blob: e3876503ff7787095f09185663375882f31f70da [file] [log] [blame]
FILE_LICENCE ( GPL2_ONLY );
#include <mii.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <byteswap.h>
#include <ipxe/pci.h>
#include <ipxe/iobuf.h>
#include <ipxe/timer.h>
#include <ipxe/malloc.h>
#include <ipxe/if_ether.h>
#include <ipxe/ethernet.h>
#include <ipxe/netdevice.h>
#include "bnxt.h"
#include "bnxt_dbg.h"
static void bnxt_service_cq ( struct net_device *dev );
static void bnxt_tx_complete ( struct net_device *dev, u16 hw_idx );
static void bnxt_adv_cq_index ( struct bnxt *bp, u16 cnt );
static void bnxt_adv_cq_index ( struct bnxt *bp, u16 cnt );
static int bnxt_rx_complete ( struct net_device *dev, struct rx_pkt_cmpl *rx );
void bnxt_link_evt ( struct bnxt *bp, struct hwrm_async_event_cmpl *evt );
static struct pci_device_id bnxt_nics[] = {
PCI_ROM( 0x14e4, 0x16c0, "14e4-16C0", "14e4-16C0", 0 ),
PCI_ROM( 0x14e4, 0x16c1, "14e4-16C1", "14e4-16C1", BNXT_FLAG_PCI_VF ),
PCI_ROM( 0x14e4, 0x16c8, "14e4-16C8", "14e4-16C8", 0 ),
PCI_ROM( 0x14e4, 0x16c9, "14e4-16C9", "14e4-16C9", 0 ),
PCI_ROM( 0x14e4, 0x16ca, "14e4-16CA", "14e4-16CA", 0 ),
PCI_ROM( 0x14e4, 0x16cc, "14e4-16CC", "14e4-16CC", 0 ),
PCI_ROM( 0x14e4, 0x16cd, "14e4-16CD", "14e4-16CD", 0 ),
PCI_ROM( 0x14e4, 0x16ce, "14e4-16CE", "14e4-16CE", 0 ),
PCI_ROM( 0x14e4, 0x16cf, "14e4-16CF", "14e4-16CF", 0 ),
PCI_ROM( 0x14e4, 0x16d0, "14e4-16D0", "14e4-16D0", 0 ),
PCI_ROM( 0x14e4, 0x16d1, "14e4-16D1", "14e4-16D1", 0 ),
PCI_ROM( 0x14e4, 0x16d2, "14e4-16D2", "14e4-16D2", 0 ),
PCI_ROM( 0x14e4, 0x16d4, "14e4-16D4", "14e4-16D4", 0 ),
PCI_ROM( 0x14e4, 0x16d5, "14e4-16D5", "14e4-16D5", 0 ),
PCI_ROM( 0x14e4, 0x16d6, "14e4-16D6", "14e4-16D6", 0 ),
PCI_ROM( 0x14e4, 0x16d7, "14e4-16D7", "14e4-16D7", 0 ),
PCI_ROM( 0x14e4, 0x16d8, "14e4-16D8", "14e4-16D8", 0 ),
PCI_ROM( 0x14e4, 0x16d9, "14e4-16D9", "14e4-16D9", 0 ),
PCI_ROM( 0x14e4, 0x16da, "14e4-16DA", "14e4-16DA", 0 ),
PCI_ROM( 0x14e4, 0x16db, "14e4-16DB", "14e4-16DB", 0 ),
PCI_ROM( 0x14e4, 0x16dc, "14e4-16DC", "14e4-16DC", BNXT_FLAG_PCI_VF ),
PCI_ROM( 0x14e4, 0x16de, "14e4-16DE", "14e4-16DE", 0 ),
PCI_ROM( 0x14e4, 0x16df, "14e4-16DF", "14e4-16DF", 0 ),
PCI_ROM( 0x14e4, 0x16e0, "14e4-16E0", "14e4-16E0", 0 ),
PCI_ROM( 0x14e4, 0x16e2, "14e4-16E2", "14e4-16E2", 0 ),
PCI_ROM( 0x14e4, 0x16e3, "14e4-16E3", "14e4-16E3", 0 ),
PCI_ROM( 0x14e4, 0x16e4, "14e4-16E4", "14e4-16E4", 0 ),
PCI_ROM( 0x14e4, 0x16e7, "14e4-16E7", "14e4-16E7", 0 ),
PCI_ROM( 0x14e4, 0x16e8, "14e4-16E8", "14e4-16E8", 0 ),
PCI_ROM( 0x14e4, 0x16e9, "14e4-16E9", "14e4-16E9", 0 ),
PCI_ROM( 0x14e4, 0x16ea, "14e4-16EA", "14e4-16EA", 0 ),
PCI_ROM( 0x14e4, 0x16eb, "14e4-16EB", "14e4-16EB", 0 ),
PCI_ROM( 0x14e4, 0x16ec, "14e4-16EC", "14e4-16EC", 0 ),
PCI_ROM( 0x14e4, 0x16ed, "14e4-16ED", "14e4-16ED", 0 ),
PCI_ROM( 0x14e4, 0x16ee, "14e4-16EE", "14e4-16EE", 0 ),
PCI_ROM( 0x14e4, 0x16ef, "14e4-16EF", "14e4-16EF", 0 ),
PCI_ROM( 0x14e4, 0x16f0, "14e4-16F0", "14e4-16F0", 0 ),
PCI_ROM( 0x14e4, 0x16f1, "14e4-16F1", "14e4-16F1", 0 ),
PCI_ROM( 0x14e4, 0x1604, "14e4-1604", "14e4-1604", 0 ),
PCI_ROM( 0x14e4, 0x1605, "14e4-1605", "14e4-1605", 0 ),
PCI_ROM( 0x14e4, 0x1606, "14e4-1606", "14e4-1606", 0 ),
PCI_ROM( 0x14e4, 0x1609, "14e4-1609", "14e4-1609", 0 ),
PCI_ROM( 0x14e4, 0x1614, "14e4-1614", "14e4-1614", 0 ),
PCI_ROM( 0x14e4, 0xd802, "14e4-D802", "14e4-D802", 0 ),
PCI_ROM( 0x14e4, 0xd804, "14e4-D804", "14e4-D804", 0 ),
PCI_ROM( 0x14e4, 0x1750, "14e4-1750", "14e4-1750", 0 ),
PCI_ROM( 0x14e4, 0x1802, "14e4-1802", "14e4-1802", 0 ),
PCI_ROM( 0x14e4, 0x1805, "14e4-1805", "14e4-1805", 0 ),
PCI_ROM( 0x14e4, 0x1751, "14e4-1751", "14e4-1751", 0 ),
PCI_ROM( 0x14e4, 0x1801, "14e4-1801", "14e4-1801", 0 ),
PCI_ROM( 0x14e4, 0x1804, "14e4-1804", "14e4-1804", 0 ),
PCI_ROM( 0x14e4, 0x1752, "14e4-1752", "14e4-1752", 0 ),
PCI_ROM( 0x14e4, 0x1800, "14e4-1800", "14e4-1800", 0 ),
PCI_ROM( 0x14e4, 0x1803, "14e4-1803", "14e4-1803", 0 ),
PCI_ROM( 0x14e4, 0x1806, "14e4-1806", "14e4-1806", BNXT_FLAG_PCI_VF ),
PCI_ROM( 0x14e4, 0x1807, "14e4-1807", "14e4-1807", BNXT_FLAG_PCI_VF ),
PCI_ROM( 0x14e4, 0x1808, "14e4-1808", "14e4-1808", BNXT_FLAG_PCI_VF ),
PCI_ROM( 0x14e4, 0x1809, "14e4-1809", "14e4-1809", BNXT_FLAG_PCI_VF ),
};
/**
* Check if Virtual Function
*/
u8 bnxt_is_pci_vf ( struct pci_device *pdev )
{
if ( FLAG_TEST ( pdev->id->driver_data, BNXT_FLAG_PCI_VF ) ) {
return 1;
}
return 0;
}
static void bnxt_down_pci ( struct bnxt *bp )
{
DBGP ( "%s\n", __func__ );
if ( bp->bar2 ) {
iounmap ( bp->bar2 );
bp->bar2 = NULL;
}
if ( bp->bar1 ) {
iounmap ( bp->bar1 );
bp->bar1 = NULL;
}
if ( bp->bar0 ) {
iounmap ( bp->bar0 );
bp->bar0 = NULL;
}
}
static void *bnxt_pci_base ( struct pci_device *pdev, unsigned int reg )
{
unsigned long reg_base, reg_size;
reg_base = pci_bar_start ( pdev, reg );
reg_size = pci_bar_size ( pdev, reg );
return pci_ioremap ( pdev, reg_base, reg_size );
}
static int bnxt_get_pci_info ( struct bnxt *bp )
{
u16 cmd_reg = 0;
DBGP ( "%s\n", __func__ );
/* Disable Interrupt */
pci_read_word16 ( bp->pdev, PCI_COMMAND, &bp->cmd_reg );
cmd_reg = bp->cmd_reg | PCI_COMMAND_INTX_DISABLE;
pci_write_word ( bp->pdev, PCI_COMMAND, cmd_reg );
pci_read_word16 ( bp->pdev, PCI_COMMAND, &cmd_reg );
/* SSVID */
pci_read_word16 ( bp->pdev,
PCI_SUBSYSTEM_VENDOR_ID,
&bp->subsystem_vendor );
/* SSDID */
pci_read_word16 ( bp->pdev,
PCI_SUBSYSTEM_ID,
&bp->subsystem_device );
/* Function Number */
pci_read_byte ( bp->pdev,
PCICFG_ME_REGISTER,
&bp->pf_num );
/* Get Bar Address */
bp->bar0 = bnxt_pci_base ( bp->pdev, PCI_BASE_ADDRESS_0 );
bp->bar1 = bnxt_pci_base ( bp->pdev, PCI_BASE_ADDRESS_2 );
bp->bar2 = bnxt_pci_base ( bp->pdev, PCI_BASE_ADDRESS_4 );
/* Virtual function */
bp->vf = bnxt_is_pci_vf ( bp->pdev );
dbg_pci ( bp, __func__, cmd_reg );
return STATUS_SUCCESS;
}
static int bnxt_get_device_address ( struct bnxt *bp )
{
struct net_device *dev = bp->dev;
DBGP ( "%s\n", __func__ );
memcpy ( &dev->hw_addr[0], ( char * )&bp->mac_addr[0], ETH_ALEN );
if ( !is_valid_ether_addr ( &dev->hw_addr[0] ) ) {
DBGP ( "- %s ( ): Failed\n", __func__ );
return -EINVAL;
}
return STATUS_SUCCESS;
}
static void bnxt_set_link ( struct bnxt *bp )
{
if ( bp->link_status == STATUS_LINK_ACTIVE )
netdev_link_up ( bp->dev );
else
netdev_link_down ( bp->dev );
}
static void thor_db ( struct bnxt *bp, u32 idx, u32 xid, u32 flag )
{
void *off;
u64 val;
if ( bp->vf )
off = ( void * ) ( bp->bar1 + DB_OFFSET_VF );
else
off = ( void * ) ( bp->bar1 + DB_OFFSET_PF );
val = ( ( u64 )DBC_MSG_XID ( xid, flag ) << 32 ) |
( u64 )DBC_MSG_IDX ( idx );
write64 ( val, off );
}
static void bnxt_db_nq ( struct bnxt *bp )
{
if ( bp->thor )
thor_db ( bp, ( u32 )bp->nq.cons_id,
( u32 )bp->nq_ring_id, DBC_DBC_TYPE_NQ_ARM );
else
write32 ( CMPL_DOORBELL_KEY_CMPL, ( bp->bar1 + 0 ) );
}
static void bnxt_db_cq ( struct bnxt *bp )
{
if ( bp->thor )
thor_db ( bp, ( u32 )bp->cq.cons_id,
( u32 )bp->cq_ring_id, DBC_DBC_TYPE_CQ_ARMALL );
else
write32 ( CQ_DOORBELL_KEY_IDX ( bp->cq.cons_id ),
( bp->bar1 + 0 ) );
}
static void bnxt_db_rx ( struct bnxt *bp, u32 idx )
{
if ( bp->thor )
thor_db ( bp, idx, ( u32 )bp->rx_ring_id, DBC_DBC_TYPE_SRQ );
else
write32 ( RX_DOORBELL_KEY_RX | idx, ( bp->bar1 + 0 ) );
}
static void bnxt_db_tx ( struct bnxt *bp, u32 idx )
{
if ( bp->thor )
thor_db ( bp, idx, ( u32 )bp->tx_ring_id, DBC_DBC_TYPE_SQ );
else
write32 ( ( u32 ) ( TX_DOORBELL_KEY_TX | idx ),
( bp->bar1 + 0 ) );
}
void bnxt_add_vlan ( struct io_buffer *iob, u16 vlan )
{
char *src = ( char * )iob->data;
u16 len = iob_len ( iob );
memmove ( ( char * )&src[MAC_HDR_SIZE + VLAN_HDR_SIZE],
( char * )&src[MAC_HDR_SIZE],
( len - MAC_HDR_SIZE ) );
* ( u16 * ) ( &src[MAC_HDR_SIZE] ) = BYTE_SWAP_S ( ETHERTYPE_VLAN );
