blob: c2ccd65b1dc482929d00f50b123f3f475c937ecf [file] [log] [blame]
/** @file
Provides services to access SMRAM Save State Map
Copyright (c) 2010 - 2019, Intel Corporation. All rights reserved.<BR>
Copyright (C) 2023 Advanced Micro Devices, Inc. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "MmSaveState.h"
#include <Register/Intel/SmramSaveStateMap.h>
#include <Register/Intel/Cpuid.h>
#include <Library/BaseLib.h>
#define INTEL_MM_SAVE_STATE_REGISTER_SMMREVID_INDEX 1
#define INTEL_MM_SAVE_STATE_REGISTER_IOMISC_INDEX 2
#define INTEL_MM_SAVE_STATE_REGISTER_IOMEMADDR_INDEX 3
#define INTEL_MM_SAVE_STATE_REGISTER_MAX_INDEX 4
///
/// Macro used to simplify the lookup table entries of type CPU_MM_SAVE_STATE_LOOKUP_ENTRY
///
#define MM_CPU_OFFSET(Field) OFFSET_OF (SMRAM_SAVE_STATE_MAP, Field)
///
/// Lookup table used to retrieve the widths and offsets associated with each
/// supported EFI_MM_SAVE_STATE_REGISTER value
///
CONST CPU_MM_SAVE_STATE_LOOKUP_ENTRY mCpuWidthOffset[] = {
{ 0, 0, 0, 0, 0, FALSE }, // Reserved
//
// Internally defined CPU Save State Registers. Not defined in PI SMM CPU Protocol.
//
{ 4, 4, MM_CPU_OFFSET (x86.SMMRevId), MM_CPU_OFFSET (x64.SMMRevId), 0, FALSE }, // INTEL_MM_SAVE_STATE_REGISTER_SMMREVID_INDEX = 1
{ 4, 4, MM_CPU_OFFSET (x86.IOMisc), MM_CPU_OFFSET (x64.IOMisc), 0, FALSE }, // INTEL_MM_SAVE_STATE_REGISTER_IOMISC_INDEX = 2
{ 4, 8, MM_CPU_OFFSET (x86.IOMemAddr), MM_CPU_OFFSET (x64.IOMemAddr), MM_CPU_OFFSET (x64.IOMemAddr) + 4, FALSE }, // INTEL_MM_SAVE_STATE_REGISTER_IOMEMADDR_INDEX = 3
//
// CPU Save State registers defined in PI SMM CPU Protocol.
//
{ 0, 8, 0, MM_CPU_OFFSET (x64.GdtBaseLoDword), MM_CPU_OFFSET (x64.GdtBaseHiDword), FALSE }, // EFI_MM_SAVE_STATE_REGISTER_GDTBASE = 4
{ 0, 8, 0, MM_CPU_OFFSET (x64.IdtBaseLoDword), MM_CPU_OFFSET (x64.IdtBaseHiDword), FALSE }, // EFI_MM_SAVE_STATE_REGISTER_IDTBASE = 5
{ 0, 8, 0, MM_CPU_OFFSET (x64.LdtBaseLoDword), MM_CPU_OFFSET (x64.LdtBaseHiDword), FALSE }, // EFI_MM_SAVE_STATE_REGISTER_LDTBASE = 6
{ 0, 0, 0, 0, 0, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_GDTLIMIT = 7
{ 0, 0, 0, 0, 0, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_IDTLIMIT = 8
{ 0, 0, 0, 0, 0, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_LDTLIMIT = 9
{ 0, 0, 0, 0, 0, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_LDTINFO = 10
{ 4, 4, MM_CPU_OFFSET (x86._ES), MM_CPU_OFFSET (x64._ES), 0, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_ES = 20
{ 4, 4, MM_CPU_OFFSET (x86._CS), MM_CPU_OFFSET (x64._CS), 0, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_CS = 21
{ 4, 4, MM_CPU_OFFSET (x86._SS), MM_CPU_OFFSET (x64._SS), 0, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_SS = 22
{ 4, 4, MM_CPU_OFFSET (x86._DS), MM_CPU_OFFSET (x64._DS), 0, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_DS = 23
{ 4, 4, MM_CPU_OFFSET (x86._FS), MM_CPU_OFFSET (x64._FS), 0, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_FS = 24
{ 4, 4, MM_CPU_OFFSET (x86._GS), MM_CPU_OFFSET (x64._GS), 0, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_GS = 25
