "
"address: %s\n", intel, strerror ( rc ) );
return rc;
}
/* Adjust MAC address for multi-port devices */
hw_addr[ETH_ALEN-1] ^= intel->port;
DBGC ( intel, "INTEL %p has EEPROM MAC address %s (port %d)\n",
intel, eth_ntoa ( hw_addr ), intel->port );
return 0;
}
/**
* Fetch initial MAC address
*
* @v intel Intel device
* @v hw_addr Hardware address to fill in
* @ret rc Return status code
*/
static int intel_fetch_mac ( struct intel_nic *intel, uint8_t *hw_addr ) {
union intel_receive_address mac;
int rc;
/* Read current address from RAL0/RAH0 */
mac.reg.low = cpu_to_le32 ( readl ( intel->regs + INTEL_RAL0 ) );
mac.reg.high = cpu_to_le32 ( readl ( intel->regs + INTEL_RAH0 ) );
DBGC ( intel, "INTEL %p has autoloaded MAC address %s\n",
intel, eth_ntoa ( mac.raw ) );
/* Use current address if valid */
if ( is_valid_ether_addr ( mac.raw ) ) {
memcpy ( hw_addr, mac.raw, ETH_ALEN );
return 0;
}
/* Otherwise, try to read address from EEPROM */
if ( ( rc = intel_fetch_mac_eeprom ( intel, hw_addr ) ) == 0 )
return 0;
DBGC ( intel, "INTEL %p has no MAC address to use\n", intel );
return -ENOENT;
}
/******************************************************************************
*
* Device reset
*
******************************************************************************
*/
/**
* Reset hardware
*
* @v intel Intel device
* @ret rc Return status code
*/
static int intel_reset ( struct intel_nic *intel ) {
uint32_t pbs;
uint32_t pba;
uint32_t ctrl;
uint32_t status;
uint32_t orig_ctrl;
uint32_t orig_status;
/* Record initial control and status register values */
orig_ctrl = ctrl = readl ( intel->regs + INTEL_CTRL );
orig_status = readl ( intel->regs + INTEL_STATUS );
/* Force RX and TX packet buffer allocation, to work around an
* errata in ICH devices.
*/
if ( intel->flags & INTEL_PBS_ERRATA ) {
DBGC ( intel, "INTEL %p WARNING: applying ICH PBS/PBA errata\n",
intel );
pbs = readl ( intel->regs + INTEL_PBS );
pba = readl ( intel->regs + INTEL_PBA );
writel ( 0x08, intel->regs + INTEL_PBA );
writel ( 0x10, intel->regs + INTEL_PBS );
DBGC ( intel, "INTEL %p PBS %#08x->%#08x PBA %#08x->%#08x\n",
intel, pbs, readl ( intel->regs + INTEL_PBS ),
pba, readl ( intel->regs + INTEL_PBA ) );
}
/* Always reset MAC. Required to reset the TX and RX rings. */
writel ( ( ctrl | INTEL_CTRL_RST ), intel->regs + INTEL_CTRL );
mdelay ( INTEL_RESET_DELAY_MS );
/* Set a sensible default configuration */
if ( ! ( intel->flags & INTEL_NO_ASDE ) )
ctrl |= INTEL_CTRL_ASDE;
ctrl |= INTEL_CTRL_SLU;
ctrl &= ~( INTEL_CTRL_LRST | INTEL_CTRL_FRCSPD | INTEL_CTRL_FRCDPLX );
writel ( ctrl, intel->regs + INTEL_CTRL );
mdelay ( INTEL_RESET_DELAY_MS );
/* On some models (notably ICH), the PHY reset mechanism
* appears to be broken. In particular, the PHY_CTRL register
* will be correctly loaded from NVM but the values will not
* be propagated to the "OEM bits" PHY register. This
* typically has the effect of dropping the link speed to
* 10Mbps.
*
* Work around this problem by skipping the PHY reset if
* either (a) the link is already up, or (b) this particular
* NIC is known to be broken.