* ( u16 * ) ( &src[MAC_HDR_SIZE + 2] ) = BYTE_SWAP_S ( vlan );
iob_put ( iob, VLAN_HDR_SIZE );
}
static u16 bnxt_get_pkt_vlan ( char *src )
{
if ( * ( ( u16 * )&src[MAC_HDR_SIZE] ) == BYTE_SWAP_S ( ETHERTYPE_VLAN ) )
return BYTE_SWAP_S ( * ( ( u16 * )&src[MAC_HDR_SIZE + 2] ) );
return 0;
}
int bnxt_vlan_drop ( struct bnxt *bp, u16 rx_vlan )
{
if ( rx_vlan ) {
if ( bp->vlan_tx ) {
if ( rx_vlan == bp->vlan_tx )
return 0;
} else {
if ( rx_vlan == bp->vlan_id )
return 0;
if ( rx_vlan && !bp->vlan_id )
return 0;
}
} else {
if ( !bp->vlan_tx && !bp->vlan_id )
return 0;
}
return 1;
}
static inline u32 bnxt_tx_avail ( struct bnxt *bp )
{
u32 avail;
u32 use;
barrier ( );
avail = TX_AVAIL ( bp->tx.ring_cnt );
use = TX_IN_USE ( bp->tx.prod_id, bp->tx.cons_id, bp->tx.ring_cnt );
dbg_tx_avail ( bp, avail, use );
return ( avail-use );
}
void bnxt_set_txq ( struct bnxt *bp, int entry, dma_addr_t mapping, int len )
{
struct tx_bd_short *prod_bd;
prod_bd = ( struct tx_bd_short * )BD_NOW ( bp->tx.bd_virt,
entry, sizeof ( struct tx_bd_short ) );
if ( len < 512 )
prod_bd->flags_type = TX_BD_SHORT_FLAGS_LHINT_LT512;
else if ( len < 1024 )
prod_bd->flags_type = TX_BD_SHORT_FLAGS_LHINT_LT1K;
else if ( len < 2048 )
prod_bd->flags_type = TX_BD_SHORT_FLAGS_LHINT_LT2K;
else
prod_bd->flags_type = TX_BD_SHORT_FLAGS_LHINT_GTE2K;
prod_bd->flags_type |= TX_BD_FLAGS;
prod_bd->dma.addr = mapping;
prod_bd->len = len;
prod_bd->opaque = ( u32 )entry;
}
static void bnxt_tx_complete ( struct net_device *dev, u16 hw_idx )
{
struct bnxt *bp = netdev_priv ( dev );
struct io_buffer *iob;
iob = bp->tx.iob[hw_idx];
dbg_tx_done ( iob->data, iob_len ( iob ), hw_idx );
netdev_tx_complete ( dev, iob );
bp->tx.cons_id = NEXT_IDX ( hw_idx, bp->tx.ring_cnt );
bp->tx.cnt++;
dump_tx_stat ( bp );
}
int bnxt_free_rx_iob ( struct bnxt *bp )
{
unsigned int i;
DBGP ( "%s\n", __func__ );
if ( ! ( FLAG_TEST ( bp->flag_hwrm, VALID_RX_IOB ) ) )
return STATUS_SUCCESS;
for ( i = 0; i < bp->rx.buf_cnt; i++ ) {
if ( bp->rx.iob[i] ) {
free_iob ( bp->rx.iob[i] );
bp->rx.iob[i] = NULL;
}
}
bp->rx.iob_cnt = 0;
FLAG_RESET ( bp->flag_hwrm, VALID_RX_IOB );
return STATUS_SUCCESS;
}
static void bnxt_set_rx_desc ( u8 *buf, struct io_buffer *iob,
u16 cid, u32 idx )
{
struct rx_prod_pkt_bd *desc;
u16 off = cid * sizeof ( struct rx_prod_pkt_bd );
desc = ( struct rx_prod_pkt_bd * )&buf[off];
desc->flags_type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
desc->len = MAX_ETHERNET_PACKET_BUFFER_SIZE;
desc->opaque = idx;
desc->dma.addr = virt_to_bus ( iob->data );
}
static int bnxt_alloc_rx_iob ( struct bnxt *bp, u16 cons_id, u16 iob_idx )
{
struct io_buffer *iob;
iob = alloc_iob ( BNXT_RX_STD_DMA_SZ );
if ( !iob ) {
DBGP ( "- %s ( ): alloc_iob Failed\n", __func__ );
return -ENOMEM;
}
dbg_alloc_rx_iob ( iob, iob_idx, cons_id );
bnxt_set_rx_desc ( ( u8 * )bp->rx.bd_virt, iob, cons_id,
( u32 ) iob_idx );
bp->rx.iob[iob_idx] = iob;
return 0;
}
int bnxt_post_rx_buffers ( struct bnxt *bp )
{
u16 cons_id = ( bp->rx.cons_id % bp->rx.ring_cnt );
u16 iob_idx;
while ( bp->rx.iob_cnt < bp->rx.buf_cnt ) {
iob_idx = ( cons_id % bp->rx.buf_cnt );
if ( !bp->rx.iob[iob_idx] ) {
if ( bnxt_alloc_rx_iob ( bp, cons_id, iob_idx ) < 0 ) {
dbg_alloc_rx_iob_fail ( iob_idx, cons_id );
break;
}
}
cons_id = NEXT_IDX ( cons_id, bp->rx.ring_cnt );
bp->rx.iob_cnt++;
}
if ( cons_id != bp->rx.cons_id ) {
dbg_rx_cid ( bp->rx.cons_id, cons_id );
bp->rx.cons_id = cons_id;
bnxt_db_rx ( bp, ( u32 )cons_id );
}
FLAG_SET ( bp->flag_hwrm, VALID_RX_IOB );
return STATUS_SUCCESS;
}
u8 bnxt_rx_drop ( struct bnxt *bp, struct io_buffer *iob,
struct rx_pkt_cmpl_hi *rx_cmp_hi, u16 rx_len )
{
u8 *rx_buf = ( u8 * )iob->data;
u16 err_flags, rx_vlan;
u8 ignore_chksum_err = 0;
int i;
err_flags = rx_cmp_hi->errors_v2 >> RX_PKT_CMPL_ERRORS_BUFFER_ERROR_SFT;
if ( rx_cmp_hi->errors_v2 == 0x20 || rx_cmp_hi->errors_v2 == 0x21 )
ignore_chksum_err = 1;
if ( err_flags && !ignore_chksum_err ) {
bp->rx.drop_err++;
return 1;
}
for ( i = 0; i < 6; i++ ) {
if ( rx_buf[6 + i] != bp->mac_addr[i] )
break;
}
/* Drop the loopback packets */
if ( i == 6 ) {
bp->rx.drop_lb++;
return 2;
}
/* Get VLAN ID from RX completion ring */
if ( rx_cmp_hi->flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN )
rx_vlan = ( rx_cmp_hi->metadata &
RX_PKT_CMPL_METADATA_VID_MASK );
else
rx_vlan = 0;
dbg_rx_vlan ( bp, rx_cmp_hi->metadata, rx_cmp_hi->flags2, rx_vlan );
if ( bnxt_vlan_drop ( bp, rx_vlan ) ) {
bp->rx.drop_vlan++;
return 3;
}
iob_put ( iob, rx_len );
if ( rx_vlan )
bnxt_add_vlan ( iob, rx_vlan );
bp->rx.good++;
return 0;
}
static void bnxt_adv_cq_index ( struct bnxt *bp, u16 cnt )
{
u16 cons_id;
cons_id = bp->cq.cons_id + cnt;
if ( cons_id >= MAX_CQ_DESC_CNT ) {
/* Toggle completion bit when the ring wraps. */
bp->cq.completion_bit ^= 1;
cons_id = cons_id - MAX_CQ_DESC_CNT;
}
bp->cq.cons_id = cons_id;
}
void bnxt_rx_process ( struct net_device *dev, struct bnxt *bp,
struct rx_pkt_cmpl *rx_cmp, struct rx_pkt_cmpl_hi *rx_cmp_hi )
{
u32 desc_idx = rx_cmp->opaque;
struct io_buffer *iob = bp->rx.iob[desc_idx];
u8 drop;
dump_rx_bd ( rx_cmp, rx_cmp_hi, desc_idx );
assert ( !iob );
drop = bnxt_rx_drop ( bp, iob, rx_cmp_hi, rx_cmp->len );
dbg_rxp ( iob->data, rx_cmp->len, drop );
if ( drop )
netdev_rx_err ( dev, iob, -EINVAL );
else
netdev_rx ( dev, iob );
bp->rx.cnt++;
bp->rx.iob[desc_idx] = NULL;
bp->rx.iob_cnt--;
bnxt_post_rx_buffers ( bp );
bnxt_adv_cq_index ( bp, 2 ); /* Rx completion is 2 entries. */
dbg_rx_stat ( bp );
}
static int bnxt_rx_complete ( struct net_device *dev,
struct rx_pkt_cmpl *rx_cmp )
{
struct bnxt *bp = netdev_priv ( dev );
struct rx_pkt_cmpl_hi *rx_cmp_hi;
u8 cmpl_bit = bp->cq.completion_bit;
if ( bp->cq.cons_id == ( bp->cq.ring_cnt - 1 ) ) {
rx_cmp_hi = ( struct rx_pkt_cmpl_hi * )bp->cq.bd_virt;
cmpl_bit ^= 0x1; /* Ring has wrapped. */
} else
rx_cmp_hi = ( struct rx_pkt_cmpl_hi * ) ( rx_cmp+1 );
if ( ! ( ( rx_cmp_hi->errors_v2 & RX_PKT_CMPL_V2 ) ^ cmpl_bit ) ) {
bnxt_rx_process ( dev, bp, rx_cmp, rx_cmp_hi );
return SERVICE_NEXT_CQ_BD;
} else
return NO_MORE_CQ_BD_TO_SERVICE;
}
void bnxt_mm_init ( struct bnxt *bp, const char *func )
{
DBGP ( "%s\n", __func__ );
memset ( bp->hwrm_addr_req, 0, REQ_BUFFER_SIZE );
memset ( bp->hwrm_addr_resp, 0, RESP_BUFFER_SIZE );
memset ( bp->hwrm_addr_dma, 0, DMA_BUFFER_SIZE );
bp->req_addr_mapping = virt_to_bus ( bp->hwrm_addr_req );
bp->resp_addr_mapping = virt_to_bus ( bp->hwrm_addr_resp );
bp->dma_addr_mapping = virt_to_bus ( bp->hwrm_addr_dma );
bp->link_status = STATUS_LINK_DOWN;
bp->wait_link_timeout = LINK_DEFAULT_TIMEOUT;
bp->mtu = MAX_ETHERNET_PACKET_BUFFER_SIZE;
bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
bp->nq.ring_cnt = MAX_NQ_DESC_CNT;
bp->cq.ring_cnt = MAX_CQ_DESC_CNT;
bp->tx.ring_cnt = MAX_TX_DESC_CNT;
bp->rx.ring_cnt = MAX_RX_DESC_CNT;
bp->rx.buf_cnt = NUM_RX_BUFFERS;
dbg_mem ( bp, func );
}
void bnxt_mm_nic ( struct bnxt *bp )
{
DBGP ( "%s\n", __func__ );
memset ( bp->cq.bd_virt, 0, CQ_RING_BUFFER_SIZE );
memset ( bp->tx.bd_virt, 0, TX_RING_BUFFER_SIZE );
memset ( bp->rx.bd_virt, 0, RX_RING_BUFFER_SIZE );
memset ( bp->nq.bd_virt, 0, NQ_RING_BUFFER_SIZE );
bp->nq.cons_id = 0;
bp->nq.completion_bit = 0x1;
bp->cq.cons_id = 0;
bp->cq.completion_bit = 0x1;
bp->tx.prod_id = 0;
bp->tx.cons_id = 0;
bp->rx.cons_id = 0;
bp->rx.iob_cnt = 0;
bp->link_status = STATUS_LINK_DOWN;
bp->wait_link_timeout = LINK_DEFAULT_TIMEOUT;
bp->mtu = MAX_ETHERNET_PACKET_BUFFER_SIZE;
bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
bp->nq.ring_cnt = MAX_NQ_DESC_CNT;
bp->cq.ring_cnt = MAX_CQ_DESC_CNT;
bp->tx.ring_cnt = MAX_TX_DESC_CNT;
bp->rx.ring_cnt = MAX_RX_DESC_CNT;