{ 0, 4, 0, MM_CPU_OFFSET (x64._LDTR), 0, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_LDTR_SEL = 26
{ 4, 4, MM_CPU_OFFSET (x86._TR), MM_CPU_OFFSET (x64._TR), 0, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_TR_SEL = 27
{ 4, 8, MM_CPU_OFFSET (x86._DR7), MM_CPU_OFFSET (x64._DR7), MM_CPU_OFFSET (x64._DR7) + 4, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_DR7 = 28
{ 4, 8, MM_CPU_OFFSET (x86._DR6), MM_CPU_OFFSET (x64._DR6), MM_CPU_OFFSET (x64._DR6) + 4, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_DR6 = 29
{ 0, 8, 0, MM_CPU_OFFSET (x64._R8), MM_CPU_OFFSET (x64._R8) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_R8 = 30
{ 0, 8, 0, MM_CPU_OFFSET (x64._R9), MM_CPU_OFFSET (x64._R9) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_R9 = 31
{ 0, 8, 0, MM_CPU_OFFSET (x64._R10), MM_CPU_OFFSET (x64._R10) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_R10 = 32
{ 0, 8, 0, MM_CPU_OFFSET (x64._R11), MM_CPU_OFFSET (x64._R11) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_R11 = 33
{ 0, 8, 0, MM_CPU_OFFSET (x64._R12), MM_CPU_OFFSET (x64._R12) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_R12 = 34
{ 0, 8, 0, MM_CPU_OFFSET (x64._R13), MM_CPU_OFFSET (x64._R13) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_R13 = 35
{ 0, 8, 0, MM_CPU_OFFSET (x64._R14), MM_CPU_OFFSET (x64._R14) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_R14 = 36
{ 0, 8, 0, MM_CPU_OFFSET (x64._R15), MM_CPU_OFFSET (x64._R15) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_R15 = 37
{ 4, 8, MM_CPU_OFFSET (x86._EAX), MM_CPU_OFFSET (x64._RAX), MM_CPU_OFFSET (x64._RAX) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_RAX = 38
{ 4, 8, MM_CPU_OFFSET (x86._EBX), MM_CPU_OFFSET (x64._RBX), MM_CPU_OFFSET (x64._RBX) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_RBX = 39
{ 4, 8, MM_CPU_OFFSET (x86._ECX), MM_CPU_OFFSET (x64._RCX), MM_CPU_OFFSET (x64._RCX) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_RCX = 40
{ 4, 8, MM_CPU_OFFSET (x86._EDX), MM_CPU_OFFSET (x64._RDX), MM_CPU_OFFSET (x64._RDX) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_RDX = 41
{ 4, 8, MM_CPU_OFFSET (x86._ESP), MM_CPU_OFFSET (x64._RSP), MM_CPU_OFFSET (x64._RSP) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_RSP = 42
{ 4, 8, MM_CPU_OFFSET (x86._EBP), MM_CPU_OFFSET (x64._RBP), MM_CPU_OFFSET (x64._RBP) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_RBP = 43
{ 4, 8, MM_CPU_OFFSET (x86._ESI), MM_CPU_OFFSET (x64._RSI), MM_CPU_OFFSET (x64._RSI) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_RSI = 44
{ 4, 8, MM_CPU_OFFSET (x86._EDI), MM_CPU_OFFSET (x64._RDI), MM_CPU_OFFSET (x64._RDI) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_RDI = 45
{ 4, 8, MM_CPU_OFFSET (x86._EIP), MM_CPU_OFFSET (x64._RIP), MM_CPU_OFFSET (x64._RIP) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_RIP = 46
{ 4, 8, MM_CPU_OFFSET (x86._EFLAGS), MM_CPU_OFFSET (x64._RFLAGS), MM_CPU_OFFSET (x64._RFLAGS) + 4, TRUE }, // EFI_MM_SAVE_STATE_REGISTER_RFLAGS = 51