*/
status = readl ( intel->regs + INTEL_STATUS );
if ( ( intel->flags & INTEL_NO_PHY_RST ) ||
( status & INTEL_STATUS_LU ) ) {
DBGC ( intel, "INTEL %p %sMAC reset (%08x/%08x was "
"%08x/%08x)\n", intel,
( ( intel->flags & INTEL_NO_PHY_RST ) ? "forced " : "" ),
ctrl, status, orig_ctrl, orig_status );
return 0;
}
/* Reset PHY and MAC simultaneously */
writel ( ( ctrl | INTEL_CTRL_RST | INTEL_CTRL_PHY_RST ),
intel->regs + INTEL_CTRL );
mdelay ( INTEL_RESET_DELAY_MS );
/* PHY reset is not self-clearing on all models */
writel ( ctrl, intel->regs + INTEL_CTRL );
mdelay ( INTEL_RESET_DELAY_MS );
status = readl ( intel->regs + INTEL_STATUS );
DBGC ( intel, "INTEL %p MAC+PHY reset (%08x/%08x was %08x/%08x)\n",
intel, ctrl, status, orig_ctrl, orig_status );
return 0;
}
/******************************************************************************
*
* Link state
*
******************************************************************************
*/
/**
* Check link state
*
* @v netdev Network device
*/
static void intel_check_link ( struct net_device *netdev ) {
struct intel_nic *intel = netdev->priv;
uint32_t status;
/* Read link status */
status = readl ( intel->regs + INTEL_STATUS );
DBGC ( intel, "INTEL %p link status is %08x\n", intel, status );
/* Update network device */
if ( status & INTEL_STATUS_LU ) {
netdev_link_up ( netdev );
} else {
netdev_link_down ( netdev );
}
}
/******************************************************************************
*
* Descriptors
*
******************************************************************************
*/
/**
* Populate transmit descriptor
*
* @v tx Transmit descriptor
* @v addr Data buffer address
* @v len Length of data
*/
void intel_describe_tx ( struct intel_descriptor *tx, physaddr_t addr,
size_t len ) {
/* Populate transmit descriptor */
tx->address = cpu_to_le64 ( addr );
tx->length = cpu_to_le16 ( len );
tx->flags = 0;
tx->command = ( INTEL_DESC_CMD_RS | INTEL_DESC_CMD_IFCS |
INTEL_DESC_CMD_EOP );
tx->status = 0;
}
/**
* Populate advanced transmit descriptor
*
* @v tx Transmit descriptor
* @v addr Data buffer address
* @v len Length of data
*/
void intel_describe_tx_adv ( struct intel_descriptor *tx, physaddr_t addr,
size_t len ) {
/* Populate advanced transmit descriptor */
tx->address = cpu_to_le64 ( addr );
tx->length = cpu_to_le16 ( len );
tx->flags = INTEL_DESC_FL_DTYP_DATA;
tx->command = ( INTEL_DESC_CMD_DEXT | INTEL_DESC_CMD_RS |
INTEL_DESC_CMD_IFCS | INTEL_DESC_CMD_EOP );
tx->status = cpu_to_le32 ( INTEL_DESC_STATUS_PAYLEN ( len ) );
}
/**
* Populate receive descriptor
*
* @v rx Receive descriptor
* @v addr Data buffer address
* @v len Length of data
*/
void intel_describe_rx ( struct intel_descriptor *rx, physaddr_t addr,
size_t len __unused ) {
/* Populate transmit descriptor */
rx->address = cpu_to_le64 ( addr );
rx->length = 0;
rx->status = 0;
}
/******************************************************************************
*
* Network device interface
*
******************************************************************************
*/
/**
* Disable descriptor ring
*
* @v intel Intel device
* @v reg Register block
* @ret rc Return status code
*/
static int intel_disable_ring ( struct intel_nic *intel, unsigned int reg ) {
uint32_t dctl;
unsigned int i;
/* Disable ring */
writel ( 0, ( intel->regs + reg + INTEL_xDCTL ) );
/* Wait for disable to complete */
for ( i = 0 ; i < INTEL_DISABLE_MAX_WAIT_MS ; i++ ) {
/* Check if ring is disabled */
dctl = readl ( intel->regs + reg + INTEL_xDCTL );
if ( ! ( dctl & INTEL_xDCTL_ENABLE ) )
return 0;
/* Delay */
mdelay ( 1 );
}
DBGC ( intel, "INTEL %p ring %05x timed out waiting for disable "
"(dctl %08x)\n", intel, reg, dctl );
return -ETIMEDOUT;
}
/**
* Reset descriptor ring
*
* @v intel Intel device
* @v reg Register block
* @ret rc Return status code
*/
void intel_reset_ring ( struct intel_nic *intel, unsigned int reg ) {
/* Disable ring. Ignore errors and continue to reset the ring anyway */
intel_disable_ring ( intel, reg );
/* Clear ring length */
writel ( 0, ( intel->regs + reg + INTEL_xDLEN ) );
/* Clear ring address */
writel ( 0, ( intel->regs + reg + INTEL_xDBAH ) );
writel ( 0, ( intel->regs + reg + INTEL_xDBAL ) );
/* Reset head and tail pointers */
writel ( 0, ( intel->regs + reg + INTEL_xDH ) );
writel ( 0, ( intel->regs + reg + INTEL_xDT ) );
}
/**
* Create descriptor ring
*
* @v intel Intel device
* @v ring Descriptor ring
* @ret rc Return status code
*/
int intel_create_ring ( struct intel_nic *intel, struct intel_ring *ring ) {
physaddr_t address;
uint32_t dctl;
/* Allocate descriptor ring. Align ring on its own size to
* prevent any possible page-crossing errors due to hardware
* errata.