bp->rx.buf_cnt = NUM_RX_BUFFERS;
}
void bnxt_free_mem ( struct bnxt *bp )
{
DBGP ( "%s\n", __func__ );
if ( bp->nq.bd_virt ) {
free_phys ( bp->nq.bd_virt, NQ_RING_BUFFER_SIZE );
bp->nq.bd_virt = NULL;
}
if ( bp->cq.bd_virt ) {
free_phys ( bp->cq.bd_virt, CQ_RING_BUFFER_SIZE );
bp->cq.bd_virt = NULL;
}
if ( bp->rx.bd_virt ) {
free_phys ( bp->rx.bd_virt, RX_RING_BUFFER_SIZE );
bp->rx.bd_virt = NULL;
}
if ( bp->tx.bd_virt ) {
free_phys ( bp->tx.bd_virt, TX_RING_BUFFER_SIZE );
bp->tx.bd_virt = NULL;
}
if ( bp->hwrm_addr_dma ) {
free_phys ( bp->hwrm_addr_dma, DMA_BUFFER_SIZE );
bp->dma_addr_mapping = 0;
bp->hwrm_addr_dma = NULL;
}
if ( bp->hwrm_addr_resp ) {
free_phys ( bp->hwrm_addr_resp, RESP_BUFFER_SIZE );
bp->resp_addr_mapping = 0;
bp->hwrm_addr_resp = NULL;
}
if ( bp->hwrm_addr_req ) {
free_phys ( bp->hwrm_addr_req, REQ_BUFFER_SIZE );
bp->req_addr_mapping = 0;
bp->hwrm_addr_req = NULL;
}
DBGP ( "- %s ( ): - Done\n", __func__ );
}
int bnxt_alloc_mem ( struct bnxt *bp )
{
DBGP ( "%s\n", __func__ );
bp->hwrm_addr_req = malloc_phys ( REQ_BUFFER_SIZE, BNXT_DMA_ALIGNMENT );
bp->hwrm_addr_resp = malloc_phys ( RESP_BUFFER_SIZE,
BNXT_DMA_ALIGNMENT );
bp->hwrm_addr_dma = malloc_phys ( DMA_BUFFER_SIZE, BNXT_DMA_ALIGNMENT );
bp->tx.bd_virt = malloc_phys ( TX_RING_BUFFER_SIZE, DMA_ALIGN_4K );
bp->rx.bd_virt = malloc_phys ( RX_RING_BUFFER_SIZE, DMA_ALIGN_4K );
bp->cq.bd_virt = malloc_phys ( CQ_RING_BUFFER_SIZE, BNXT_DMA_ALIGNMENT );
bp->nq.bd_virt = malloc_phys ( NQ_RING_BUFFER_SIZE, BNXT_DMA_ALIGNMENT );
test_if ( bp->hwrm_addr_req &&
bp->hwrm_addr_resp &&
bp->hwrm_addr_dma &&
bp->tx.bd_virt &&
bp->rx.bd_virt &&
bp->nq.bd_virt &&
bp->cq.bd_virt ) {
bnxt_mm_init ( bp, __func__ );
return STATUS_SUCCESS;
}
DBGP ( "- %s ( ): Failed\n", __func__ );
bnxt_free_mem ( bp );
return -ENOMEM;
}
static void hwrm_init ( struct bnxt *bp, struct input *req, u16 cmd, u16 len )
{
memset ( req, 0, len );
req->req_type = cmd;
req->cmpl_ring = ( u16 )HWRM_NA_SIGNATURE;
req->target_id = ( u16 )HWRM_NA_SIGNATURE;
req->resp_addr = bp->resp_addr_mapping;
req->seq_id = bp->seq_id++;
}
static void hwrm_write_req ( struct bnxt *bp, void *req, u32 cnt )
{
u32 i = 0;
for ( i = 0; i < cnt; i++ ) {
write32 ( ( ( u32 * )req )[i],
( bp->bar0 + GRC_COM_CHAN_BASE + ( i * 4 ) ) );
}
write32 ( 0x1, ( bp->bar0 + GRC_COM_CHAN_BASE + GRC_COM_CHAN_TRIG ) );
}
static void short_hwrm_cmd_req ( struct bnxt *bp, u16 len )
{
struct hwrm_short_input sreq;
memset ( &sreq, 0, sizeof ( struct hwrm_short_input ) );
sreq.req_type = ( u16 ) ( ( struct input * )bp->hwrm_addr_req )->req_type;
sreq.signature = SHORT_REQ_SIGNATURE_SHORT_CMD;
sreq.size = len;
sreq.req_addr = bp->req_addr_mapping;
mdelay ( 100 );
dbg_short_cmd ( ( u8 * )&sreq, __func__,
sizeof ( struct hwrm_short_input ) );
hwrm_write_req ( bp, &sreq, sizeof ( struct hwrm_short_input ) / 4 );
}
static int wait_resp ( struct bnxt *bp, u32 tmo, u16 len, const char *func )
{
struct input *req = ( struct input * )bp->hwrm_addr_req;
struct output *resp = ( struct output * )bp->hwrm_addr_resp;
u8 *ptr = ( u8 * )resp;
u32 idx;
u32 wait_cnt = HWRM_CMD_DEFAULT_MULTIPLAYER ( ( u32 )tmo );
u16 resp_len = 0;
u16 ret = STATUS_TIMEOUT;
if ( len > bp->hwrm_max_req_len )
short_hwrm_cmd_req ( bp, len );
else
hwrm_write_req ( bp, req, ( u32 ) ( len / 4 ) );
for ( idx = 0; idx < wait_cnt; idx++ ) {
resp_len = resp->resp_len;
test_if ( resp->seq_id == req->seq_id &&
resp->req_type == req->req_type &&
ptr[resp_len - 1] == 1 ) {
bp->last_resp_code = resp->error_code;
ret = resp->error_code;
break;
}
udelay ( HWRM_CMD_POLL_WAIT_TIME );
}
dbg_hw_cmd ( bp, func, len, resp_len, tmo, ret );
return ( int )ret;
}
static int bnxt_hwrm_ver_get ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_ver_get_input );
struct hwrm_ver_get_input *req;
struct hwrm_ver_get_output *resp;
int rc;
DBGP ( "%s\n", __func__ );
req = ( struct hwrm_ver_get_input * )bp->hwrm_addr_req;
resp = ( struct hwrm_ver_get_output * )bp->hwrm_addr_resp;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_VER_GET, cmd_len );
req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
req->hwrm_intf_min = HWRM_VERSION_MINOR;
req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
rc = wait_resp ( bp, HWRM_CMD_DEFAULT_TIMEOUT, cmd_len, __func__ );
if ( rc )
return STATUS_FAILURE;
bp->hwrm_spec_code =
resp->hwrm_intf_maj_8b << 16 |
resp->hwrm_intf_min_8b << 8 |
resp->hwrm_intf_upd_8b;
bp->hwrm_cmd_timeout = ( u32 )resp->def_req_timeout;
if ( !bp->hwrm_cmd_timeout )
bp->hwrm_cmd_timeout = ( u32 )HWRM_CMD_DEFAULT_TIMEOUT;
if ( resp->hwrm_intf_maj_8b >= 1 )
bp->hwrm_max_req_len = resp->max_req_win_len;
bp->chip_id =
resp->chip_rev << 24 |
resp->chip_metal << 16 |
resp->chip_bond_id << 8 |
resp->chip_platform_type;
bp->chip_num = resp->chip_num;
test_if ( ( resp->dev_caps_cfg & SHORT_CMD_SUPPORTED ) &&
( resp->dev_caps_cfg & SHORT_CMD_REQUIRED ) )
FLAG_SET ( bp->flags, BNXT_FLAG_HWRM_SHORT_CMD_SUPP );
bp->hwrm_max_ext_req_len = resp->max_ext_req_len;
if ( bp->chip_num == CHIP_NUM_57500 )
bp->thor = 1;
dbg_fw_ver ( resp, bp->hwrm_cmd_timeout );
return STATUS_SUCCESS;
}
static int bnxt_hwrm_func_resource_qcaps ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_func_resource_qcaps_input );
struct hwrm_func_resource_qcaps_input *req;
struct hwrm_func_resource_qcaps_output *resp;
int rc;
DBGP ( "%s\n", __func__ );
req = ( struct hwrm_func_resource_qcaps_input * )bp->hwrm_addr_req;
resp = ( struct hwrm_func_resource_qcaps_output * )bp->hwrm_addr_resp;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_FUNC_RESOURCE_QCAPS,
cmd_len );
req->fid = ( u16 )HWRM_NA_SIGNATURE;
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc != STATUS_SUCCESS )
return STATUS_SUCCESS;
FLAG_SET ( bp->flags, BNXT_FLAG_RESOURCE_QCAPS_SUPPORT );
// VFs
if ( !bp->vf ) {
bp->max_vfs = resp->max_vfs;
bp->vf_res_strategy = resp->vf_reservation_strategy;
}
// vNICs
bp->min_vnics = resp->min_vnics;
bp->max_vnics = resp->max_vnics;
// MSI-X
bp->max_msix = resp->max_msix;
// Ring Groups
bp->min_hw_ring_grps = resp->min_hw_ring_grps;
bp->max_hw_ring_grps = resp->max_hw_ring_grps;
// TX Rings
bp->min_tx_rings = resp->min_tx_rings;
bp->max_tx_rings = resp->max_tx_rings;
// RX Rings
bp->min_rx_rings = resp->min_rx_rings;
bp->max_rx_rings = resp->max_rx_rings;
// Completion Rings
bp->min_cp_rings = resp->min_cmpl_rings;
bp->max_cp_rings = resp->max_cmpl_rings;
// RSS Contexts
bp->min_rsscos_ctxs = resp->min_rsscos_ctx;
bp->max_rsscos_ctxs = resp->max_rsscos_ctx;
// L2 Contexts
bp->min_l2_ctxs = resp->min_l2_ctxs;
bp->max_l2_ctxs = resp->max_l2_ctxs;
// Statistic Contexts
bp->min_stat_ctxs = resp->min_stat_ctx;
bp->max_stat_ctxs = resp->max_stat_ctx;
dbg_func_resource_qcaps ( bp );
return STATUS_SUCCESS;
}
static u32 bnxt_set_ring_info ( struct bnxt *bp )
{
u32 enables = 0;
DBGP ( "%s\n", __func__ );
bp->num_cmpl_rings = DEFAULT_NUMBER_OF_CMPL_RINGS;
bp->num_tx_rings = DEFAULT_NUMBER_OF_TX_RINGS;
bp->num_rx_rings = DEFAULT_NUMBER_OF_RX_RINGS;
bp->num_hw_ring_grps = DEFAULT_NUMBER_OF_RING_GRPS;
bp->num_stat_ctxs = DEFAULT_NUMBER_OF_STAT_CTXS;
if ( bp->min_cp_rings <= DEFAULT_NUMBER_OF_CMPL_RINGS )
bp->num_cmpl_rings = bp->min_cp_rings;
if ( bp->min_tx_rings <= DEFAULT_NUMBER_OF_TX_RINGS )
bp->num_tx_rings = bp->min_tx_rings;
if ( bp->min_rx_rings <= DEFAULT_NUMBER_OF_RX_RINGS )
bp->num_rx_rings = bp->min_rx_rings;
if ( bp->min_hw_ring_grps <= DEFAULT_NUMBER_OF_RING_GRPS )
bp->num_hw_ring_grps = bp->min_hw_ring_grps;
if ( bp->min_stat_ctxs <= DEFAULT_NUMBER_OF_STAT_CTXS )
bp->num_stat_ctxs = bp->min_stat_ctxs;
dbg_num_rings ( bp );
enables = ( FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS );
return enables;
}
