| /** @file | |
| * | |
| * Copyright (c) 2011-2015, ARM Limited. All rights reserved. | |
| * | |
| * This program and the accompanying materials | |
| * are licensed and made available under the terms and conditions of the BSD License | |
| * which accompanies this distribution. The full text of the license may be found at | |
| * http://opensource.org/licenses/bsd-license.php | |
| * | |
| * THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
| * WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
| * | |
| **/ | |
| #include <PiDxe.h> | |
| #include <Library/ArmLib.h> | |
| #include <Library/HobLib.h> | |
| #include <Guid/ArmMpCoreInfo.h> | |
| #include "LinuxLoader.h" | |
| #define ALIGN(x, a) (((x) + ((a) - 1)) & ~((a) - 1)) | |
| #define PALIGN(p, a) ((void *)(ALIGN ((unsigned long)(p), (a)))) | |
| #define GET_CELL(p) (p += 4, *((const UINT32 *)(p-4))) | |
| STATIC | |
| UINTN | |
| cpu_to_fdtn (UINTN x) { | |
| if (sizeof (UINTN) == sizeof (UINT32)) { | |
| return cpu_to_fdt32 (x); | |
| } else { | |
| return cpu_to_fdt64 (x); | |
| } | |
| } | |
| typedef struct { | |
| UINTN Base; | |
| UINTN Size; | |
| } FDT_REGION; | |
| STATIC | |
| BOOLEAN | |
| IsLinuxReservedRegion ( | |
| IN EFI_MEMORY_TYPE MemoryType | |
| ) | |
| { | |
| switch (MemoryType) { | |
| case EfiRuntimeServicesCode: | |
| case EfiRuntimeServicesData: | |
| case EfiUnusableMemory: | |
| case EfiACPIReclaimMemory: | |
| case EfiACPIMemoryNVS: | |
| case EfiReservedMemoryType: | |
| return TRUE; | |
| default: | |
| return FALSE; | |
| } | |
| } | |
| /** | |
| ** Relocate the FDT blob to a more appropriate location for the Linux kernel. | |
| ** This function will allocate memory for the relocated FDT blob. | |
| ** | |
| ** @retval EFI_SUCCESS on success. | |
| ** @retval EFI_OUT_OF_RESOURCES or EFI_INVALID_PARAMETER on failure. | |
| */ | |
| STATIC | |
| EFI_STATUS | |
| RelocateFdt ( | |
| EFI_PHYSICAL_ADDRESS SystemMemoryBase, | |
| EFI_PHYSICAL_ADDRESS OriginalFdt, | |
| UINTN OriginalFdtSize, | |
| EFI_PHYSICAL_ADDRESS *RelocatedFdt, | |
| UINTN *RelocatedFdtSize, | |
| EFI_PHYSICAL_ADDRESS *RelocatedFdtAlloc | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| INTN Error; | |
| UINT64 FdtAlignment; | |
| *RelocatedFdtSize = OriginalFdtSize + FDT_ADDITIONAL_ENTRIES_SIZE; | |
| // If FDT load address needs to be aligned, allocate more space. | |
| FdtAlignment = PcdGet32 (PcdArmLinuxFdtAlignment); | |
| if (FdtAlignment != 0) { | |
| *RelocatedFdtSize += FdtAlignment; | |
| } | |
| // Try below a watermark address. | |
| Status = EFI_NOT_FOUND; | |
| if (PcdGet32 (PcdArmLinuxFdtMaxOffset) != 0) { | |
| *RelocatedFdt = LINUX_FDT_MAX_OFFSET; | |
| Status = gBS->AllocatePages (AllocateMaxAddress, EfiBootServicesData, | |
| EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt); | |
| if (EFI_ERROR (Status)) { | |
| DEBUG ((EFI_D_WARN, "Warning: Failed to load FDT below address 0x%lX (%r). Will try again at a random address anywhere.\n", *RelocatedFdt, Status)); | |
| } | |
| } | |
| // Try anywhere there is available space. | |
| if (EFI_ERROR (Status)) { | |
| Status = gBS->AllocatePages (AllocateAnyPages, EfiBootServicesData, | |
| EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt); | |
| if (EFI_ERROR (Status)) { | |
| ASSERT_EFI_ERROR (Status); | |
| return EFI_OUT_OF_RESOURCES; | |
| } else { | |
| DEBUG ((EFI_D_WARN, "WARNING: Loaded FDT at random address 0x%lX.\nWARNING: There is a risk of accidental overwriting by other code/data.\n", *RelocatedFdt)); | |