*/
ring->desc = dma_alloc ( intel->dma, &ring->map, ring->len,
ring->len );
if ( ! ring->desc )
return -ENOMEM;
/* Initialise descriptor ring */
memset ( ring->desc, 0, ring->len );
/* Program ring address */
address = dma ( &ring->map, ring->desc );
writel ( ( address & 0xffffffffUL ),
( intel->regs + ring->reg + INTEL_xDBAL ) );
if ( sizeof ( physaddr_t ) > sizeof ( uint32_t ) ) {
writel ( ( ( ( uint64_t ) address ) >> 32 ),
( intel->regs + ring->reg + INTEL_xDBAH ) );
} else {
writel ( 0, intel->regs + ring->reg + INTEL_xDBAH );
}
/* Program ring length */
writel ( ring->len, ( intel->regs + ring->reg + INTEL_xDLEN ) );
/* Reset head and tail pointers */
writel ( 0, ( intel->regs + ring->reg + INTEL_xDH ) );
writel ( 0, ( intel->regs + ring->reg + INTEL_xDT ) );
/* Enable ring */
dctl = readl ( intel->regs + ring->reg + INTEL_xDCTL );
dctl |= INTEL_xDCTL_ENABLE;
writel ( dctl, intel->regs + ring->reg + INTEL_xDCTL );
DBGC ( intel, "INTEL %p ring %05x is at [%08lx,%08lx)\n",
intel, ring->reg, virt_to_phys ( ring->desc ),
( virt_to_phys ( ring->desc ) + ring->len ) );
return 0;
}
/**
* Destroy descriptor ring
*
* @v intel Intel device
* @v ring Descriptor ring
*/
void intel_destroy_ring ( struct intel_nic *intel, struct intel_ring *ring ) {
/* Reset ring */
intel_reset_ring ( intel, ring->reg );
/* Free descriptor ring */
dma_free ( &ring->map, ring->desc, ring->len );
ring->desc = NULL;
ring->prod = 0;
ring->cons = 0;
}
/**
* Refill receive descriptor ring
*
* @v intel Intel device
*/
void intel_refill_rx ( struct intel_nic *intel ) {
struct intel_descriptor *rx;
struct io_buffer *iobuf;
unsigned int rx_idx;
unsigned int rx_tail;
unsigned int refilled = 0;
/* Refill ring */
while ( ( intel->rx.prod - intel->rx.cons ) < INTEL_RX_FILL ) {
/* Allocate I/O buffer */
iobuf = alloc_rx_iob ( INTEL_RX_MAX_LEN, intel->dma );
if ( ! iobuf ) {
/* Wait for next refill */
break;
}
/* Get next receive descriptor */
rx_idx = ( intel->rx.prod++ % INTEL_NUM_RX_DESC );
rx = &intel->rx.desc[rx_idx];
/* Populate receive descriptor */
intel->rx.describe ( rx, iob_dma ( iobuf ), 0 );
/* Record I/O buffer */
assert ( intel->rx_iobuf[rx_idx] == NULL );
intel->rx_iobuf[rx_idx] = iobuf;
DBGC2 ( intel, "INTEL %p RX %d is [%lx,%lx)\n",
intel, rx_idx, virt_to_phys ( iobuf->data ),
( virt_to_phys ( iobuf->data ) + INTEL_RX_MAX_LEN ) );
refilled++;
}
/* Push descriptors to card, if applicable */
if ( refilled ) {
wmb();
rx_tail = ( intel->rx.prod % INTEL_NUM_RX_DESC );
profile_start ( &intel_vm_refill_profiler );
writel ( rx_tail, intel->regs + intel->rx.reg + INTEL_xDT );
profile_stop ( &intel_vm_refill_profiler );
profile_exclude ( &intel_vm_refill_profiler );
}
}
/**
* Discard unused receive I/O buffers
*
* @v intel Intel device
*/
void intel_empty_rx ( struct intel_nic *intel ) {
unsigned int i;
/* Discard unused receive buffers */
for ( i = 0 ; i < INTEL_NUM_RX_DESC ; i++ ) {
if ( intel->rx_iobuf[i] )
free_rx_iob ( intel->rx_iobuf[i] );
intel->rx_iobuf[i] = NULL;
}
}
/**
* Open network device
*
* @v netdev Network device
* @ret rc Return status code
*/
static int intel_open ( struct net_device *netdev ) {
struct intel_nic *intel = netdev->priv;
union intel_receive_address mac;
uint32_t fextnvm11;
uint32_t tctl;
uint32_t rctl;
int rc;
/* Set undocumented bit in FEXTNVM11 to work around an errata
* in i219 devices that will otherwise cause a complete
* datapath hang at the next device reset.