static void bnxt_hwrm_assign_resources ( struct bnxt *bp )
{
struct hwrm_func_cfg_input *req;
u32 enables = 0;
DBGP ( "%s\n", __func__ );
if ( FLAG_TEST ( bp->flags, BNXT_FLAG_RESOURCE_QCAPS_SUPPORT ) )
enables = bnxt_set_ring_info ( bp );
req = ( struct hwrm_func_cfg_input * )bp->hwrm_addr_req;
req->num_cmpl_rings = bp->num_cmpl_rings;
req->num_tx_rings = bp->num_tx_rings;
req->num_rx_rings = bp->num_rx_rings;
req->num_stat_ctxs = bp->num_stat_ctxs;
req->num_hw_ring_grps = bp->num_hw_ring_grps;
req->enables = enables;
}
static int bnxt_hwrm_func_qcaps_req ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_func_qcaps_input );
struct hwrm_func_qcaps_input *req;
struct hwrm_func_qcaps_output *resp;
int rc;
DBGP ( "%s\n", __func__ );
if ( bp->vf )
return STATUS_SUCCESS;
req = ( struct hwrm_func_qcaps_input * )bp->hwrm_addr_req;
resp = ( struct hwrm_func_qcaps_output * )bp->hwrm_addr_resp;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_FUNC_QCAPS, cmd_len );
req->fid = ( u16 )HWRM_NA_SIGNATURE;
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc ) {
DBGP ( "- %s ( ): Failed\n", __func__ );
return STATUS_FAILURE;
}
bp->fid = resp->fid;
bp->port_idx = ( u8 )resp->port_id;
/* Get MAC address for this PF */
memcpy ( &bp->mac_addr[0], &resp->mac_address[0], ETH_ALEN );
dbg_func_qcaps ( bp );
return STATUS_SUCCESS;
}
static int bnxt_hwrm_func_qcfg_req ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_func_qcfg_input );
struct hwrm_func_qcfg_input *req;
struct hwrm_func_qcfg_output *resp;
int rc;
DBGP ( "%s\n", __func__ );
req = ( struct hwrm_func_qcfg_input * )bp->hwrm_addr_req;
resp = ( struct hwrm_func_qcfg_output * )bp->hwrm_addr_resp;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_FUNC_QCFG, cmd_len );
req->fid = ( u16 )HWRM_NA_SIGNATURE;
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc ) {
DBGP ( "- %s ( ): Failed\n", __func__ );
return STATUS_FAILURE;
}
if ( resp->flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST )
FLAG_SET ( bp->flags, BNXT_FLAG_MULTI_HOST );
if ( resp->port_partition_type &
FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0 )
FLAG_SET ( bp->flags, BNXT_FLAG_NPAR_MODE );
bp->ordinal_value = ( u8 )resp->pci_id & 0x0F;
bp->stat_ctx_id = resp->stat_ctx_id;
/* If VF is set to TRUE, then use some data from func_qcfg ( ). */
if ( bp->vf ) {
bp->fid = resp->fid;
bp->port_idx = ( u8 )resp->port_id;
bp->vlan_id = resp->vlan;
/* Get MAC address for this VF */
memcpy ( bp->mac_addr, resp->mac_address, ETH_ALEN );
}
dbg_func_qcfg ( bp );
return STATUS_SUCCESS;
}
static int bnxt_hwrm_func_reset_req ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_func_reset_input );
struct hwrm_func_reset_input *req;
DBGP ( "%s\n", __func__ );
req = ( struct hwrm_func_reset_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_FUNC_RESET, cmd_len );
if ( !bp->vf )
req->func_reset_level = FUNC_RESET_REQ_FUNC_RESET_LEVEL_RESETME;
return wait_resp ( bp, HWRM_CMD_WAIT ( 6 ), cmd_len, __func__ );
}
static int bnxt_hwrm_func_cfg_req ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_func_cfg_input );
struct hwrm_func_cfg_input *req;
DBGP ( "%s\n", __func__ );
if ( bp->vf )
return STATUS_SUCCESS;
req = ( struct hwrm_func_cfg_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_FUNC_CFG, cmd_len );
req->fid = ( u16 )HWRM_NA_SIGNATURE;
bnxt_hwrm_assign_resources ( bp );
if ( bp->thor ) {
req->enables |= ( FUNC_CFG_REQ_ENABLES_NUM_MSIX |
FUNC_CFG_REQ_ENABLES_NUM_VNICS |
FUNC_CFG_REQ_ENABLES_EVB_MODE );
req->num_msix = 1;
req->num_vnics = 1;
req->evb_mode = FUNC_CFG_REQ_EVB_MODE_NO_EVB;
}
return wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
}
static int bnxt_hwrm_func_drv_rgtr ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_func_drv_rgtr_input );
struct hwrm_func_drv_rgtr_input *req;
int rc;
DBGP ( "%s\n", __func__ );
req = ( struct hwrm_func_drv_rgtr_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_FUNC_DRV_RGTR, cmd_len );
/* Register with HWRM */
req->enables = FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD |
FUNC_DRV_RGTR_REQ_ENABLES_VER;
req->async_event_fwd[0] |= 0x01;
req->os_type = FUNC_DRV_RGTR_REQ_OS_TYPE_OTHER;
req->ver_maj = IPXE_VERSION_MAJOR;
req->ver_min = IPXE_VERSION_MINOR;
req->ver_upd = IPXE_VERSION_UPDATE;
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc ) {
DBGP ( "- %s ( ): Failed\n", __func__ );
return STATUS_FAILURE;
}
FLAG_SET ( bp->flag_hwrm, VALID_DRIVER_REG );
return STATUS_SUCCESS;
}
static int bnxt_hwrm_func_drv_unrgtr ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_func_drv_unrgtr_input );
struct hwrm_func_drv_unrgtr_input *req;
int rc;
DBGP ( "%s\n", __func__ );
if ( ! ( FLAG_TEST ( bp->flag_hwrm, VALID_DRIVER_REG ) ) )
return STATUS_SUCCESS;
req = ( struct hwrm_func_drv_unrgtr_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_FUNC_DRV_UNRGTR, cmd_len );
req->flags = FUNC_DRV_UNRGTR_REQ_FLAGS_PREPARE_FOR_SHUTDOWN;
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc )
return STATUS_FAILURE;
FLAG_RESET ( bp->flag_hwrm, VALID_DRIVER_REG );
return STATUS_SUCCESS;
}
static int bnxt_hwrm_set_async_event ( struct bnxt *bp )
{
int rc;
u16 idx;
DBGP ( "%s\n", __func__ );
if ( bp->thor )
idx = bp->nq_ring_id;
else
idx = bp->cq_ring_id;
if ( bp->vf ) {
u16 cmd_len = ( u16 )sizeof ( struct hwrm_func_vf_cfg_input );
struct hwrm_func_vf_cfg_input *req;
req = ( struct hwrm_func_vf_cfg_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_FUNC_VF_CFG,
cmd_len );
req->enables = VF_CFG_ENABLE_FLAGS;
req->async_event_cr = idx;
req->mtu = bp->mtu;
req->guest_vlan = bp->vlan_id;
memcpy ( ( char * )&req->dflt_mac_addr[0], bp->mac_addr,
ETH_ALEN );
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
} else {
u16 cmd_len = ( u16 )sizeof ( struct hwrm_func_cfg_input );
struct hwrm_func_cfg_input *req;
req = ( struct hwrm_func_cfg_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_FUNC_CFG, cmd_len );
req->fid = ( u16 )HWRM_NA_SIGNATURE;
req->enables = FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR;
req->async_event_cr = idx;
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
}
return rc;
}
static int bnxt_hwrm_cfa_l2_filter_alloc ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_cfa_l2_filter_alloc_input );
struct hwrm_cfa_l2_filter_alloc_input *req;
struct hwrm_cfa_l2_filter_alloc_output *resp;
int rc;
u32 flags = CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX;
u32 enables;
DBGP ( "%s\n", __func__ );
req = ( struct hwrm_cfa_l2_filter_alloc_input * )bp->hwrm_addr_req;
resp = ( struct hwrm_cfa_l2_filter_alloc_output * )bp->hwrm_addr_resp;
if ( bp->vf )
flags |= CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST;
enables = CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_CFA_L2_FILTER_ALLOC,
cmd_len );
req->flags = flags;
req->enables = enables;
memcpy ( ( char * )&req->l2_addr[0], ( char * )&bp->mac_addr[0],
ETH_ALEN );
memset ( ( char * )&req->l2_addr_mask[0], 0xff, ETH_ALEN );
if ( !bp->vf ) {
memcpy ( ( char * )&req->t_l2_addr[0], bp->mac_addr, ETH_ALEN );
memset ( ( char * )&req->t_l2_addr_mask[0], 0xff, ETH_ALEN );
}
req->src_type = CFA_L2_FILTER_ALLOC_REQ_SRC_TYPE_NPORT;
req->src_id = ( u32 )bp->port_idx;
req->dst_id = bp->vnic_id;
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc )
return STATUS_FAILURE;
FLAG_SET ( bp->flag_hwrm, VALID_L2_FILTER );
bp->l2_filter_id = resp->l2_filter_id;
return STATUS_SUCCESS;
}
static int bnxt_hwrm_cfa_l2_filter_free ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_cfa_l2_filter_free_input );
struct hwrm_cfa_l2_filter_free_input *req;
int rc;
DBGP ( "%s\n", __func__ );
if ( ! ( FLAG_TEST ( bp->flag_hwrm, VALID_L2_FILTER ) ) )