{ 4, 8, MM_CPU_OFFSET (x86._CR0), MM_CPU_OFFSET (x64._CR0), MM_CPU_OFFSET (x64._CR0) + 4, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_CR0 = 52
{ 4, 8, MM_CPU_OFFSET (x86._CR3), MM_CPU_OFFSET (x64._CR3), MM_CPU_OFFSET (x64._CR3) + 4, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_CR3 = 53
{ 0, 4, 0, MM_CPU_OFFSET (x64._CR4), 0, FALSE }, // EFI_MM_SAVE_STATE_REGISTER_CR4 = 54
};
///
/// Structure used to build a lookup table for the IOMisc width information
///
typedef struct {
UINT8 Width;
EFI_MM_SAVE_STATE_IO_WIDTH IoWidth;
} CPU_MM_SAVE_STATE_IO_WIDTH;
///
/// Lookup table for the IOMisc width information
///
STATIC CONST CPU_MM_SAVE_STATE_IO_WIDTH mSmmCpuIoWidth[] = {
{ 0, EFI_MM_SAVE_STATE_IO_WIDTH_UINT8 }, // Undefined = 0
{ 1, EFI_MM_SAVE_STATE_IO_WIDTH_UINT8 }, // SMM_IO_LENGTH_BYTE = 1
{ 2, EFI_MM_SAVE_STATE_IO_WIDTH_UINT16 }, // SMM_IO_LENGTH_WORD = 2
{ 0, EFI_MM_SAVE_STATE_IO_WIDTH_UINT8 }, // Undefined = 3
{ 4, EFI_MM_SAVE_STATE_IO_WIDTH_UINT32 }, // SMM_IO_LENGTH_DWORD = 4
{ 0, EFI_MM_SAVE_STATE_IO_WIDTH_UINT8 }, // Undefined = 5
{ 0, EFI_MM_SAVE_STATE_IO_WIDTH_UINT8 }, // Undefined = 6
{ 0, EFI_MM_SAVE_STATE_IO_WIDTH_UINT8 } // Undefined = 7
};
///
/// Lookup table for the IOMisc type information
///
STATIC CONST EFI_MM_SAVE_STATE_IO_TYPE mSmmCpuIoType[] = {
EFI_MM_SAVE_STATE_IO_TYPE_OUTPUT, // SMM_IO_TYPE_OUT_DX = 0
EFI_MM_SAVE_STATE_IO_TYPE_INPUT, // SMM_IO_TYPE_IN_DX = 1
EFI_MM_SAVE_STATE_IO_TYPE_STRING, // SMM_IO_TYPE_OUTS = 2
EFI_MM_SAVE_STATE_IO_TYPE_STRING, // SMM_IO_TYPE_INS = 3
(EFI_MM_SAVE_STATE_IO_TYPE)0, // Undefined = 4
(EFI_MM_SAVE_STATE_IO_TYPE)0, // Undefined = 5
EFI_MM_SAVE_STATE_IO_TYPE_REP_PREFIX, // SMM_IO_TYPE_REP_OUTS = 6
EFI_MM_SAVE_STATE_IO_TYPE_REP_PREFIX, // SMM_IO_TYPE_REP_INS = 7
EFI_MM_SAVE_STATE_IO_TYPE_OUTPUT, // SMM_IO_TYPE_OUT_IMMEDIATE = 8
EFI_MM_SAVE_STATE_IO_TYPE_INPUT, // SMM_IO_TYPE_OUT_IMMEDIATE = 9
(EFI_MM_SAVE_STATE_IO_TYPE)0, // Undefined = 10
(EFI_MM_SAVE_STATE_IO_TYPE)0, // Undefined = 11
(EFI_MM_SAVE_STATE_IO_TYPE)0, // Undefined = 12
(EFI_MM_SAVE_STATE_IO_TYPE)0, // Undefined = 13
(EFI_MM_SAVE_STATE_IO_TYPE)0, // Undefined = 14
(EFI_MM_SAVE_STATE_IO_TYPE)0 // Undefined = 15
};
/**
Read an SMM Save State register on the target processor. If this function
returns EFI_UNSUPPORTED, then the caller is responsible for reading the
SMM Save Sate register.
@param[in] CpuIndex The index of the CPU to read the SMM Save State. The
value must be between 0 and the NumberOfCpus field in
the System Management System Table (SMST).
@param[in] Register The SMM Save State register to read.
@param[in] Width The number of bytes to read from the CPU save state.
@param[out] Buffer Upon return, this holds the CPU register value read
from the save state.
@retval EFI_SUCCESS The register was read from Save State.
@retval EFI_INVALID_PARAMTER Buffer is NULL.
@retval EFI_UNSUPPORTED This function does not support reading Register.
@retval EFI_NOT_FOUND If desired Register not found.