*/
if ( intel->flags & INTEL_RST_HANG ) {
DBGC ( intel, "INTEL %p WARNING: applying reset hang "
"workaround\n", intel );
fextnvm11 = readl ( intel->regs + INTEL_FEXTNVM11 );
fextnvm11 |= INTEL_FEXTNVM11_WTF;
writel ( fextnvm11, intel->regs + INTEL_FEXTNVM11 );
}
/* Create transmit descriptor ring */
if ( ( rc = intel_create_ring ( intel, &intel->tx ) ) != 0 )
goto err_create_tx;
/* Create receive descriptor ring */
if ( ( rc = intel_create_ring ( intel, &intel->rx ) ) != 0 )
goto err_create_rx;
/* Program MAC address */
memset ( &mac, 0, sizeof ( mac ) );
memcpy ( mac.raw, netdev->ll_addr, sizeof ( mac.raw ) );
writel ( le32_to_cpu ( mac.reg.low ), intel->regs + INTEL_RAL0 );
writel ( ( le32_to_cpu ( mac.reg.high ) | INTEL_RAH0_AV ),
intel->regs + INTEL_RAH0 );
/* Enable transmitter */
tctl = readl ( intel->regs + INTEL_TCTL );
tctl &= ~( INTEL_TCTL_CT_MASK | INTEL_TCTL_COLD_MASK );
tctl |= ( INTEL_TCTL_EN | INTEL_TCTL_PSP | INTEL_TCTL_CT_DEFAULT |
INTEL_TCTL_COLD_DEFAULT );
writel ( tctl, intel->regs + INTEL_TCTL );
/* Enable receiver */
rctl = readl ( intel->regs + INTEL_RCTL );
rctl &= ~( INTEL_RCTL_BSIZE_BSEX_MASK );
rctl |= ( INTEL_RCTL_EN | INTEL_RCTL_UPE | INTEL_RCTL_MPE |
INTEL_RCTL_BAM | INTEL_RCTL_BSIZE_2048 | INTEL_RCTL_SECRC );
writel ( rctl, intel->regs + INTEL_RCTL );
/* Fill receive ring */
intel_refill_rx ( intel );
/* Update link state */
intel_check_link ( netdev );
/* Apply required errata */
if ( intel->flags & INTEL_VMWARE ) {
DBGC ( intel, "INTEL %p applying VMware errata workaround\n",
intel );
intel->force_icr = INTEL_IRQ_RXT0;
}
return 0;
intel_destroy_ring ( intel, &intel->rx );
err_create_rx:
intel_destroy_ring ( intel, &intel->tx );
err_create_tx:
return rc;
}
/**
* Close network device
*
* @v netdev Network device
*/
static void intel_close ( struct net_device *netdev ) {
struct intel_nic *intel = netdev->priv;
/* Disable receiver */
writel ( 0, intel->regs + INTEL_RCTL );
/* Disable transmitter */
writel ( 0, intel->regs + INTEL_TCTL );
/* Destroy receive descriptor ring */
intel_destroy_ring ( intel, &intel->rx );
/* Discard any unused receive buffers */
intel_empty_rx ( intel );
/* Destroy transmit descriptor ring */
intel_destroy_ring ( intel, &intel->tx );
/* Reset the NIC, to flush the transmit and receive FIFOs */
intel_reset ( intel );
}
/**
* Transmit packet
*
* @v netdev Network device
* @v iobuf I/O buffer
* @ret rc Return status code
*/
int intel_transmit ( struct net_device *netdev, struct io_buffer *iobuf ) {
struct intel_nic *intel = netdev->priv;
struct intel_descriptor *tx;
unsigned int tx_idx;
unsigned int tx_tail;
size_t len;
/* Get next transmit descriptor */
if ( ( intel->tx.prod - intel->tx.cons ) >= INTEL_TX_FILL ) {
DBGC ( intel, "INTEL %p out of transmit descriptors\n", intel );
return -ENOBUFS;
}
tx_idx = ( intel->tx.prod++ % INTEL_NUM_TX_DESC );
tx_tail = ( intel->tx.prod % INTEL_NUM_TX_DESC );
tx = &intel->tx.desc[tx_idx];
/* Populate transmit descriptor */
len = iob_len ( iobuf );
intel->tx.describe ( tx, iob_dma ( iobuf ), len );
wmb();
/* Notify card that there are packets ready to transmit */
profile_start ( &intel_vm_tx_profiler );
writel ( tx_tail, intel->regs + intel->tx.reg + INTEL_xDT );
profile_stop ( &intel_vm_tx_profiler );
profile_exclude ( &intel_vm_tx_profiler );
DBGC2 ( intel, "INTEL %p TX %d is [%lx,%lx)\n",
intel, tx_idx, virt_to_phys ( iobuf->data ),
( virt_to_phys ( iobuf->data ) + len ) );
return 0;
}
/**
* Poll for completed packets
*
* @v netdev Network device
*/
void intel_poll_tx ( struct net_device *netdev ) {
struct intel_nic *intel = netdev->priv;
struct intel_descriptor *tx;
unsigned int tx_idx;
/* Check for completed packets */
while ( intel->tx.cons != intel->tx.prod ) {
/* Get next transmit descriptor */
tx_idx = ( intel->tx.cons % INTEL_NUM_TX_DESC );
tx = &intel->tx.desc[tx_idx];