| } | |
| } | |
| *RelocatedFdtAlloc = *RelocatedFdt; | |
| if (FdtAlignment != 0) { | |
| *RelocatedFdt = ALIGN (*RelocatedFdt, FdtAlignment); | |
| } | |
| // Load the Original FDT tree into the new region | |
| Error = fdt_open_into ((VOID*)(UINTN) OriginalFdt, | |
| (VOID*)(UINTN)(*RelocatedFdt), *RelocatedFdtSize); | |
| if (Error) { | |
| DEBUG ((EFI_D_ERROR, "fdt_open_into(): %a\n", fdt_strerror (Error))); | |
| gBS->FreePages (*RelocatedFdtAlloc, EFI_SIZE_TO_PAGES (*RelocatedFdtSize)); | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| EFI_STATUS | |
| PrepareFdt ( | |
| IN EFI_PHYSICAL_ADDRESS SystemMemoryBase, | |
| IN CONST CHAR8* CommandLineArguments, | |
| IN EFI_PHYSICAL_ADDRESS InitrdImage, | |
| IN UINTN InitrdImageSize, | |
| IN OUT EFI_PHYSICAL_ADDRESS *FdtBlobBase, | |
| IN OUT UINTN *FdtBlobSize | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_PHYSICAL_ADDRESS NewFdtBlobBase; | |
| EFI_PHYSICAL_ADDRESS NewFdtBlobAllocation; | |
| UINTN NewFdtBlobSize; | |
| VOID* fdt; | |
| INTN err; | |
| INTN node; | |
| INTN cpu_node; | |
| INT32 lenp; | |
| CONST VOID* BootArg; | |
| CONST VOID* Method; | |
| EFI_PHYSICAL_ADDRESS InitrdImageStart; | |
| EFI_PHYSICAL_ADDRESS InitrdImageEnd; | |
| FDT_REGION Region; | |
| UINTN Index; | |
| CHAR8 Name[10]; | |
| LIST_ENTRY ResourceList; | |
| SYSTEM_MEMORY_RESOURCE *Resource; | |
| ARM_PROCESSOR_TABLE *ArmProcessorTable; | |
| ARM_CORE_INFO *ArmCoreInfoTable; | |
| UINT32 MpId; | |
| UINT32 ClusterId; | |
| UINT32 CoreId; | |
| UINT64 CpuReleaseAddr; | |
| UINTN MemoryMapSize; | |
| EFI_MEMORY_DESCRIPTOR *MemoryMap; | |
| EFI_MEMORY_DESCRIPTOR *MemoryMapPtr; | |
| UINTN MapKey; | |
| UINTN DescriptorSize; | |
| UINT32 DescriptorVersion; | |
| UINTN Pages; | |
| UINTN OriginalFdtSize; | |
| BOOLEAN CpusNodeExist; | |
| UINTN CoreMpId; | |
| NewFdtBlobAllocation = 0; | |
| // | |
| // Sanity checks on the original FDT blob. | |
| // | |
| err = fdt_check_header ((VOID*)(UINTN)(*FdtBlobBase)); | |
| if (err != 0) { | |
| Print (L"ERROR: Device Tree header not valid (err:%d)\n", err); | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // The original FDT blob might have been loaded partially. | |
| // Check that it is not the case. | |
| OriginalFdtSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase)); | |
| if (OriginalFdtSize > *FdtBlobSize) { | |
| Print (L"ERROR: Incomplete FDT. Only %d/%d bytes have been loaded.\n", | |
| *FdtBlobSize, OriginalFdtSize); | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Relocate the FDT to its final location. | |
| // | |
| Status = RelocateFdt (SystemMemoryBase, *FdtBlobBase, OriginalFdtSize, | |
| &NewFdtBlobBase, &NewFdtBlobSize, &NewFdtBlobAllocation); | |
| if (EFI_ERROR (Status)) { | |
| goto FAIL_RELOCATE_FDT; | |
| } | |
| fdt = (VOID*)(UINTN)NewFdtBlobBase; | |
| node = fdt_subnode_offset (fdt, 0, "chosen"); | |
| if (node < 0) { | |
| // The 'chosen' node does not exist, create it | |
| node = fdt_add_subnode (fdt, 0, "chosen"); | |
| if (node < 0) { | |
| DEBUG ((EFI_D_ERROR, "Error on finding 'chosen' node\n")); | |
| Status = EFI_INVALID_PARAMETER; | |
| goto FAIL_COMPLETE_FDT; | |
| } | |
| } | |
| DEBUG_CODE_BEGIN (); | |
| BootArg = fdt_getprop (fdt, node, "bootargs", &lenp); | |
| if (BootArg != NULL) { | |
| DEBUG ((EFI_D_ERROR, "BootArg: %a\n", BootArg)); | |
| } | |
| DEBUG_CODE_END (); | |
| // | |
| // Set Linux CmdLine | |
| // | |
