blob: 5b7116e281d638ba7ffc89c6f4c09a9b3aa93e0b [file] [log] [blame]
/*
* Copyright (C) 2012 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* You can also choose to distribute this program under the terms of
* the Unmodified Binary Distribution Licence (as given in the file
* COPYING.UBDL), provided that you have satisfied its requirements.
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include <ipxe/profile.h>
#include <ipxe/bigint.h>
/** @file
*
* Big integer support
*/
/** Modular multiplication overall profiler */
static struct profiler bigint_mod_multiply_profiler __profiler =
{ .name = "bigint_mod_multiply" };
/** Modular multiplication multiply step profiler */
static struct profiler bigint_mod_multiply_multiply_profiler __profiler =
{ .name = "bigint_mod_multiply.multiply" };
/** Modular multiplication rescale step profiler */
static struct profiler bigint_mod_multiply_rescale_profiler __profiler =
{ .name = "bigint_mod_multiply.rescale" };
/** Modular multiplication subtract step profiler */
static struct profiler bigint_mod_multiply_subtract_profiler __profiler =
{ .name = "bigint_mod_multiply.subtract" };
/**
* Conditionally swap big integers (in constant time)
*
* @v first0 Element 0 of big integer to be conditionally swapped
* @v second0 Element 0 of big integer to be conditionally swapped
* @v size Number of elements in big integers
* @v swap Swap first and second big integers
*/
void bigint_swap_raw ( bigint_element_t *first0, bigint_element_t *second0,
unsigned int size, int swap ) {
bigint_element_t mask;
bigint_element_t xor;
unsigned int i;
/* Construct mask */
mask = ( ( bigint_element_t ) ( ! swap ) - 1 );
/* Conditionally swap elements */
for ( i = 0 ; i < size ; i++ ) {
xor = ( mask & ( first0[i] ^ second0[i] ) );
first0[i] ^= xor;
second0[i] ^= xor;
}
}
/**
* Multiply big integers
*
* @v multiplicand0 Element 0 of big integer to be multiplied
* @v multiplicand_size Number of elements in multiplicand
* @v multiplier0 Element 0 of big integer to be multiplied
* @v multiplier_size Number of elements in multiplier
* @v result0 Element 0 of big integer to hold result
* @v carry0 Element 0 of big integer to hold temporary carry
*/
void bigint_multiply_raw ( const bigint_element_t *multiplicand0,
unsigned int multiplicand_size,
const bigint_element_t *multiplier0,
unsigned int multiplier_size,
bigint_element_t *result0,
bigint_element_t *carry0 ) {
unsigned int result_size = ( multiplicand_size + multiplier_size );
const bigint_t ( multiplicand_size ) __attribute__ (( may_alias ))
*multiplicand = ( ( const void * ) multiplicand0 );
const bigint_t ( multiplier_size ) __attribute__ (( may_alias ))
*multiplier = ( ( const void * ) multiplier0 );
bigint_t ( result_size ) __attribute__ (( may_alias ))
*result = ( ( void * ) result0 );
bigint_t ( result_size ) __attribute__ (( may_alias ))
*carry = ( ( void * ) carry0 );
bigint_element_t multiplicand_element;
const bigint_element_t *multiplier_element;
bigint_element_t *result_elements;
bigint_element_t *carry_element;
unsigned int i;
unsigned int j;
/* Zero result and temporary carry space */
memset ( result, 0, sizeof ( *result ) );
memset ( carry, 0, sizeof ( *carry ) );
/* Multiply integers one element at a time, adding the double
* element directly into the result and accumulating any
* overall carry out from this double-element addition into
* the temporary carry space.
*
* We could propagate the carry immediately instead of using a
* temporary carry space. However, this would cause the
* multiplication to run in non-constant time, which is
* undesirable.
*
* The carry elements can never overflow, provided that the
* element size is large enough to accommodate any plausible
* big integer. The total number of potential carries (across
* all elements) is the sum of the number of elements in the
* multiplicand and multiplier. With a 16-bit element size,
* this therefore allows for up to a 1Mbit multiplication
* result (e.g. a 512kbit integer multiplied by another
* 512kbit integer), which is around 100x higher than could be
* needed in practice. With a more realistic 32-bit element
* size, the limit becomes a totally implausible 128Gbit
* multiplication result.
*/
for ( i = 0 ; i < multiplicand_size ; i++ ) {
multiplicand_element = multiplicand->element[i];
multiplier_element = &multiplier->element[0];
result_elements = &result->element[i];
carry_element = &carry->element[i];
for ( j = 0 ; j < multiplier_size ; j++ ) {
bigint_multiply_one ( multiplicand_element,
*(multiplier_element++),
result_elements++,
carry_element++ );
}
}
/* Add the temporary carry into the result. The least
* significant element of the carry represents the carry out
* from multiplying the least significant elements of the
* multiplicand and multiplier, and therefore must be added to
* the third-least significant element of the result (i.e. the
* carry needs to be shifted left by two elements before being
* adding to the result).
*
* The most significant two elements of the carry are
* guaranteed to be zero, since:
*
* a < 2^{n}, b < 2^{m} => ab < 2^{n+m}
*
* and the overall result of the multiplication (including
* adding in the shifted carries) is therefore guaranteed not
* to overflow beyond the end of the result.