/* Stop if descriptor is still in use */
if ( ! ( tx->status & cpu_to_le32 ( INTEL_DESC_STATUS_DD ) ) )
return;
DBGC2 ( intel, "INTEL %p TX %d complete\n", intel, tx_idx );
/* Complete TX descriptor */
netdev_tx_complete_next ( netdev );
intel->tx.cons++;
}
}
/**
* Poll for received packets
*
* @v netdev Network device
*/
void intel_poll_rx ( struct net_device *netdev ) {
struct intel_nic *intel = netdev->priv;
struct intel_descriptor *rx;
struct io_buffer *iobuf;
unsigned int rx_idx;
size_t len;
/* Check for received packets */
while ( intel->rx.cons != intel->rx.prod ) {
/* Get next receive descriptor */
rx_idx = ( intel->rx.cons % INTEL_NUM_RX_DESC );
rx = &intel->rx.desc[rx_idx];
/* Stop if descriptor is still in use */
if ( ! ( rx->status & cpu_to_le32 ( INTEL_DESC_STATUS_DD ) ) )
return;
/* Populate I/O buffer */
iobuf = intel->rx_iobuf[rx_idx];
intel->rx_iobuf[rx_idx] = NULL;
len = le16_to_cpu ( rx->length );
iob_put ( iobuf, len );
/* Hand off to network stack */
if ( rx->status & cpu_to_le32 ( INTEL_DESC_STATUS_RXE ) ) {
DBGC ( intel, "INTEL %p RX %d error (length %zd, "
"status %08x)\n", intel, rx_idx, len,
le32_to_cpu ( rx->status ) );
netdev_rx_err ( netdev, iobuf, -EIO );
} else {
DBGC2 ( intel, "INTEL %p RX %d complete (length %zd)\n",
intel, rx_idx, len );
netdev_rx ( netdev, iobuf );
}
intel->rx.cons++;
}
}
/**
* Poll for completed and received packets
*
* @v netdev Network device
*/
static void intel_poll ( struct net_device *netdev ) {
struct intel_nic *intel = netdev->priv;
uint32_t icr;
/* Check for and acknowledge interrupts */
profile_start ( &intel_vm_poll_profiler );
icr = readl ( intel->regs + INTEL_ICR );
profile_stop ( &intel_vm_poll_profiler );
profile_exclude ( &intel_vm_poll_profiler );
icr |= intel->force_icr;
if ( ! icr )
return;
/* Poll for TX completions, if applicable */
if ( icr & INTEL_IRQ_TXDW )
intel_poll_tx ( netdev );
/* Poll for RX completions, if applicable */
if ( icr & ( INTEL_IRQ_RXT0 | INTEL_IRQ_RXO ) )
intel_poll_rx ( netdev );
/* Report receive overruns */
if ( icr & INTEL_IRQ_RXO )
netdev_rx_err ( netdev, NULL, -ENOBUFS );
/* Check link state, if applicable */
if ( icr & INTEL_IRQ_LSC )
intel_check_link ( netdev );
/* Check for unexpected interrupts */
if ( icr & ~( INTEL_IRQ_TXDW | INTEL_IRQ_TXQE | INTEL_IRQ_LSC |
INTEL_IRQ_RXDMT0 | INTEL_IRQ_RXT0 | INTEL_IRQ_RXO ) ) {
DBGC ( intel, "INTEL %p unexpected ICR %08x\n", intel, icr );
/* Report as a TX error */
netdev_tx_err ( netdev, NULL, -ENOTSUP );
}
/* Refill RX ring */
intel_refill_rx ( intel );
}
/**
* Enable or disable interrupts
*
* @v netdev Network device
* @v enable Interrupts should be enabled
*/
static void intel_irq ( struct net_device *netdev, int enable ) {
struct intel_nic *intel = netdev->priv;
uint32_t mask;
mask = ( INTEL_IRQ_TXDW | INTEL_IRQ_LSC | INTEL_IRQ_RXT0 );
if ( enable ) {
writel ( mask, intel->regs + INTEL_IMS );
} else {
writel ( mask, intel->regs + INTEL_IMC );
}
}
/** Intel network device operations */
static struct net_device_operations intel_operations = {
.open = intel_open,
.close = intel_close,
.transmit = intel_transmit,
.poll = intel_poll,
.irq = intel_irq,
};
/******************************************************************************
*
* PCI interface
*
******************************************************************************
*/
/**
* Probe PCI device
*
* @v pci PCI device
* @ret rc Return status code
*/
static int intel_probe ( struct pci_device *pci ) {
struct net_device *netdev;
struct intel_nic *intel;
int rc;
/* Allocate and initialise net device */
netdev = alloc_etherdev ( sizeof ( *intel ) );
if ( ! netdev ) {
rc = -ENOMEM;
goto err_alloc;
}
netdev_init ( netdev, &intel_operations );
intel = netdev->priv;
pci_set_drvdata ( pci, netdev );
netdev->dev = &pci->dev;
memset ( intel, 0, sizeof ( *intel ) );