| if ((CommandLineArguments != NULL) && (AsciiStrLen (CommandLineArguments) > 0)) { | |
| err = fdt_setprop (fdt, node, "bootargs", CommandLineArguments, AsciiStrSize (CommandLineArguments)); | |
| if (err) { | |
| DEBUG ((EFI_D_ERROR, "Fail to set new 'bootarg' (err:%d)\n", err)); | |
| } | |
| } | |
| // | |
| // Set Linux Initrd | |
| // | |
| if (InitrdImageSize != 0) { | |
| InitrdImageStart = cpu_to_fdt64 (InitrdImage); | |
| err = fdt_setprop (fdt, node, "linux,initrd-start", &InitrdImageStart, sizeof (EFI_PHYSICAL_ADDRESS)); | |
| if (err) { | |
| DEBUG ((EFI_D_ERROR, "Fail to set new 'linux,initrd-start' (err:%d)\n", err)); | |
| } | |
| InitrdImageEnd = cpu_to_fdt64 (InitrdImage + InitrdImageSize); | |
| err = fdt_setprop (fdt, node, "linux,initrd-end", &InitrdImageEnd, sizeof (EFI_PHYSICAL_ADDRESS)); | |
| if (err) { | |
| DEBUG ((EFI_D_ERROR, "Fail to set new 'linux,initrd-start' (err:%d)\n", err)); | |
| } | |
| } | |
| // | |
| // Set Physical memory setup if does not exist | |
| // | |
| node = fdt_subnode_offset (fdt, 0, "memory"); | |
| if (node < 0) { | |
| // The 'memory' node does not exist, create it | |
| node = fdt_add_subnode (fdt, 0, "memory"); | |
| if (node >= 0) { | |
| fdt_setprop_string (fdt, node, "name", "memory"); | |
| fdt_setprop_string (fdt, node, "device_type", "memory"); | |
| GetSystemMemoryResources (&ResourceList); | |
| Resource = (SYSTEM_MEMORY_RESOURCE*)ResourceList.ForwardLink; | |
| Region.Base = cpu_to_fdtn ((UINTN)Resource->PhysicalStart); | |
| Region.Size = cpu_to_fdtn ((UINTN)Resource->ResourceLength); | |
| err = fdt_setprop (fdt, node, "reg", &Region, sizeof (Region)); | |
| if (err) { | |
| DEBUG ((EFI_D_ERROR, "Fail to set new 'memory region' (err:%d)\n", err)); | |
| } | |
| } | |
| } | |
| // | |
| // Add the memory regions reserved by the UEFI Firmware | |
| // | |
| // Retrieve the UEFI Memory Map | |
| MemoryMap = NULL; | |
| MemoryMapSize = 0; | |
| Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion); | |
| if (Status == EFI_BUFFER_TOO_SMALL) { | |
| // The UEFI specification advises to allocate more memory for the MemoryMap buffer between successive | |
| // calls to GetMemoryMap(), since allocation of the new buffer may potentially increase memory map size. | |
| Pages = EFI_SIZE_TO_PAGES (MemoryMapSize) + 1; | |
| MemoryMap = AllocatePages (Pages); | |
| if (MemoryMap == NULL) { | |
| Status = EFI_OUT_OF_RESOURCES; | |
| goto FAIL_COMPLETE_FDT; | |
| } | |
| Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion); | |
| } | |
| // Go through the list and add the reserved region to the Device Tree | |
| if (!EFI_ERROR (Status)) { | |
| MemoryMapPtr = MemoryMap; | |
| for (Index = 0; Index < (MemoryMapSize / DescriptorSize); Index++) { | |
| if (IsLinuxReservedRegion ((EFI_MEMORY_TYPE)MemoryMapPtr->Type)) { | |
| DEBUG ((DEBUG_VERBOSE, "Reserved region of type %d [0x%lX, 0x%lX]\n", | |
| MemoryMapPtr->Type, | |
| (UINTN)MemoryMapPtr->PhysicalStart, | |
| (UINTN)(MemoryMapPtr->PhysicalStart + MemoryMapPtr->NumberOfPages * EFI_PAGE_SIZE))); | |
| err = fdt_add_mem_rsv (fdt, MemoryMapPtr->PhysicalStart, MemoryMapPtr->NumberOfPages * EFI_PAGE_SIZE); | |
| if (err != 0) { | |
| Print (L"Warning: Fail to add 'memreserve' (err:%d)\n", err); | |
| } | |
| } | |
| MemoryMapPtr = (EFI_MEMORY_DESCRIPTOR*)((UINTN)MemoryMapPtr + DescriptorSize); | |
| } | |
| } | |
| // | |
| // Setup Arm Mpcore Info if it is a multi-core or multi-cluster platforms. | |
| // | |
