| /* |
| * Copyright (C) 2012 Michael Brown <mbrown@fensystems.co.uk>. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of the |
| * License, or any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA. |
| * |
| * You can also choose to distribute this program under the terms of |
| * the Unmodified Binary Distribution Licence (as given in the file |
| * COPYING.UBDL), provided that you have satisfied its requirements. |
| */ |
| |
| FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL ); |
| |
| #include <stdint.h> |
| #include <string.h> |
| #include <assert.h> |
| #include <ipxe/profile.h> |
| #include <ipxe/bigint.h> |
| |
| /** @file |
| * |
| * Big integer support |
| */ |
| |
| /** Modular multiplication overall profiler */ |
| static struct profiler bigint_mod_multiply_profiler __profiler = |
| { .name = "bigint_mod_multiply" }; |
| |
| /** Modular multiplication multiply step profiler */ |
| static struct profiler bigint_mod_multiply_multiply_profiler __profiler = |
| { .name = "bigint_mod_multiply.multiply" }; |
| |
| /** Modular multiplication rescale step profiler */ |
| static struct profiler bigint_mod_multiply_rescale_profiler __profiler = |
| { .name = "bigint_mod_multiply.rescale" }; |
| |
| /** Modular multiplication subtract step profiler */ |
| static struct profiler bigint_mod_multiply_subtract_profiler __profiler = |
| { .name = "bigint_mod_multiply.subtract" }; |
| |
| /** |
| * Conditionally swap big integers (in constant time) |
| * |
| * @v first0 Element 0 of big integer to be conditionally swapped |
| * @v second0 Element 0 of big integer to be conditionally swapped |
| * @v size Number of elements in big integers |
| * @v swap Swap first and second big integers |
| */ |
| void bigint_swap_raw ( bigint_element_t *first0, bigint_element_t *second0, |
| unsigned int size, int swap ) { |
| bigint_element_t mask; |
| bigint_element_t xor; |
| unsigned int i; |
| |
| /* Construct mask */ |
| mask = ( ( bigint_element_t ) ( ! swap ) - 1 ); |
| |
| /* Conditionally swap elements */ |
| for ( i = 0 ; i < size ; i++ ) { |
| xor = ( mask & ( first0[i] ^ second0[i] ) ); |
| first0[i] ^= xor; |
| second0[i] ^= xor; |
| } |
| } |
| |
| /** |
| * Multiply big integers |
| * |
| * @v multiplicand0 Element 0 of big integer to be multiplied |
| * @v multiplicand_size Number of elements in multiplicand |
| * @v multiplier0 Element 0 of big integer to be multiplied |
| * @v multiplier_size Number of elements in multiplier |
| * @v result0 Element 0 of big integer to hold result |
| * @v carry0 Element 0 of big integer to hold temporary carry |
| */ |
| void bigint_multiply_raw ( const bigint_element_t *multiplicand0, |
| unsigned int multiplicand_size, |
| const bigint_element_t *multiplier0, |
| unsigned int multiplier_size, |
| bigint_element_t *result0, |
| bigint_element_t *carry0 ) { |
| unsigned int result_size = ( multiplicand_size + multiplier_size ); |
| const bigint_t ( multiplicand_size ) __attribute__ (( may_alias )) |
| *multiplicand = ( ( const void * ) multiplicand0 ); |
| const bigint_t ( multiplier_size ) __attribute__ (( may_alias )) |
| *multiplier = ( ( const void * ) multiplier0 ); |
| bigint_t ( result_size ) __attribute__ (( may_alias )) |
| *result = ( ( void * ) result0 ); |
| bigint_t ( result_size ) __attribute__ (( may_alias )) |
| *carry = ( ( void * ) carry0 ); |
| bigint_element_t multiplicand_element; |
| const bigint_element_t *multiplier_element; |
| bigint_element_t *result_elements; |
| bigint_element_t *carry_element; |
| unsigned int i; |
| unsigned int j; |
| |
| /* Zero result and temporary carry space */ |
| memset ( result, 0, sizeof ( *result ) ); |
| memset ( carry, 0, sizeof ( *carry ) ); |
| |
| /* Multiply integers one element at a time, adding the double |