intel->port = PCI_FUNC ( pci->busdevfn );
intel->flags = pci->id->driver_data;
intel_init_ring ( &intel->tx, INTEL_NUM_TX_DESC, INTEL_TD,
intel_describe_tx );
intel_init_ring ( &intel->rx, INTEL_NUM_RX_DESC, INTEL_RD,
intel_describe_rx );
/* Fix up PCI device */
adjust_pci_device ( pci );
/* Map registers */
intel->regs = pci_ioremap ( pci, pci->membase, INTEL_BAR_SIZE );
if ( ! intel->regs ) {
rc = -ENODEV;
goto err_ioremap;
}
/* Configure DMA */
intel->dma = &pci->dma;
dma_set_mask_64bit ( intel->dma );
netdev->dma = intel->dma;
/* Reset the NIC */
if ( ( rc = intel_reset ( intel ) ) != 0 )
goto err_reset;
/* Fetch MAC address */
if ( ( rc = intel_fetch_mac ( intel, netdev->hw_addr ) ) != 0 )
goto err_fetch_mac;
/* Register network device */
if ( ( rc = register_netdev ( netdev ) ) != 0 )
goto err_register_netdev;
/* Set initial link state */
intel_check_link ( netdev );
return 0;
unregister_netdev ( netdev );
err_register_netdev:
err_fetch_mac:
intel_reset ( intel );
err_reset:
iounmap ( intel->regs );
err_ioremap:
netdev_nullify ( netdev );
netdev_put ( netdev );
err_alloc:
return rc;
}
/**
* Remove PCI device
*
* @v pci PCI device
*/
static void intel_remove ( struct pci_device *pci ) {
struct net_device *netdev = pci_get_drvdata ( pci );
struct intel_nic *intel = netdev->priv;
/* Unregister network device */
unregister_netdev ( netdev );
/* Reset the NIC */
intel_reset ( intel );
/* Free network device */
iounmap ( intel->regs );
netdev_nullify ( netdev );
netdev_put ( netdev );
}
/** Intel PCI device IDs */
static struct pci_device_id intel_nics[] = {
PCI_ROM ( 0x8086, 0x0438, "dh8900cc", "DH8900CC", 0 ),
PCI_ROM ( 0x8086, 0x043a, "dh8900cc-f", "DH8900CC Fiber", 0 ),
PCI_ROM ( 0x8086, 0x043c, "dh8900cc-b", "DH8900CC Backplane", 0 ),
PCI_ROM ( 0x8086, 0x0440, "dh8900cc-s", "DH8900CC SFP", 0 ),
PCI_ROM ( 0x8086, 0x0d4c, "i219lm-11", "I219-LM (11)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x0d4d, "i219v-11", "I219-V (11)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x0d4e, "i219lm-10", "I219-LM (10)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x0d4f, "i219v-10", "I219-V (10)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x0d53, "i219lm-12", "I219-LM (12)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x0d55, "i219v-12", "I219-V (12)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x1000, "82542-f", "82542 (Fiber)", 0 ),
PCI_ROM ( 0x8086, 0x1001, "82543gc-f", "82543GC (Fiber)", 0 ),
PCI_ROM ( 0x8086, 0x1004, "82543gc", "82543GC (Copper)", 0 ),
PCI_ROM ( 0x8086, 0x1008, "82544ei", "82544EI (Copper)", 0 ),
PCI_ROM ( 0x8086, 0x1009, "82544ei-f", "82544EI (Fiber)", 0 ),
PCI_ROM ( 0x8086, 0x100c, "82544gc", "82544GC (Copper)", 0 ),
PCI_ROM ( 0x8086, 0x100d, "82544gc-l", "82544GC (LOM)", 0 ),
PCI_ROM ( 0x8086, 0x100e, "82540em", "82540EM", 0 ),
PCI_ROM ( 0x8086, 0x100f, "82545em", "82545EM (Copper)", INTEL_VMWARE ),
PCI_ROM ( 0x8086, 0x1010, "82546eb", "82546EB (Copper)", 0 ),
PCI_ROM ( 0x8086, 0x1011, "82545em-f", "82545EM (Fiber)", 0 ),
PCI_ROM ( 0x8086, 0x1012, "82546eb-f", "82546EB (Fiber)", 0 ),
PCI_ROM ( 0x8086, 0x1013, "82541ei", "82541EI", 0 ),
PCI_ROM ( 0x8086, 0x1014, "82541er", "82541ER", 0 ),
PCI_ROM ( 0x8086, 0x1015, "82540em-l", "82540EM (LOM)", 0 ),
PCI_ROM ( 0x8086, 0x1016, "82540ep-m", "82540EP (Mobile)", 0 ),
PCI_ROM ( 0x8086, 0x1017, "82540ep", "82540EP", 0 ),
PCI_ROM ( 0x8086, 0x1018, "82541ei", "82541EI", 0 ),
PCI_ROM ( 0x8086, 0x1019, "82547ei", "82547EI", 0 ),
PCI_ROM ( 0x8086, 0x101a, "82547ei-m", "82547EI (Mobile)", 0 ),
PCI_ROM ( 0x8086, 0x101d, "82546eb", "82546EB", 0 ),
PCI_ROM ( 0x8086, 0x101e, "82540ep-m", "82540EP (Mobile)", 0 ),
PCI_ROM ( 0x8086, 0x1026, "82545gm", "82545GM", 0 ),
PCI_ROM ( 0x8086, 0x1027, "82545gm-1", "82545GM", 0 ),
PCI_ROM ( 0x8086, 0x1028, "82545gm-2", "82545GM", 0 ),