return STATUS_SUCCESS;
req = ( struct hwrm_cfa_l2_filter_free_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_CFA_L2_FILTER_FREE,
cmd_len );
req->l2_filter_id = bp->l2_filter_id;
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc ) {
DBGP ( "- %s ( ): Failed\n", __func__ );
return STATUS_FAILURE;
}
FLAG_RESET ( bp->flag_hwrm, VALID_L2_FILTER );
return STATUS_SUCCESS;
}
u32 set_rx_mask ( u32 rx_mask )
{
u32 mask = 0;
if ( !rx_mask )
return mask;
mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
if ( rx_mask != RX_MASK_ACCEPT_NONE ) {
if ( rx_mask & RX_MASK_ACCEPT_MULTICAST )
mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
if ( rx_mask & RX_MASK_ACCEPT_ALL_MULTICAST )
mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
if ( rx_mask & RX_MASK_PROMISCUOUS_MODE )
mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
}
return mask;
}
static int bnxt_hwrm_set_rx_mask ( struct bnxt *bp, u32 rx_mask )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_cfa_l2_set_rx_mask_input );
struct hwrm_cfa_l2_set_rx_mask_input *req;
u32 mask = set_rx_mask ( rx_mask );
req = ( struct hwrm_cfa_l2_set_rx_mask_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_CFA_L2_SET_RX_MASK,
cmd_len );
req->vnic_id = bp->vnic_id;
req->mask = mask;
return wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
}
static int bnxt_hwrm_port_phy_qcfg ( struct bnxt *bp, u16 idx )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_port_phy_qcfg_input );
struct hwrm_port_phy_qcfg_input *req;
struct hwrm_port_phy_qcfg_output *resp;
int rc;
DBGP ( "%s\n", __func__ );
req = ( struct hwrm_port_phy_qcfg_input * )bp->hwrm_addr_req;
resp = ( struct hwrm_port_phy_qcfg_output * )bp->hwrm_addr_resp;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_PORT_PHY_QCFG, cmd_len );
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc ) {
DBGP ( "- %s ( ): Failed\n", __func__ );
return STATUS_FAILURE;
}
if ( idx & SUPPORT_SPEEDS )
bp->support_speeds = resp->support_speeds;
if ( idx & DETECT_MEDIA )
bp->media_detect = resp->module_status;
if ( idx & PHY_SPEED )
bp->current_link_speed = resp->link_speed;
if ( idx & PHY_STATUS ) {
if ( resp->link == PORT_PHY_QCFG_RESP_LINK_LINK )
bp->link_status = STATUS_LINK_ACTIVE;
else
bp->link_status = STATUS_LINK_DOWN;
}
return STATUS_SUCCESS;
}
static int bnxt_hwrm_nvm_get_variable_req ( struct bnxt *bp,
u16 data_len, u16 option_num, u16 dimensions, u16 index_0 )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_nvm_get_variable_input );
struct hwrm_nvm_get_variable_input *req;
DBGP ( "%s\n", __func__ );
req = ( struct hwrm_nvm_get_variable_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_NVM_GET_VARIABLE, cmd_len );
req->dest_data_addr = bp->dma_addr_mapping;
req->data_len = data_len;
req->option_num = option_num;
req->dimensions = dimensions;
req->index_0 = index_0;
return wait_resp ( bp,
HWRM_CMD_FLASH_MULTIPLAYER ( bp->hwrm_cmd_timeout ),
cmd_len, __func__ );
}
static int bnxt_get_link_speed ( struct bnxt *bp )
{
u32 *ptr32 = ( u32 * )bp->hwrm_addr_dma;
DBGP ( "%s\n", __func__ );
test_if ( bnxt_hwrm_nvm_get_variable_req ( bp, 4,
( u16 )LINK_SPEED_DRV_NUM,
1, ( u16 )bp->port_idx ) != STATUS_SUCCESS )
return STATUS_FAILURE;
bp->link_set = SET_LINK ( *ptr32, SPEED_DRV_MASK, SPEED_DRV_SHIFT );
test_if ( bnxt_hwrm_nvm_get_variable_req ( bp, 4,
( u16 )LINK_SPEED_FW_NUM,
1, ( u16 )bp->port_idx ) != STATUS_SUCCESS )
return STATUS_FAILURE;
bp->link_set |= SET_LINK ( *ptr32, SPEED_FW_MASK, SPEED_FW_SHIFT );
test_if ( bnxt_hwrm_nvm_get_variable_req ( bp, 4,
( u16 )D3_LINK_SPEED_FW_NUM, 1,
( u16 )bp->port_idx ) != STATUS_SUCCESS )
return STATUS_FAILURE;
bp->link_set |= SET_LINK ( *ptr32, D3_SPEED_FW_MASK,
D3_SPEED_FW_SHIFT );
test_if ( bnxt_hwrm_nvm_get_variable_req ( bp, 1,
( u16 )PORT_CFG_LINK_SETTINGS_MEDIA_AUTO_DETECT_NUM,
1, ( u16 )bp->port_idx ) != STATUS_SUCCESS )
return STATUS_FAILURE;
bp->link_set |= SET_LINK ( *ptr32,
MEDIA_AUTO_DETECT_MASK, MEDIA_AUTO_DETECT_SHIFT );
switch ( bp->link_set & LINK_SPEED_DRV_MASK ) {
case LINK_SPEED_DRV_1G:
bp->medium = SET_MEDIUM_SPEED ( bp, MEDIUM_SPEED_1000MBPS );
break;
case LINK_SPEED_DRV_2_5G:
bp->medium = SET_MEDIUM_SPEED ( bp, MEDIUM_SPEED_2500MBPS );
break;
case LINK_SPEED_DRV_10G:
bp->medium = SET_MEDIUM_SPEED ( bp, MEDIUM_SPEED_10GBPS );
break;
case LINK_SPEED_DRV_25G:
bp->medium = SET_MEDIUM_SPEED ( bp, MEDIUM_SPEED_25GBPS );
break;
case LINK_SPEED_DRV_40G:
bp->medium = SET_MEDIUM_SPEED ( bp, MEDIUM_SPEED_40GBPS );
break;
case LINK_SPEED_DRV_50G:
bp->medium = SET_MEDIUM_SPEED ( bp, MEDIUM_SPEED_50GBPS );
break;
case LINK_SPEED_DRV_100G:
bp->medium = SET_MEDIUM_SPEED ( bp, MEDIUM_SPEED_100GBPS );
break;
case LINK_SPEED_DRV_200G:
bp->medium = SET_MEDIUM_SPEED ( bp, MEDIUM_SPEED_200GBPS );
break;
case LINK_SPEED_DRV_AUTONEG:
bp->medium = SET_MEDIUM_SPEED ( bp, MEDIUM_SPEED_AUTONEG );
break;
default:
bp->medium = SET_MEDIUM_DUPLEX ( bp, MEDIUM_FULL_DUPLEX );
break;
}
prn_set_speed ( bp->link_set );
return STATUS_SUCCESS;
}
static int bnxt_get_vlan ( struct bnxt *bp )
{
u32 *ptr32 = ( u32 * )bp->hwrm_addr_dma;
/* If VF is set to TRUE, Do not issue this command */
if ( bp->vf )
return STATUS_SUCCESS;
test_if ( bnxt_hwrm_nvm_get_variable_req ( bp, 1,
( u16 )FUNC_CFG_PRE_BOOT_MBA_VLAN_NUM, 1,
( u16 )bp->ordinal_value ) != STATUS_SUCCESS )
return STATUS_FAILURE;
bp->mba_cfg2 = SET_MBA ( *ptr32, VLAN_MASK, VLAN_SHIFT );
test_if ( bnxt_hwrm_nvm_get_variable_req ( bp, 16,
( u16 )FUNC_CFG_PRE_BOOT_MBA_VLAN_VALUE_NUM, 1,
( u16 )bp->ordinal_value ) != STATUS_SUCCESS )
return STATUS_FAILURE;
bp->mba_cfg2 |= SET_MBA ( *ptr32, VLAN_VALUE_MASK, VLAN_VALUE_SHIFT );
if ( bp->mba_cfg2 & FUNC_CFG_PRE_BOOT_MBA_VLAN_ENABLED )
bp->vlan_id = bp->mba_cfg2 & VLAN_VALUE_MASK;
else
bp->vlan_id = 0;
if ( bp->mba_cfg2 & FUNC_CFG_PRE_BOOT_MBA_VLAN_ENABLED )
DBGP ( "VLAN MBA Enabled ( %d )\n",
( bp->mba_cfg2 & VLAN_VALUE_MASK ) );
return STATUS_SUCCESS;
}
static int bnxt_hwrm_backing_store_qcfg ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_func_backing_store_qcfg_input );
struct hwrm_func_backing_store_qcfg_input *req;
DBGP ( "%s\n", __func__ );
if ( !bp->thor )
return STATUS_SUCCESS;
req = ( struct hwrm_func_backing_store_qcfg_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_FUNC_BACKING_STORE_QCFG,
cmd_len );
return wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
}
static int bnxt_hwrm_backing_store_cfg ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_func_backing_store_cfg_input );
struct hwrm_func_backing_store_cfg_input *req;
DBGP ( "%s\n", __func__ );
if ( !bp->thor )
return STATUS_SUCCESS;
req = ( struct hwrm_func_backing_store_cfg_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_FUNC_BACKING_STORE_CFG,
cmd_len );
req->flags = FUNC_BACKING_STORE_CFG_REQ_FLAGS_PREBOOT_MODE;
req->enables = 0;
return wait_resp ( bp, HWRM_CMD_WAIT ( 6 ), cmd_len, __func__ );
}
static int bnxt_hwrm_queue_qportcfg ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_queue_qportcfg_input );
struct hwrm_queue_qportcfg_input *req;
struct hwrm_queue_qportcfg_output *resp;
int rc;
DBGP ( "%s\n", __func__ );
if ( !bp->thor )
return STATUS_SUCCESS;
req = ( struct hwrm_queue_qportcfg_input * )bp->hwrm_addr_req;
resp = ( struct hwrm_queue_qportcfg_output * )bp->hwrm_addr_resp;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_QUEUE_QPORTCFG, cmd_len );
req->flags = 0;
req->port_id = 0;
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc ) {
DBGP ( "- %s ( ): Failed\n", __func__ );
return STATUS_FAILURE;
}
bp->queue_id = resp->queue_id0;
return STATUS_SUCCESS;
}
static int bnxt_hwrm_port_mac_cfg ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_port_mac_cfg_input );