| * element directly into the result and accumulating any |
| * overall carry out from this double-element addition into |
| * the temporary carry space. |
| * |
| * We could propagate the carry immediately instead of using a |
| * temporary carry space. However, this would cause the |
| * multiplication to run in non-constant time, which is |
| * undesirable. |
| * |
| * The carry elements can never overflow, provided that the |
| * element size is large enough to accommodate any plausible |
| * big integer. The total number of potential carries (across |
| * all elements) is the sum of the number of elements in the |
| * multiplicand and multiplier. With a 16-bit element size, |
| * this therefore allows for up to a 1Mbit multiplication |
| * result (e.g. a 512kbit integer multiplied by another |
| * 512kbit integer), which is around 100x higher than could be |
| * needed in practice. With a more realistic 32-bit element |
| * size, the limit becomes a totally implausible 128Gbit |
| * multiplication result. |
| */ |
| for ( i = 0 ; i < multiplicand_size ; i++ ) { |
| multiplicand_element = multiplicand->element[i]; |
| multiplier_element = &multiplier->element[0]; |
| result_elements = &result->element[i]; |
| carry_element = &carry->element[i]; |
| for ( j = 0 ; j < multiplier_size ; j++ ) { |
| bigint_multiply_one ( multiplicand_element, |
| *(multiplier_element++), |
| result_elements++, |
| carry_element++ ); |
| } |
| } |
| |
| /* Add the temporary carry into the result. The least |
| * significant element of the carry represents the carry out |
| * from multiplying the least significant elements of the |
| * multiplicand and multiplier, and therefore must be added to |
| * the third-least significant element of the result (i.e. the |
| * carry needs to be shifted left by two elements before being |
| * adding to the result). |
| * |
| * The most significant two elements of the carry are |
| * guaranteed to be zero, since: |
| * |
| * a < 2^{n}, b < 2^{m} => ab < 2^{n+m} |
| * |
| * and the overall result of the multiplication (including |
| * adding in the shifted carries) is therefore guaranteed not |
| * to overflow beyond the end of the result. |
| * |
| * We could avoid this shifting by writing the carry directly |
| * into the "correct" element during the element-by-element |
| * multiplication stage above. However, this would add |
| * complexity to the loop since we would have to arrange for |
| * the (provably zero) most significant two carry out results |
| * to be discarded, in order to avoid writing beyond the end |
| * of the temporary carry space. |
| * |
| * Performing the logical shift is essentially free, since we |
| * simply adjust the element pointers. |
| * |
| * To avoid requiring additional checks in each architecture's |
| * implementation of bigint_add_raw(), we explicitly avoid |
| * calling bigint_add_raw() with a size of zero. |
| */ |
| if ( result_size > 2 ) { |
| bigint_add_raw ( &carry->element[0], &result->element[2], |
| ( result_size - 2 ) ); |
| } |
| } |
| |
| /** |
| * Perform modular multiplication of big integers |
| * |
| * @v multiplicand0 Element 0 of big integer to be multiplied |
| * @v multiplier0 Element 0 of big integer to be multiplied |
| * @v modulus0 Element 0 of big integer modulus |
| * @v result0 Element 0 of big integer to hold result |
| * @v size Number of elements in base, modulus, and result |
| * @v tmp Temporary working space |
| */ |
| void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0, |
| const bigint_element_t *multiplier0, |
| const bigint_element_t *modulus0, |
| bigint_element_t *result0, |
| unsigned int size, void *tmp ) { |
| const bigint_t ( size ) __attribute__ (( may_alias )) *multiplicand = |
| ( ( const void * ) multiplicand0 ); |