**/
EFI_STATUS
EFIAPI
MmSaveStateReadRegister (
IN UINTN CpuIndex,
IN EFI_MM_SAVE_STATE_REGISTER Register,
IN UINTN Width,
OUT VOID *Buffer
)
{
UINT32 SmmRevId;
SMRAM_SAVE_STATE_IOMISC IoMisc;
EFI_MM_SAVE_STATE_IO_INFO *IoInfo;
//
// Check for special EFI_MM_SAVE_STATE_REGISTER_LMA
//
if (Register == EFI_MM_SAVE_STATE_REGISTER_LMA) {
//
// Only byte access is supported for this register
//
if (Width != 1) {
return EFI_INVALID_PARAMETER;
}
*(UINT8 *)Buffer = MmSaveStateGetRegisterLma ();
return EFI_SUCCESS;
}
//
// Check for special EFI_MM_SAVE_STATE_REGISTER_IO
//
if (Register == EFI_MM_SAVE_STATE_REGISTER_IO) {
//
// Get SMM Revision ID
//
MmSaveStateReadRegisterByIndex (CpuIndex, INTEL_MM_SAVE_STATE_REGISTER_SMMREVID_INDEX, sizeof (SmmRevId), &SmmRevId);
//
// See if the CPU supports the IOMisc register in the save state
//
if (SmmRevId < SMRAM_SAVE_STATE_MIN_REV_ID_IOMISC) {
return EFI_NOT_FOUND;
}
//
// Get the IOMisc register value
//
MmSaveStateReadRegisterByIndex (CpuIndex, INTEL_MM_SAVE_STATE_REGISTER_IOMISC_INDEX, sizeof (IoMisc.Uint32), &IoMisc.Uint32);
//
// Check for the SMI_FLAG in IOMisc
//
if (IoMisc.Bits.SmiFlag == 0) {
return EFI_NOT_FOUND;
}
//
// Only support IN/OUT, but not INS/OUTS/REP INS/REP OUTS.
//
if ((mSmmCpuIoType[IoMisc.Bits.Type] != EFI_MM_SAVE_STATE_IO_TYPE_INPUT) &&
(mSmmCpuIoType[IoMisc.Bits.Type] != EFI_MM_SAVE_STATE_IO_TYPE_OUTPUT))
{
return EFI_NOT_FOUND;
}
//
// Compute index for the I/O Length and I/O Type lookup tables
//
if ((mSmmCpuIoWidth[IoMisc.Bits.Length].Width == 0) || (mSmmCpuIoType[IoMisc.Bits.Type] == 0)) {
return EFI_NOT_FOUND;
}
//
// Make sure the incoming buffer is large enough to hold IoInfo before accessing
//
if (Width < sizeof (EFI_MM_SAVE_STATE_IO_INFO)) {
return EFI_INVALID_PARAMETER;
}
//
// Zero the IoInfo structure that will be returned in Buffer
//
IoInfo = (EFI_MM_SAVE_STATE_IO_INFO *)Buffer;
ZeroMem (IoInfo, sizeof (EFI_MM_SAVE_STATE_IO_INFO));
//
// Use lookup tables to help fill in all the fields of the IoInfo structure
//
IoInfo->IoPort = (UINT16)IoMisc.Bits.Port;
IoInfo->IoWidth = mSmmCpuIoWidth[IoMisc.Bits.Length].IoWidth;
IoInfo->IoType = mSmmCpuIoType[IoMisc.Bits.Type];
MmSaveStateReadRegister (CpuIndex, EFI_MM_SAVE_STATE_REGISTER_RAX, mSmmCpuIoWidth[IoMisc.Bits.Length].Width, &IoInfo->IoData);
return EFI_SUCCESS;
}
//
// Convert Register to a register lookup table index
//
return MmSaveStateReadRegisterByIndex (CpuIndex, MmSaveStateGetRegisterIndex (Register, INTEL_MM_SAVE_STATE_REGISTER_MAX_INDEX), Width, Buffer);
}
/**
Writes an SMM Save State register on the target processor. If this function
returns EFI_UNSUPPORTED, then the caller is responsible for writing the
SMM Save Sate register.
@param[in] CpuIndex The index of the CPU to write the SMM Save State. The
value must be between 0 and the NumberOfCpus field in
the System Management System Table (SMST).
@param[in] Register The SMM Save State register to write.
@param[in] Width The number of bytes to write to the CPU save state.
@param[in] Buffer Upon entry, this holds the new CPU register value.
@retval EFI_SUCCESS The register was written to Save State.
@retval EFI_INVALID_PARAMTER Buffer is NULL.
@retval EFI_UNSUPPORTED This function does not support writing Register.
@retval EFI_NOT_FOUND If desired Register not found.