struct hwrm_port_mac_cfg_input *req;
DBGP ( "%s\n", __func__ );
if ( bp->vf )
return STATUS_SUCCESS;
req = ( struct hwrm_port_mac_cfg_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_PORT_MAC_CFG, cmd_len );
req->lpbk = PORT_MAC_CFG_REQ_LPBK_NONE;
return wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
}
static int bnxt_hwrm_port_phy_cfg ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_port_phy_cfg_input );
struct hwrm_port_phy_cfg_input *req;
u32 flags;
u32 enables = 0;
u16 force_link_speed = 0;
u16 auto_link_speed_mask = 0;
u8 auto_mode = 0;
u8 auto_pause = 0;
u8 auto_duplex = 0;
DBGP ( "%s\n", __func__ );
req = ( struct hwrm_port_phy_cfg_input * )bp->hwrm_addr_req;
flags = PORT_PHY_CFG_REQ_FLAGS_FORCE |
PORT_PHY_CFG_REQ_FLAGS_RESET_PHY;
switch ( GET_MEDIUM_SPEED ( bp->medium ) ) {
case MEDIUM_SPEED_1000MBPS:
force_link_speed = PORT_PHY_CFG_REQ_FORCE_LINK_SPEED_1GB;
break;
case MEDIUM_SPEED_10GBPS:
force_link_speed = PORT_PHY_CFG_REQ_FORCE_LINK_SPEED_10GB;
break;
case MEDIUM_SPEED_25GBPS:
force_link_speed = PORT_PHY_CFG_REQ_FORCE_LINK_SPEED_25GB;
break;
case MEDIUM_SPEED_40GBPS:
force_link_speed = PORT_PHY_CFG_REQ_FORCE_LINK_SPEED_40GB;
break;
case MEDIUM_SPEED_50GBPS:
force_link_speed = PORT_PHY_CFG_REQ_FORCE_LINK_SPEED_50GB;
break;
case MEDIUM_SPEED_100GBPS:
force_link_speed = PORT_PHY_CFG_REQ_FORCE_LINK_SPEED_100GB;
break;
case MEDIUM_SPEED_200GBPS:
force_link_speed = PORT_PHY_CFG_REQ_FORCE_LINK_SPEED_200GB;
break;
default:
auto_mode = PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
flags &= ~PORT_PHY_CFG_REQ_FLAGS_FORCE;
enables |= PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE |
PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK |
PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX |
PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE;
auto_pause = PORT_PHY_CFG_REQ_AUTO_PAUSE_TX |
PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_BOTH;
auto_link_speed_mask = bp->support_speeds;
break;
}
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_PORT_PHY_CFG, cmd_len );
req->flags = flags;
req->enables = enables;
req->port_id = bp->port_idx;
req->force_link_speed = force_link_speed;
req->auto_mode = auto_mode;
req->auto_duplex = auto_duplex;
req->auto_pause = auto_pause;
req->auto_link_speed_mask = auto_link_speed_mask;
return wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
}
static int bnxt_query_phy_link ( struct bnxt *bp )
{
u16 flag = PHY_STATUS | PHY_SPEED | DETECT_MEDIA;
DBGP ( "%s\n", __func__ );
/* Query Link Status */
if ( bnxt_hwrm_port_phy_qcfg ( bp, QCFG_PHY_ALL ) != STATUS_SUCCESS ) {
return STATUS_FAILURE;
}
if ( bp->link_status == STATUS_LINK_ACTIVE )
return STATUS_SUCCESS;
/* If VF is set to TRUE, Do not issue the following commands */
if ( bp->vf )
return STATUS_SUCCESS;
/* If multi_host or NPAR, Do not issue bnxt_get_link_speed */
if ( FLAG_TEST ( bp->flags, PORT_PHY_FLAGS ) ) {
dbg_flags ( __func__, bp->flags );
return STATUS_SUCCESS;
}
/* HWRM_NVM_GET_VARIABLE - speed */
if ( bnxt_get_link_speed ( bp ) != STATUS_SUCCESS ) {
return STATUS_FAILURE;
}
/* Configure link if it is not up */
bnxt_hwrm_port_phy_cfg ( bp );
/* refresh link speed values after bringing link up */
return bnxt_hwrm_port_phy_qcfg ( bp, flag );
}
static int bnxt_get_phy_link ( struct bnxt *bp )
{
u16 i;
u16 flag = PHY_STATUS | PHY_SPEED | DETECT_MEDIA;
DBGP ( "%s\n", __func__ );
dbg_chip_info ( bp );
for ( i = 0; i < ( bp->wait_link_timeout / 100 ); i++ ) {
if ( bnxt_hwrm_port_phy_qcfg ( bp, flag ) != STATUS_SUCCESS )
break;
if ( bp->link_status == STATUS_LINK_ACTIVE )
break;
// if ( bp->media_detect )
// break;
mdelay ( LINK_POLL_WAIT_TIME );
}
dbg_link_state ( bp, ( u32 ) ( ( i + 1 ) * 100 ) );
bnxt_set_link ( bp );
return STATUS_SUCCESS;
}
static int bnxt_hwrm_stat_ctx_alloc ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_stat_ctx_alloc_input );
struct hwrm_stat_ctx_alloc_input *req;
struct hwrm_stat_ctx_alloc_output *resp;
int rc;
DBGP ( "%s\n", __func__ );
req = ( struct hwrm_stat_ctx_alloc_input * )bp->hwrm_addr_req;
resp = ( struct hwrm_stat_ctx_alloc_output * )bp->hwrm_addr_resp;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_STAT_CTX_ALLOC, cmd_len );
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc ) {
DBGP ( "- %s ( ): Failed\n", __func__ );
return STATUS_FAILURE;
}
FLAG_SET ( bp->flag_hwrm, VALID_STAT_CTX );
bp->stat_ctx_id = ( u16 )resp->stat_ctx_id;
return STATUS_SUCCESS;
}
static int bnxt_hwrm_stat_ctx_free ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_stat_ctx_free_input );
struct hwrm_stat_ctx_free_input *req;
int rc;
DBGP ( "%s\n", __func__ );
if ( ! ( FLAG_TEST ( bp->flag_hwrm, VALID_STAT_CTX ) ) )
return STATUS_SUCCESS;
req = ( struct hwrm_stat_ctx_free_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_STAT_CTX_FREE, cmd_len );
req->stat_ctx_id = ( u32 )bp->stat_ctx_id;
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc ) {
DBGP ( "- %s ( ): Failed\n", __func__ );
return STATUS_FAILURE;
}
FLAG_RESET ( bp->flag_hwrm, VALID_STAT_CTX );
return STATUS_SUCCESS;
}
static int bnxt_hwrm_ring_free_grp ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_ring_grp_free_input );
struct hwrm_ring_grp_free_input *req;
int rc;
DBGP ( "%s\n", __func__ );
if ( ! ( FLAG_TEST ( bp->flag_hwrm, VALID_RING_GRP ) ) )
return STATUS_SUCCESS;
req = ( struct hwrm_ring_grp_free_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_RING_GRP_FREE, cmd_len );
req->ring_group_id = ( u32 )bp->ring_grp_id;
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc ) {
DBGP ( "- %s ( ): Failed\n", __func__ );
return STATUS_FAILURE;
}
FLAG_RESET ( bp->flag_hwrm, VALID_RING_GRP );
return STATUS_SUCCESS;
}
static int bnxt_hwrm_ring_alloc_grp ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_ring_grp_alloc_input );
struct hwrm_ring_grp_alloc_input *req;
struct hwrm_ring_grp_alloc_output *resp;
int rc;
DBGP ( "%s\n", __func__ );
if ( bp->thor )
return STATUS_SUCCESS;
req = ( struct hwrm_ring_grp_alloc_input * )bp->hwrm_addr_req;
resp = ( struct hwrm_ring_grp_alloc_output * )bp->hwrm_addr_resp;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_RING_GRP_ALLOC, cmd_len );
req->cr = bp->cq_ring_id;
req->rr = bp->rx_ring_id;
req->ar = ( u16 )HWRM_NA_SIGNATURE;
if ( bp->vf )
req->sc = bp->stat_ctx_id;
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc ) {
DBGP ( "- %s ( ): Failed\n", __func__ );
return STATUS_FAILURE;
}
FLAG_SET ( bp->flag_hwrm, VALID_RING_GRP );
bp->ring_grp_id = ( u16 )resp->ring_group_id;
return STATUS_SUCCESS;
}
int bnxt_hwrm_ring_free ( struct bnxt *bp, u16 ring_id, u8 ring_type )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_ring_free_input );
struct hwrm_ring_free_input *req;
DBGP ( "%s\n", __func__ );
req = ( struct hwrm_ring_free_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_RING_FREE, cmd_len );
req->ring_type = ring_type;
req->ring_id = ring_id;
return wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
}
static int bnxt_hwrm_ring_alloc ( struct bnxt *bp, u8 type )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_ring_alloc_input );
struct hwrm_ring_alloc_input *req;
struct hwrm_ring_alloc_output *resp;
int rc;
DBGP ( "%s\n", __func__ );
req = ( struct hwrm_ring_alloc_input * )bp->hwrm_addr_req;
resp = ( struct hwrm_ring_alloc_output * )bp->hwrm_addr_resp;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_RING_ALLOC, cmd_len );
req->ring_type = type;
switch ( type ) {
case RING_ALLOC_REQ_RING_TYPE_NQ:
req->page_size = LM_PAGE_BITS ( 12 );
req->int_mode = BNXT_CQ_INTR_MODE ( bp->vf );
req->length = ( u32 )bp->nq.ring_cnt;
req->logical_id = 0xFFFF; // Required value for Thor FW?