PCI_ROM ( 0x8086, 0x1049, "82566mm", "82566MM", INTEL_PBS_ERRATA ),
PCI_ROM ( 0x8086, 0x104a, "82566dm", "82566DM", INTEL_PBS_ERRATA ),
PCI_ROM ( 0x8086, 0x104b, "82566dc", "82566DC", INTEL_PBS_ERRATA ),
PCI_ROM ( 0x8086, 0x104c, "82562v", "82562V", INTEL_PBS_ERRATA ),
PCI_ROM ( 0x8086, 0x104d, "82566mc", "82566MC", INTEL_PBS_ERRATA ),
PCI_ROM ( 0x8086, 0x105e, "82571eb", "82571EB", 0 ),
PCI_ROM ( 0x8086, 0x105f, "82571eb-1", "82571EB", 0 ),
PCI_ROM ( 0x8086, 0x1060, "82571eb-2", "82571EB", 0 ),
PCI_ROM ( 0x8086, 0x1075, "82547gi", "82547GI", 0 ),
PCI_ROM ( 0x8086, 0x1076, "82541gi", "82541GI", 0 ),
PCI_ROM ( 0x8086, 0x1077, "82541gi-1", "82541GI", 0 ),
PCI_ROM ( 0x8086, 0x1078, "82541er", "82541ER", 0 ),
PCI_ROM ( 0x8086, 0x1079, "82546gb", "82546GB", 0 ),
PCI_ROM ( 0x8086, 0x107a, "82546gb-1", "82546GB", 0 ),
PCI_ROM ( 0x8086, 0x107b, "82546gb-2", "82546GB", 0 ),
PCI_ROM ( 0x8086, 0x107c, "82541pi", "82541PI", 0 ),
PCI_ROM ( 0x8086, 0x107d, "82572ei", "82572EI (Copper)", 0 ),
PCI_ROM ( 0x8086, 0x107e, "82572ei-f", "82572EI (Fiber)", 0 ),
PCI_ROM ( 0x8086, 0x107f, "82572ei", "82572EI", 0 ),
PCI_ROM ( 0x8086, 0x108a, "82546gb-3", "82546GB", 0 ),
PCI_ROM ( 0x8086, 0x108b, "82573v", "82573V (Copper)", 0 ),
PCI_ROM ( 0x8086, 0x108c, "82573e", "82573E (Copper)", 0 ),
PCI_ROM ( 0x8086, 0x1096, "80003es2lan", "80003ES2LAN (Copper)", 0 ),
PCI_ROM ( 0x8086, 0x1098, "80003es2lan-s", "80003ES2LAN (Serdes)", 0 ),
PCI_ROM ( 0x8086, 0x1099, "82546gb-4", "82546GB (Copper)", 0 ),
PCI_ROM ( 0x8086, 0x109a, "82573l", "82573L", 0 ),
PCI_ROM ( 0x8086, 0x10a4, "82571eb", "82571EB", 0 ),
PCI_ROM ( 0x8086, 0x10a5, "82571eb", "82571EB (Fiber)", 0 ),
PCI_ROM ( 0x8086, 0x10a7, "82575eb", "82575EB", 0 ),
PCI_ROM ( 0x8086, 0x10a9, "82575eb", "82575EB Backplane", 0 ),
PCI_ROM ( 0x8086, 0x10b5, "82546gb", "82546GB (Copper)", 0 ),
PCI_ROM ( 0x8086, 0x10b9, "82572ei", "82572EI (Copper)", 0 ),
PCI_ROM ( 0x8086, 0x10ba, "80003es2lan", "80003ES2LAN (Copper)", 0 ),
PCI_ROM ( 0x8086, 0x10bb, "80003es2lan", "80003ES2LAN (Serdes)", 0 ),
PCI_ROM ( 0x8086, 0x10bc, "82571eb", "82571EB (Copper)", 0 ),
PCI_ROM ( 0x8086, 0x10bd, "82566dm-2", "82566DM-2", 0 ),
PCI_ROM ( 0x8086, 0x10bf, "82567lf", "82567LF", 0 ),
PCI_ROM ( 0x8086, 0x10c0, "82562v-2", "82562V-2", 0 ),
PCI_ROM ( 0x8086, 0x10c2, "82562g-2", "82562G-2", 0 ),
PCI_ROM ( 0x8086, 0x10c3, "82562gt-2", "82562GT-2", 0 ),
PCI_ROM ( 0x8086, 0x10c4, "82562gt", "82562GT", INTEL_PBS_ERRATA ),
PCI_ROM ( 0x8086, 0x10c5, "82562g", "82562G", INTEL_PBS_ERRATA ),
PCI_ROM ( 0x8086, 0x10c9, "82576", "82576", 0 ),
PCI_ROM ( 0x8086, 0x10cb, "82567v", "82567V", 0 ),
PCI_ROM ( 0x8086, 0x10cc, "82567lm-2", "82567LM-2", 0 ),
PCI_ROM ( 0x8086, 0x10cd, "82567lf-2", "82567LF-2", 0 ),
PCI_ROM ( 0x8086, 0x10ce, "82567v-2", "82567V-2", 0 ),
PCI_ROM ( 0x8086, 0x10d3, "82574l", "82574L", 0 ),
PCI_ROM ( 0x8086, 0x10d5, "82571pt", "82571PT PT Quad", 0 ),
PCI_ROM ( 0x8086, 0x10d6, "82575gb", "82575GB", 0 ),
PCI_ROM ( 0x8086, 0x10d9, "82571eb-d", "82571EB Dual Mezzanine", 0 ),
PCI_ROM ( 0x8086, 0x10da, "82571eb-q", "82571EB Quad Mezzanine", 0 ),
PCI_ROM ( 0x8086, 0x10de, "82567lm-3", "82567LM-3", 0 ),
PCI_ROM ( 0x8086, 0x10df, "82567lf-3", "82567LF-3", 0 ),
PCI_ROM ( 0x8086, 0x10e5, "82567lm-4", "82567LM-4", 0 ),
PCI_ROM ( 0x8086, 0x10e6, "82576", "82576", 0 ),
PCI_ROM ( 0x8086, 0x10e7, "82576-2", "82576", 0 ),
PCI_ROM ( 0x8086, 0x10e8, "82576-3", "82576", 0 ),
PCI_ROM ( 0x8086, 0x10ea, "82577lm", "82577LM", 0 ),
PCI_ROM ( 0x8086, 0x10eb, "82577lc", "82577LC", 0 ),
PCI_ROM ( 0x8086, 0x10ef, "82578dm", "82578DM", 0 ),
PCI_ROM ( 0x8086, 0x10f0, "82578dc", "82578DC", 0 ),
PCI_ROM ( 0x8086, 0x10f5, "82567lm", "82567LM", 0 ),
PCI_ROM ( 0x8086, 0x10f6, "82574l", "82574L", 0 ),
PCI_ROM ( 0x8086, 0x1501, "82567v-3", "82567V-3", INTEL_PBS_ERRATA ),
PCI_ROM ( 0x8086, 0x1502, "82579lm", "82579LM", INTEL_NO_PHY_RST ),