**/
EFI_STATUS
EFIAPI
MmSaveStateWriteRegister (
IN UINTN CpuIndex,
IN EFI_MM_SAVE_STATE_REGISTER Register,
IN UINTN Width,
IN CONST VOID *Buffer
)
{
UINTN RegisterIndex;
SMRAM_SAVE_STATE_MAP *CpuSaveState;
//
// Writes to EFI_MM_SAVE_STATE_REGISTER_LMA are ignored
//
if (Register == EFI_MM_SAVE_STATE_REGISTER_LMA) {
return EFI_SUCCESS;
}
//
// Writes to EFI_MM_SAVE_STATE_REGISTER_IO are not supported
//
if (Register == EFI_MM_SAVE_STATE_REGISTER_IO) {
return EFI_NOT_FOUND;
}
//
// Convert Register to a register lookup table index
//
RegisterIndex = MmSaveStateGetRegisterIndex (Register, INTEL_MM_SAVE_STATE_REGISTER_MAX_INDEX);
if (RegisterIndex == 0) {
return EFI_NOT_FOUND;
}
CpuSaveState = gMmst->CpuSaveState[CpuIndex];
//
// Do not write non-writable SaveState, because it will cause exception.
//
if (!mCpuWidthOffset[RegisterIndex].Writeable) {
return EFI_UNSUPPORTED;
}
//
// Check CPU mode
//
if (MmSaveStateGetRegisterLma () == EFI_MM_SAVE_STATE_REGISTER_LMA_32BIT) {
//
// If 32-bit mode width is zero, then the specified register can not be accessed
//
if (mCpuWidthOffset[RegisterIndex].Width32 == 0) {
return EFI_NOT_FOUND;
}
//
// If Width is bigger than the 32-bit mode width, then the specified register can not be accessed
//
if (Width > mCpuWidthOffset[RegisterIndex].Width32) {
return EFI_INVALID_PARAMETER;
}
//
// Write SMM State register
//
ASSERT (CpuSaveState != NULL);
CopyMem ((UINT8 *)CpuSaveState + mCpuWidthOffset[RegisterIndex].Offset32, Buffer, Width);
} else {
//
// If 64-bit mode width is zero, then the specified register can not be accessed
//
if (mCpuWidthOffset[RegisterIndex].Width64 == 0) {
return EFI_NOT_FOUND;
}
//
// If Width is bigger than the 64-bit mode width, then the specified register can not be accessed
//
if (Width > mCpuWidthOffset[RegisterIndex].Width64) {
return EFI_INVALID_PARAMETER;
}
//
// Write at most 4 of the lower bytes of SMM State register
//
CopyMem ((UINT8 *)CpuSaveState + mCpuWidthOffset[RegisterIndex].Offset64Lo, Buffer, MIN (4, Width));
if (Width > 4) {
//
// Write at most 4 of the upper bytes of SMM State register
//
CopyMem ((UINT8 *)CpuSaveState + mCpuWidthOffset[RegisterIndex].Offset64Hi, (UINT8 *)Buffer + 4, Width - 4);
}
}
return EFI_SUCCESS;
}
/**
Returns LMA value of the Processor.
@retval UINT8 returns LMA bit value.
**/
UINT8
MmSaveStateGetRegisterLma (
VOID
)
{
UINT32 RegEax;
UINT32 RegEdx;
UINTN FamilyId;
UINTN ModelId;
UINT8 SmmSaveStateRegisterLma;
//
// Retrieve CPU Family
//
AsmCpuid (CPUID_VERSION_INFO, &RegEax, NULL, NULL, NULL);
FamilyId = (RegEax >> 8) & 0xf;
ModelId = (RegEax >> 4) & 0xf;
if ((FamilyId == 0x06) || (FamilyId == 0x0f)) {
ModelId = ModelId | ((RegEax >> 12) & 0xf0);
}
RegEdx = 0;
AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);
if (RegEax >= CPUID_EXTENDED_CPU_SIG) {
AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &RegEdx);
}
//
// Determine the mode of the CPU at the time an SMI occurs
// Intel(R) 64 and IA-32 Architectures Software Developer's Manual
// Volume 3C, Section 34.4.1.1
//
SmmSaveStateRegisterLma = EFI_MM_SAVE_STATE_REGISTER_LMA_32BIT;
if ((RegEdx & BIT29) != 0) {
SmmSaveStateRegisterLma = EFI_MM_SAVE_STATE_REGISTER_LMA_64BIT;
}
if (FamilyId == 0x06) {
if ((ModelId == 0x17) || (ModelId == 0x0f) || (ModelId == 0x1c)) {
SmmSaveStateRegisterLma = EFI_MM_SAVE_STATE_REGISTER_LMA_64BIT;
}
}
return SmmSaveStateRegisterLma;
}