req->page_tbl_addr = virt_to_bus ( bp->nq.bd_virt );
break;
case RING_ALLOC_REQ_RING_TYPE_L2_CMPL:
req->page_size = LM_PAGE_BITS ( 8 );
req->int_mode = BNXT_CQ_INTR_MODE ( bp->vf );
req->length = ( u32 )bp->cq.ring_cnt;
req->page_tbl_addr = virt_to_bus ( bp->cq.bd_virt );
if ( !bp->thor )
break;
req->enables = RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID;
req->nq_ring_id = bp->nq_ring_id;
req->cq_handle = ( u64 )bp->nq_ring_id;
break;
case RING_ALLOC_REQ_RING_TYPE_TX:
req->page_size = LM_PAGE_BITS ( 8 );
req->int_mode = RING_ALLOC_REQ_INT_MODE_POLL;
req->length = ( u32 )bp->tx.ring_cnt;
req->queue_id = TX_RING_QID;
req->stat_ctx_id = ( u32 )bp->stat_ctx_id;
req->cmpl_ring_id = bp->cq_ring_id;
req->page_tbl_addr = virt_to_bus ( bp->tx.bd_virt );
break;
case RING_ALLOC_REQ_RING_TYPE_RX:
req->page_size = LM_PAGE_BITS ( 8 );
req->int_mode = RING_ALLOC_REQ_INT_MODE_POLL;
req->length = ( u32 )bp->rx.ring_cnt;
req->stat_ctx_id = ( u32 )STAT_CTX_ID;
req->cmpl_ring_id = bp->cq_ring_id;
req->page_tbl_addr = virt_to_bus ( bp->rx.bd_virt );
if ( !bp->thor )
break;
req->queue_id = ( u16 )RX_RING_QID;
req->rx_buf_size = MAX_ETHERNET_PACKET_BUFFER_SIZE;
req->enables = RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID;
break;
default:
return STATUS_SUCCESS;
}
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc ) {
DBGP ( "- %s ( ): Failed, type = %x\n", __func__, type );
return STATUS_FAILURE;
}
if ( type == RING_ALLOC_REQ_RING_TYPE_L2_CMPL ) {
FLAG_SET ( bp->flag_hwrm, VALID_RING_CQ );
bp->cq_ring_id = resp->ring_id;
} else if ( type == RING_ALLOC_REQ_RING_TYPE_TX ) {
FLAG_SET ( bp->flag_hwrm, VALID_RING_TX );
bp->tx_ring_id = resp->ring_id;
} else if ( type == RING_ALLOC_REQ_RING_TYPE_RX ) {
FLAG_SET ( bp->flag_hwrm, VALID_RING_RX );
bp->rx_ring_id = resp->ring_id;
} else if ( type == RING_ALLOC_REQ_RING_TYPE_NQ ) {
FLAG_SET ( bp->flag_hwrm, VALID_RING_NQ );
bp->nq_ring_id = resp->ring_id;
}
return STATUS_SUCCESS;
}
static int bnxt_hwrm_ring_alloc_cq ( struct bnxt *bp )
{
DBGP ( "%s\n", __func__ );
return bnxt_hwrm_ring_alloc ( bp, RING_ALLOC_REQ_RING_TYPE_L2_CMPL );
}
static int bnxt_hwrm_ring_alloc_tx ( struct bnxt *bp )
{
DBGP ( "%s\n", __func__ );
return bnxt_hwrm_ring_alloc ( bp, RING_ALLOC_REQ_RING_TYPE_TX );
}
static int bnxt_hwrm_ring_alloc_rx ( struct bnxt *bp )
{
DBGP ( "%s\n", __func__ );
return bnxt_hwrm_ring_alloc ( bp, RING_ALLOC_REQ_RING_TYPE_RX );
}
static int bnxt_hwrm_ring_free_cq ( struct bnxt *bp )
{
int ret = STATUS_SUCCESS;
DBGP ( "%s\n", __func__ );
if ( ! ( FLAG_TEST ( bp->flag_hwrm, VALID_RING_CQ ) ) )
return ret;
ret = RING_FREE ( bp, bp->cq_ring_id, RING_FREE_REQ_RING_TYPE_L2_CMPL );
if ( ret == STATUS_SUCCESS )
FLAG_RESET ( bp->flag_hwrm, VALID_RING_CQ );
return ret;
}
static int bnxt_hwrm_ring_free_tx ( struct bnxt *bp )
{
int ret = STATUS_SUCCESS;
DBGP ( "%s\n", __func__ );
if ( ! ( FLAG_TEST ( bp->flag_hwrm, VALID_RING_TX ) ) )
return ret;
ret = RING_FREE ( bp, bp->tx_ring_id, RING_FREE_REQ_RING_TYPE_TX );
if ( ret == STATUS_SUCCESS )
FLAG_RESET ( bp->flag_hwrm, VALID_RING_TX );
return ret;
}
static int bnxt_hwrm_ring_free_rx ( struct bnxt *bp )
{
int ret = STATUS_SUCCESS;
DBGP ( "%s\n", __func__ );
if ( ! ( FLAG_TEST ( bp->flag_hwrm, VALID_RING_RX ) ) )
return ret;
ret = RING_FREE ( bp, bp->rx_ring_id, RING_FREE_REQ_RING_TYPE_RX );
if ( ret == STATUS_SUCCESS )
FLAG_RESET ( bp->flag_hwrm, VALID_RING_RX );
return ret;
}
static int bnxt_hwrm_ring_alloc_nq ( struct bnxt *bp )
{
if ( !bp->thor )
return STATUS_SUCCESS;
return bnxt_hwrm_ring_alloc ( bp, RING_ALLOC_REQ_RING_TYPE_NQ );
}
static int bnxt_hwrm_ring_free_nq ( struct bnxt *bp )
{
int ret = STATUS_SUCCESS;
if ( !bp->thor )
return STATUS_SUCCESS;
DBGP ( "%s\n", __func__ );
if ( ! ( FLAG_TEST ( bp->flag_hwrm, VALID_RING_NQ ) ) )
return ret;
ret = RING_FREE ( bp, bp->nq_ring_id, RING_FREE_REQ_RING_TYPE_NQ );
if ( ret == STATUS_SUCCESS )
FLAG_RESET ( bp->flag_hwrm, VALID_RING_NQ );
return ret;
}
static int bnxt_hwrm_vnic_alloc ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_vnic_alloc_input );
struct hwrm_vnic_alloc_input *req;
struct hwrm_vnic_alloc_output *resp;
int rc;
DBGP ( "%s\n", __func__ );
req = ( struct hwrm_vnic_alloc_input * )bp->hwrm_addr_req;
resp = ( struct hwrm_vnic_alloc_output * )bp->hwrm_addr_resp;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_VNIC_ALLOC, cmd_len );
req->flags = VNIC_ALLOC_REQ_FLAGS_DEFAULT;
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc ) {
DBGP ( "- %s ( ): Failed\n", __func__ );
return STATUS_FAILURE;
}
FLAG_SET ( bp->flag_hwrm, VALID_VNIC_ID );
bp->vnic_id = resp->vnic_id;
return STATUS_SUCCESS;
}
static int bnxt_hwrm_vnic_free ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_vnic_free_input );
struct hwrm_vnic_free_input *req;
int rc;
DBGP ( "%s\n", __func__ );
if ( ! ( FLAG_TEST ( bp->flag_hwrm, VALID_VNIC_ID ) ) )
return STATUS_SUCCESS;
req = ( struct hwrm_vnic_free_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_VNIC_FREE, cmd_len );
req->vnic_id = bp->vnic_id;
rc = wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
if ( rc ) {
DBGP ( "- %s ( ): Failed\n", __func__ );
return STATUS_FAILURE;
}
FLAG_RESET ( bp->flag_hwrm, VALID_VNIC_ID );
return STATUS_SUCCESS;
}
static int bnxt_hwrm_vnic_cfg ( struct bnxt *bp )
{
u16 cmd_len = ( u16 )sizeof ( struct hwrm_vnic_cfg_input );
struct hwrm_vnic_cfg_input *req;
DBGP ( "%s\n", __func__ );
req = ( struct hwrm_vnic_cfg_input * )bp->hwrm_addr_req;
hwrm_init ( bp, ( void * )req, ( u16 )HWRM_VNIC_CFG, cmd_len );
req->enables = VNIC_CFG_REQ_ENABLES_MRU;
req->mru = bp->mtu;
if ( bp->thor ) {
req->enables |= ( VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID );
req->default_rx_ring_id = bp->rx_ring_id;
req->default_cmpl_ring_id = bp->cq_ring_id;
} else {
req->enables |= VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP;
req->dflt_ring_grp = bp->ring_grp_id;
}
req->flags = VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE;
req->vnic_id = bp->vnic_id;
return wait_resp ( bp, bp->hwrm_cmd_timeout, cmd_len, __func__ );
}
static int bnxt_set_rx_mask ( struct bnxt *bp )
{
return bnxt_hwrm_set_rx_mask ( bp, RX_MASK );
}
static int bnxt_reset_rx_mask ( struct bnxt *bp )
{
return bnxt_hwrm_set_rx_mask ( bp, 0 );
}
typedef int ( *hwrm_func_t ) ( struct bnxt *bp );
hwrm_func_t bring_down_chip[] = {
bnxt_hwrm_func_drv_unrgtr, /* HWRM_FUNC_DRV_UNRGTR */
NULL,
};
hwrm_func_t bring_down_nic[] = {
bnxt_hwrm_cfa_l2_filter_free, /* HWRM_CFA_L2_FILTER_FREE */
bnxt_reset_rx_mask,
bnxt_hwrm_vnic_cfg, /* HWRM_VNIC_CFG */
bnxt_free_rx_iob, /* HWRM_FREE_IOB */
bnxt_hwrm_vnic_free, /* HWRM_VNIC_FREE */
bnxt_hwrm_ring_free_grp, /* HWRM_RING_GRP_FREE */
bnxt_hwrm_ring_free_rx, /* HWRM_RING_FREE - RX Ring */
bnxt_hwrm_ring_free_tx, /* HWRM_RING_FREE - TX Ring */
bnxt_hwrm_stat_ctx_free, /* HWRM_STAT_CTX_FREE */
bnxt_hwrm_ring_free_cq, /* HWRM_RING_FREE - CQ Ring */
bnxt_hwrm_ring_free_nq, /* HWRM_RING_FREE - NQ Ring */
NULL,
};
hwrm_func_t bring_up_chip[] = {
bnxt_hwrm_ver_get, /* HWRM_VER_GET */
bnxt_hwrm_func_reset_req, /* HWRM_FUNC_RESET */
bnxt_hwrm_func_drv_rgtr, /* HWRM_FUNC_DRV_RGTR */
bnxt_hwrm_func_qcaps_req, /* HWRM_FUNC_QCAPS */
bnxt_hwrm_backing_store_cfg, /* HWRM_FUNC_BACKING_STORE_CFG */
bnxt_hwrm_backing_store_qcfg, /* HWRM_FUNC_BACKING_STORE_QCFG */
bnxt_hwrm_func_resource_qcaps, /* HWRM_FUNC_RESOURCE_QCAPS */
bnxt_hwrm_func_qcfg_req, /* HWRM_FUNC_QCFG */
bnxt_get_vlan, /* HWRM_NVM_GET_VARIABLE - vlan */
bnxt_hwrm_port_mac_cfg, /* HWRM_PORT_MAC_CFG */
bnxt_hwrm_func_cfg_req, /* HWRM_FUNC_CFG */
bnxt_query_phy_link, /* HWRM_PORT_PHY_QCFG */
bnxt_get_device_address, /* HW MAC address */
NULL,
};
hwrm_func_t bring_up_nic[] = {
bnxt_hwrm_stat_ctx_alloc, /* HWRM_STAT_CTX_ALLOC */
bnxt_hwrm_queue_qportcfg, /* HWRM_QUEUE_QPORTCFG */
bnxt_hwrm_ring_alloc_nq, /* HWRM_RING_ALLOC - NQ Ring */
bnxt_hwrm_ring_alloc_cq, /* HWRM_RING_ALLOC - CQ Ring */