PCI_ROM ( 0x8086, 0x1503, "82579v", "82579V", 0 ),
PCI_ROM ( 0x8086, 0x150a, "82576ns", "82576NS", 0 ),
PCI_ROM ( 0x8086, 0x150c, "82583v", "82583V", 0 ),
PCI_ROM ( 0x8086, 0x150d, "82576-4", "82576 Backplane", 0 ),
PCI_ROM ( 0x8086, 0x150e, "82580", "82580", 0 ),
PCI_ROM ( 0x8086, 0x150f, "82580-f", "82580 Fiber", 0 ),
PCI_ROM ( 0x8086, 0x1510, "82580-b", "82580 Backplane", 0 ),
PCI_ROM ( 0x8086, 0x1511, "82580-s", "82580 SFP", 0 ),
PCI_ROM ( 0x8086, 0x1516, "82580-2", "82580", 0 ),
PCI_ROM ( 0x8086, 0x1518, "82576ns", "82576NS SerDes", 0 ),
PCI_ROM ( 0x8086, 0x1521, "i350", "I350", 0 ),
PCI_ROM ( 0x8086, 0x1522, "i350-f", "I350 Fiber", 0 ),
PCI_ROM ( 0x8086, 0x1523, "i350-b", "I350 Backplane", INTEL_NO_ASDE ),
PCI_ROM ( 0x8086, 0x1524, "i350-2", "I350", 0 ),
PCI_ROM ( 0x8086, 0x1525, "82567v-4", "82567V-4", 0 ),
PCI_ROM ( 0x8086, 0x1526, "82576-5", "82576", 0 ),
PCI_ROM ( 0x8086, 0x1527, "82580-f2", "82580 Fiber", 0 ),
PCI_ROM ( 0x8086, 0x1533, "i210", "I210", 0 ),
PCI_ROM ( 0x8086, 0x1539, "i211", "I211", 0 ),
PCI_ROM ( 0x8086, 0x153a, "i217lm", "I217-LM", INTEL_NO_PHY_RST ),
PCI_ROM ( 0x8086, 0x153b, "i217v", "I217-V", 0 ),
PCI_ROM ( 0x8086, 0x1559, "i218v", "I218-V", INTEL_NO_PHY_RST ),
PCI_ROM ( 0x8086, 0x155a, "i218lm", "I218-LM", INTEL_NO_PHY_RST ),
PCI_ROM ( 0x8086, 0x156f, "i219lm", "I219-LM", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x1570, "i219v", "I219-V", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x157b, "i210-2", "I210", 0 ),
PCI_ROM ( 0x8086, 0x15a0, "i218lm-2", "I218-LM", INTEL_NO_PHY_RST ),
PCI_ROM ( 0x8086, 0x15a1, "i218v-2", "I218-V", 0 ),
PCI_ROM ( 0x8086, 0x15a2, "i218lm-3", "I218-LM", INTEL_NO_PHY_RST ),
PCI_ROM ( 0x8086, 0x15a3, "i218v-3", "I218-V", INTEL_NO_PHY_RST ),
PCI_ROM ( 0x8086, 0x15b7, "i219lm-2", "I219-LM (2)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15b8, "i219v-2", "I219-V (2)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15b9, "i219lm-3", "I219-LM (3)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15bb, "i219lm-7", "I219-LM (7)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15bc, "i219v-7", "I219-V (7)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15bd, "i219lm-6", "I219-LM (6)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15be, "i219v-6", "I219-V (6)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15d6, "i219v-5", "I219-V (5)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15d7, "i219lm-4", "I219-LM (4)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15d8, "i219v-4", "I219-V (4)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15df, "i219lm-8", "I219-LM (8)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15e0, "i219v-8", "I219-V (8)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15e1, "i219lm-9", "I219-LM (9)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15e2, "i219v-9", "I219-V (9)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15e3, "i219lm-5", "I219-LM (5)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15f4, "i219lm-15", "I219-LM (15)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15f5, "i219v-15", "I219-V (15)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15f9, "i219lm-14", "I219-LM (14)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15fa, "i219v-14", "I219-V (14)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15fb, "i219lm-13", "I219-LM (13)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x15fc, "i219v-13", "I219-V (13)", INTEL_I219 ),
PCI_ROM ( 0x8086, 0x1f41, "i354", "I354", INTEL_NO_ASDE ),
PCI_ROM ( 0x8086, 0x294c, "82566dc-2", "82566DC-2", 0 ),
PCI_ROM ( 0x8086, 0x2e6e, "cemedia", "CE Media Processor", 0 ),
};
/** Intel PCI driver */
struct pci_driver intel_driver __pci_driver = {
.ids = intel_nics,
.id_count = ( sizeof ( intel_nics ) / sizeof ( intel_nics[0] ) ),
.probe = intel_probe,
.remove = intel_remove,
};