| const bigint_t ( size ) __attribute__ (( may_alias )) *multiplier = |
| ( ( const void * ) multiplier0 ); |
| const bigint_t ( size ) __attribute__ (( may_alias )) *modulus = |
| ( ( const void * ) modulus0 ); |
| bigint_t ( size ) __attribute__ (( may_alias )) *result = |
| ( ( void * ) result0 ); |
| struct { |
| bigint_t ( size * 2 ) result; |
| union { |
| bigint_t ( size * 2 ) modulus; |
| bigint_t ( size * 2 ) carry; |
| }; |
| } *temp = tmp; |
| int rotation; |
| int i; |
| |
| /* Start profiling */ |
| profile_start ( &bigint_mod_multiply_profiler ); |
| |
| /* Sanity check */ |
| assert ( sizeof ( *temp ) == bigint_mod_multiply_tmp_len ( modulus ) ); |
| |
| /* Perform multiplication */ |
| profile_start ( &bigint_mod_multiply_multiply_profiler ); |
| bigint_multiply ( multiplicand, multiplier, &temp->result, |
| &temp->carry ); |
| profile_stop ( &bigint_mod_multiply_multiply_profiler ); |
| |
| /* Rescale modulus to match result */ |
| profile_start ( &bigint_mod_multiply_rescale_profiler ); |
| bigint_grow ( modulus, &temp->modulus ); |
| rotation = ( bigint_max_set_bit ( &temp->result ) - |
| bigint_max_set_bit ( &temp->modulus ) ); |
| for ( i = 0 ; i < rotation ; i++ ) |
| bigint_rol ( &temp->modulus ); |
| profile_stop ( &bigint_mod_multiply_rescale_profiler ); |
| |
| /* Subtract multiples of modulus */ |
| profile_start ( &bigint_mod_multiply_subtract_profiler ); |
| for ( i = 0 ; i <= rotation ; i++ ) { |
| if ( bigint_is_geq ( &temp->result, &temp->modulus ) ) |
| bigint_subtract ( &temp->modulus, &temp->result ); |
| bigint_ror ( &temp->modulus ); |
| } |
| profile_stop ( &bigint_mod_multiply_subtract_profiler ); |
| |
| /* Resize result */ |
| bigint_shrink ( &temp->result, result ); |
| |
| /* Sanity check */ |
| assert ( bigint_is_geq ( modulus, result ) ); |
| |
| /* Stop profiling */ |
| profile_stop ( &bigint_mod_multiply_profiler ); |
| } |
| |
| /** |
| * Perform modular exponentiation of big integers |
| * |
| * @v base0 Element 0 of big integer base |
| * @v modulus0 Element 0 of big integer modulus |
| * @v exponent0 Element 0 of big integer exponent |
| * @v result0 Element 0 of big integer to hold result |
| * @v size Number of elements in base, modulus, and result |
| * @v exponent_size Number of elements in exponent |
| * @v tmp Temporary working space |
| */ |
| void bigint_mod_exp_raw ( const bigint_element_t *base0, |
| const bigint_element_t *modulus0, |
| const bigint_element_t *exponent0, |
| bigint_element_t *result0, |
| unsigned int size, unsigned int exponent_size, |
| void *tmp ) { |
| const bigint_t ( size ) __attribute__ (( may_alias )) *base = |
| ( ( const void * ) base0 ); |
| const bigint_t ( size ) __attribute__ (( may_alias )) *modulus = |
| ( ( const void * ) modulus0 ); |
| const bigint_t ( exponent_size ) __attribute__ (( may_alias )) |
| *exponent = ( ( const void * ) exponent0 ); |
| bigint_t ( size ) __attribute__ (( may_alias )) *result = |
| ( ( void * ) result0 ); |
| size_t mod_multiply_len = bigint_mod_multiply_tmp_len ( modulus ); |
| struct { |
| bigint_t ( size ) base; |
| bigint_t ( exponent_size ) exponent; |
| uint8_t mod_multiply[mod_multiply_len]; |
| } *temp = tmp; |
| static const uint8_t start[1] = { 0x01 }; |
| |
| memcpy ( &temp->base, base, sizeof ( temp->base ) ); |
| memcpy ( &temp->exponent, exponent, sizeof ( temp->exponent ) ); |
| bigint_init ( result, start, sizeof ( start ) ); |
| |
| while ( ! bigint_is_zero ( &temp->exponent ) ) { |
| if ( bigint_bit_is_set ( &temp->exponent, 0 ) ) { |
| bigint_mod_multiply ( result, &temp->base, modulus, |
| result, temp->mod_multiply ); |
| } |
| bigint_ror ( &temp->exponent ); |
| bigint_mod_multiply ( &temp->base, &temp->base, modulus, |
| &temp->base, temp->mod_multiply ); |
| } |
| } |