bnxt_hwrm_ring_alloc_tx, /* HWRM_RING_ALLOC - TX Ring */
bnxt_hwrm_ring_alloc_rx, /* HWRM_RING_ALLOC - RX Ring */
bnxt_hwrm_ring_alloc_grp, /* HWRM_RING_GRP_ALLOC - Group */
bnxt_hwrm_vnic_alloc, /* HWRM_VNIC_ALLOC */
bnxt_post_rx_buffers, /* Post RX buffers */
bnxt_hwrm_set_async_event, /* ENABLES_ASYNC_EVENT_CR */
bnxt_hwrm_vnic_cfg, /* HWRM_VNIC_CFG */
bnxt_hwrm_cfa_l2_filter_alloc, /* HWRM_CFA_L2_FILTER_ALLOC */
bnxt_get_phy_link, /* HWRM_PORT_PHY_QCFG - PhyLink */
bnxt_set_rx_mask, /* HWRM_CFA_L2_SET_RX_MASK */
NULL,
};
int bnxt_hwrm_run ( hwrm_func_t cmds[], struct bnxt *bp )
{
hwrm_func_t *ptr;
int ret;
for ( ptr = cmds; *ptr; ++ptr ) {
memset ( bp->hwrm_addr_req, 0, REQ_BUFFER_SIZE );
memset ( bp->hwrm_addr_resp, 0, RESP_BUFFER_SIZE );
ret = ( *ptr ) ( bp );
if ( ret ) {
DBGP ( "- %s ( ): Failed\n", __func__ );
return STATUS_FAILURE;
}
}
return STATUS_SUCCESS;
}
#define bnxt_down_chip( bp ) bnxt_hwrm_run ( bring_down_chip, bp )
#define bnxt_up_chip( bp ) bnxt_hwrm_run ( bring_up_chip, bp )
#define bnxt_down_nic( bp ) bnxt_hwrm_run ( bring_down_nic, bp )
#define bnxt_up_nic( bp ) bnxt_hwrm_run ( bring_up_nic, bp )
static int bnxt_open ( struct net_device *dev )
{
struct bnxt *bp = netdev_priv ( dev );
DBGP ( "%s\n", __func__ );
bnxt_mm_nic ( bp );
return (bnxt_up_nic ( bp ));
}
static void bnxt_tx_adjust_pkt ( struct bnxt *bp, struct io_buffer *iob )
{
u16 prev_len = iob_len ( iob );
bp->vlan_tx = bnxt_get_pkt_vlan ( ( char * )iob->data );
if ( !bp->vlan_tx && bp->vlan_id )
bnxt_add_vlan ( iob, bp->vlan_id );
dbg_tx_vlan ( bp, ( char * )iob->data, prev_len, iob_len ( iob ) );
if ( iob_len ( iob ) != prev_len )
prev_len = iob_len ( iob );
iob_pad ( iob, ETH_ZLEN );
dbg_tx_pad ( prev_len, iob_len ( iob ) );
}
static int bnxt_tx ( struct net_device *dev, struct io_buffer *iob )
{
struct bnxt *bp = netdev_priv ( dev );
u16 len, entry;
dma_addr_t mapping;
if ( bnxt_tx_avail ( bp ) < 1 ) {
DBGP ( "- %s ( ): Failed no bd's available\n", __func__ );
return -ENOBUFS;
}
bnxt_tx_adjust_pkt ( bp, iob );
entry = bp->tx.prod_id;
mapping = virt_to_bus ( iob->data );
len = iob_len ( iob );
bp->tx.iob[entry] = iob;
bnxt_set_txq ( bp, entry, mapping, len );
entry = NEXT_IDX ( entry, bp->tx.ring_cnt );
dump_tx_pkt ( ( u8 * )iob->data, len, bp->tx.prod_id );
/* Packets are ready, update Tx producer idx local and on card. */
bnxt_db_tx ( bp, ( u32 )entry );
bp->tx.prod_id = entry;
bp->tx.cnt_req++;
/* memory barrier */
mb ( );
return 0;
}
static void bnxt_adv_nq_index ( struct bnxt *bp, u16 cnt )
{
u16 cons_id;
cons_id = bp->nq.cons_id + cnt;
if ( cons_id >= bp->nq.ring_cnt ) {
/* Toggle completion bit when the ring wraps. */
bp->nq.completion_bit ^= 1;
cons_id = cons_id - bp->nq.ring_cnt;
}
bp->nq.cons_id = cons_id;
}
void bnxt_link_evt ( struct bnxt *bp, struct hwrm_async_event_cmpl *evt )
{
switch ( evt->event_id ) {
case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
if ( evt->event_data1 & 0x01 )
bp->link_status = STATUS_LINK_ACTIVE;
else
bp->link_status = STATUS_LINK_DOWN;
bnxt_set_link ( bp );
dbg_link_status ( bp );
break;
default:
break;
}
}
static void bnxt_service_cq ( struct net_device *dev )
{
struct bnxt *bp = netdev_priv ( dev );
struct cmpl_base *cmp;
struct tx_cmpl *tx;
u16 old_cid = bp->cq.cons_id;
int done = SERVICE_NEXT_CQ_BD;
u32 cq_type;
while ( done == SERVICE_NEXT_CQ_BD ) {
cmp = ( struct cmpl_base * )BD_NOW ( bp->cq.bd_virt,
bp->cq.cons_id,
sizeof ( struct cmpl_base ) );
if ( ( cmp->info3_v & CMPL_BASE_V ) ^ bp->cq.completion_bit )
break;
cq_type = cmp->type & CMPL_BASE_TYPE_MASK;
dump_evt ( ( u8 * )cmp, cq_type, bp->cq.cons_id, 0 );
dump_cq ( cmp, bp->cq.cons_id );
switch ( cq_type ) {
case CMPL_BASE_TYPE_TX_L2:
tx = ( struct tx_cmpl * )cmp;
bnxt_tx_complete ( dev, ( u16 )tx->opaque );
/* Fall through */
case CMPL_BASE_TYPE_STAT_EJECT:
bnxt_adv_cq_index ( bp, 1 );
break;
case CMPL_BASE_TYPE_RX_L2:
done = bnxt_rx_complete ( dev,
( struct rx_pkt_cmpl * )cmp );
break;
case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
bnxt_link_evt ( bp,
( struct hwrm_async_event_cmpl * )cmp );
bnxt_adv_cq_index ( bp, 1 );
break;
default:
done = NO_MORE_CQ_BD_TO_SERVICE;
break;
}
}
if ( bp->cq.cons_id != old_cid )
bnxt_db_cq ( bp );
}
static void bnxt_service_nq ( struct net_device *dev )
{
struct bnxt *bp = netdev_priv ( dev );
struct nq_base *nqp;
u16 old_cid = bp->nq.cons_id;
int done = SERVICE_NEXT_NQ_BD;
u32 nq_type;
if ( !bp->thor )
return;
while ( done == SERVICE_NEXT_NQ_BD ) {
nqp = ( struct nq_base * )BD_NOW ( bp->nq.bd_virt,
bp->nq.cons_id, sizeof ( struct nq_base ) );
if ( ( nqp->v & NQ_CN_V ) ^ bp->nq.completion_bit )
break;
nq_type = ( nqp->type & NQ_CN_TYPE_MASK );
dump_evt ( ( u8 * )nqp, nq_type, bp->nq.cons_id, 1 );
dump_nq ( nqp, bp->nq.cons_id );
switch ( nq_type ) {
case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
bnxt_link_evt ( bp,
( struct hwrm_async_event_cmpl * )nqp );
/* Fall through */
case NQ_CN_TYPE_CQ_NOTIFICATION:
bnxt_adv_nq_index ( bp, 1 );
break;
default:
done = NO_MORE_NQ_BD_TO_SERVICE;
break;
}
}
if ( bp->nq.cons_id != old_cid )
bnxt_db_nq ( bp );
}
static void bnxt_poll ( struct net_device *dev )
{
mb ( );
bnxt_service_cq ( dev );
bnxt_service_nq ( dev );
}
static void bnxt_close ( struct net_device *dev )
{
struct bnxt *bp = netdev_priv ( dev );
DBGP ( "%s\n", __func__ );
bnxt_down_nic (bp);
/* iounmap PCI BAR ( s ) */
bnxt_down_pci(bp);
/* Get Bar Address */
bp->bar0 = bnxt_pci_base ( bp->pdev, PCI_BASE_ADDRESS_0 );
bp->bar1 = bnxt_pci_base ( bp->pdev, PCI_BASE_ADDRESS_2 );
bp->bar2 = bnxt_pci_base ( bp->pdev, PCI_BASE_ADDRESS_4 );
}
static struct net_device_operations bnxt_netdev_ops = {
.open = bnxt_open,
.close = bnxt_close,
.poll = bnxt_poll,
.transmit = bnxt_tx,
};
static int bnxt_init_one ( struct pci_device *pci )
{
struct net_device *netdev;
struct bnxt *bp;
int err = 0;
DBGP ( "%s\n", __func__ );
/* Allocate network device */
netdev = alloc_etherdev ( sizeof ( *bp ) );
if ( !netdev ) {
DBGP ( "- %s ( ): alloc_etherdev Failed\n", __func__ );
err = -ENOMEM;
goto disable_pdev;
}
/* Initialise network device */
netdev_init ( netdev, &bnxt_netdev_ops );
/* Driver private area for this device */
bp = netdev_priv ( netdev );
/* Set PCI driver private data */
pci_set_drvdata ( pci, netdev );
/* Clear Private area data */
memset ( bp, 0, sizeof ( *bp ) );
bp->pdev = pci;
bp->dev = netdev;
netdev->dev = &pci->dev;
/* Enable PCI device */
adjust_pci_device ( pci );
/* Get PCI Information */
bnxt_get_pci_info ( bp );
/* Allocate and Initialise device specific parameters */
if ( bnxt_alloc_mem ( bp ) != 0 ) {
DBGP ( "- %s ( ): bnxt_alloc_mem Failed\n", __func__ );
goto err_down_pci;
}
/* Get device specific information */
if ( bnxt_up_chip ( bp ) != 0 ) {
DBGP ( "- %s ( ): bnxt_up_chip Failed\n", __func__ );
goto err_down_chip;
}
/* Register Network device */
if ( register_netdev ( netdev ) != 0 ) {
DBGP ( "- %s ( ): register_netdev Failed\n", __func__ );
goto err_down_chip;
}
return 0;
err_down_chip:
bnxt_down_chip (bp);
bnxt_free_mem ( bp );
err_down_pci:
bnxt_down_pci ( bp );
netdev_nullify ( netdev );
netdev_put ( netdev );
disable_pdev:
pci_set_drvdata ( pci, NULL );
return err;
}
static void bnxt_remove_one ( struct pci_device *pci )
{
struct net_device *netdev = pci_get_drvdata ( pci );
struct bnxt *bp = netdev_priv ( netdev );
DBGP ( "%s\n", __func__ );
/* Unregister network device */
unregister_netdev ( netdev );
/* Bring down Chip */
bnxt_down_chip(bp);
/* Free Allocated resource */
bnxt_free_mem ( bp );
/* iounmap PCI BAR ( s ) */
bnxt_down_pci ( bp );
/* Stop network device */
netdev_nullify ( netdev );
/* Drop refernce to network device */
netdev_put ( netdev );
}
/* Broadcom NXE PCI driver */
struct pci_driver bnxt_pci_driver __pci_driver = {
.ids = bnxt_nics,
.id_count = ARRAY_SIZE ( bnxt_nics ),
.probe = bnxt_init_one,
.remove = bnxt_remove_one,
};