*
* We could avoid this shifting by writing the carry directly
* into the "correct" element during the element-by-element
* multiplication stage above. However, this would add
* complexity to the loop since we would have to arrange for
* the (provably zero) most significant two carry out results
* to be discarded, in order to avoid writing beyond the end
* of the temporary carry space.
*
* Performing the logical shift is essentially free, since we
* simply adjust the element pointers.
*
* To avoid requiring additional checks in each architecture's
* implementation of bigint_add_raw(), we explicitly avoid
* calling bigint_add_raw() with a size of zero.
*/
if ( result_size > 2 ) {
bigint_add_raw ( &carry->element[0], &result->element[2],
( result_size - 2 ) );
}
}
/**
* Perform modular multiplication of big integers
*
* @v multiplicand0 Element 0 of big integer to be multiplied
* @v multiplier0 Element 0 of big integer to be multiplied
* @v modulus0 Element 0 of big integer modulus
* @v result0 Element 0 of big integer to hold result
* @v size Number of elements in base, modulus, and result
* @v tmp Temporary working space
*/
void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
const bigint_element_t *multiplier0,
const bigint_element_t *modulus0,
bigint_element_t *result0,
unsigned int size, void *tmp ) {
const bigint_t ( size ) __attribute__ (( may_alias )) *multiplicand =
( ( const void * ) multiplicand0 );
const bigint_t ( size ) __attribute__ (( may_alias )) *multiplier =
( ( const void * ) multiplier0 );
const bigint_t ( size ) __attribute__ (( may_alias )) *modulus =
( ( const void * ) modulus0 );
bigint_t ( size ) __attribute__ (( may_alias )) *result =
( ( void * ) result0 );
struct {
bigint_t ( size * 2 ) result;
union {
bigint_t ( size * 2 ) modulus;
bigint_t ( size * 2 ) carry;
};
} *temp = tmp;
int rotation;
int i;
/* Start profiling */
profile_start ( &bigint_mod_multiply_profiler );
/* Sanity check */
assert ( sizeof ( *temp ) == bigint_mod_multiply_tmp_len ( modulus ) );
/* Perform multiplication */
profile_start ( &bigint_mod_multiply_multiply_profiler );
bigint_multiply ( multiplicand, multiplier, &temp->result,
&temp->carry );
profile_stop ( &bigint_mod_multiply_multiply_profiler );
/* Rescale modulus to match result */
profile_start ( &bigint_mod_multiply_rescale_profiler );
bigint_grow ( modulus, &temp->modulus );
rotation = ( bigint_max_set_bit ( &temp->result ) -
bigint_max_set_bit ( &temp->modulus ) );
for ( i = 0 ; i < rotation ; i++ )
bigint_rol ( &temp->modulus );
profile_stop ( &bigint_mod_multiply_rescale_profiler );
/* Subtract multiples of modulus */
profile_start ( &bigint_mod_multiply_subtract_profiler );
for ( i = 0 ; i <= rotation ; i++ ) {
if ( bigint_is_geq ( &temp->result, &temp->modulus ) )
bigint_subtract ( &temp->modulus, &temp->result );
bigint_ror ( &temp->modulus );
}
profile_stop ( &bigint_mod_multiply_subtract_profiler );
/* Resize result */
bigint_shrink ( &temp->result, result );
/* Sanity check */
assert ( bigint_is_geq ( modulus, result ) );
/* Stop profiling */
profile_stop ( &bigint_mod_multiply_profiler );
}
/**
* Perform modular exponentiation of big integers
*
* @v base0 Element 0 of big integer base
* @v modulus0 Element 0 of big integer modulus
* @v exponent0 Element 0 of big integer exponent
* @v result0 Element 0 of big integer to hold result
* @v size Number of elements in base, modulus, and result
* @v exponent_size Number of elements in exponent
* @v tmp Temporary working space
*/
void bigint_mod_exp_raw ( const bigint_element_t *base0,
const bigint_element_t *modulus0,
const bigint_element_t *exponent0,
bigint_element_t *result0,
unsigned int size, unsigned int exponent_size,
void *tmp ) {
const bigint_t ( size ) __attribute__ (( may_alias )) *base =
( ( const void * ) base0 );
const bigint_t ( size ) __attribute__ (( may_alias )) *modulus =
( ( const void * ) modulus0 );
const bigint_t ( exponent_size ) __attribute__ (( may_alias ))
*exponent = ( ( const void * ) exponent0 );
bigint_t ( size ) __attribute__ (( may_alias )) *result =
( ( void * ) result0 );
size_t mod_multiply_len = bigint_mod_multiply_tmp_len ( modulus );
struct {
bigint_t ( size ) base;
bigint_t ( exponent_size ) exponent;
uint8_t mod_multiply[mod_multiply_len];
} *temp = tmp;
static const uint8_t start[1] = { 0x01 };
memcpy ( &temp->base, base, sizeof ( temp->base ) );
memcpy ( &temp->exponent, exponent, sizeof ( temp->exponent ) );
bigint_init ( result, start, sizeof ( start ) );
while ( ! bigint_is_zero ( &temp->exponent ) ) {
if ( bigint_bit_is_set ( &temp->exponent, 0 ) ) {
bigint_mod_multiply ( result, &temp->base, modulus,
result, temp->mod_multiply );
}
bigint_ror ( &temp->exponent );
bigint_mod_multiply ( &temp->base, &temp->base, modulus,
&temp->base, temp->mod_multiply );
}
}