| // For 'cpus' and 'cpu' device tree nodes bindings, refer to this file | |
| // in the kernel documentation: | |
| // Documentation/devicetree/bindings/arm/cpus.txt | |
| // | |
| for (Index = 0; Index < gST->NumberOfTableEntries; Index++) { | |
| // Check for correct GUID type | |
| if (CompareGuid (&gArmMpCoreInfoGuid, &(gST->ConfigurationTable[Index].VendorGuid))) { | |
| MpId = ArmReadMpidr (); | |
| ClusterId = GET_CLUSTER_ID (MpId); | |
| CoreId = GET_CORE_ID (MpId); | |
| node = fdt_subnode_offset (fdt, 0, "cpus"); | |
| if (node < 0) { | |
| // Create the /cpus node | |
| node = fdt_add_subnode (fdt, 0, "cpus"); | |
| fdt_setprop_string (fdt, node, "name", "cpus"); | |
| fdt_setprop_cell (fdt, node, "#address-cells", sizeof (UINTN) / 4); | |
| fdt_setprop_cell (fdt, node, "#size-cells", 0); | |
| CpusNodeExist = FALSE; | |
| } else { | |
| CpusNodeExist = TRUE; | |
| } | |
| // Get pointer to ARM processor table | |
| ArmProcessorTable = (ARM_PROCESSOR_TABLE *)gST->ConfigurationTable[Index].VendorTable; | |
| ArmCoreInfoTable = ArmProcessorTable->ArmCpus; | |
| for (Index = 0; Index < ArmProcessorTable->NumberOfEntries; Index++) { | |
| CoreMpId = (UINTN) GET_MPID (ArmCoreInfoTable[Index].ClusterId, | |
| ArmCoreInfoTable[Index].CoreId); | |
| AsciiSPrint (Name, 10, "cpu@%x", CoreMpId); | |
| // If the 'cpus' node did not exist then create all the 'cpu' nodes. | |
| // In case 'cpus' node is provided in the original FDT then we do not add | |
| // any 'cpu' node. | |
| if (!CpusNodeExist) { | |
| cpu_node = fdt_add_subnode (fdt, node, Name); | |
| if (cpu_node < 0) { | |
| DEBUG ((EFI_D_ERROR, "Error on creating '%s' node\n", Name)); | |
| Status = EFI_INVALID_PARAMETER; | |
| goto FAIL_COMPLETE_FDT; | |
| } | |
| fdt_setprop_string (fdt, cpu_node, "device_type", "cpu"); | |
| CoreMpId = cpu_to_fdtn (CoreMpId); | |
| fdt_setprop (fdt, cpu_node, "reg", &CoreMpId, sizeof (CoreMpId)); | |
| } else { | |
| cpu_node = fdt_subnode_offset (fdt, node, Name); | |
| } | |
| if (cpu_node >= 0) { | |
| Method = fdt_getprop (fdt, cpu_node, "enable-method", &lenp); | |
| // We only care when 'enable-method' == 'spin-table'. If the enable-method is not defined | |
| // or defined as 'psci' then we ignore its properties. | |
| if ((Method != NULL) && (AsciiStrCmp ((CHAR8 *)Method, "spin-table") == 0)) { | |
| // There are two cases; | |
| // - UEFI firmware parked the secondary cores and/or UEFI firmware is aware of the CPU | |
| // release addresses (PcdArmLinuxSpinTable == TRUE) | |
| // - the parking of the secondary cores has been managed before starting UEFI and/or UEFI | |
| // does not anything about the CPU release addresses - in this case we do nothing | |
| if (FeaturePcdGet (PcdArmLinuxSpinTable)) { | |
| CpuReleaseAddr = cpu_to_fdt64 (ArmCoreInfoTable[Index].MailboxSetAddress); | |
| fdt_setprop (fdt, cpu_node, "cpu-release-addr", &CpuReleaseAddr, sizeof (CpuReleaseAddr)); | |
| // If it is not the primary core than the cpu should be disabled | |
| if (((ArmCoreInfoTable[Index].ClusterId != ClusterId) || (ArmCoreInfoTable[Index].CoreId != CoreId))) { | |
| fdt_setprop_string (fdt, cpu_node, "status", "disabled"); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| break; | |
| } | |
| } | |
| // If we succeeded to generate the new Device Tree then free the old Device Tree | |
| gBS->FreePages (*FdtBlobBase, EFI_SIZE_TO_PAGES (*FdtBlobSize)); | |
| // Update the real size of the Device Tree | |
| fdt_pack ((VOID*)(UINTN)(NewFdtBlobBase)); | |
| *FdtBlobBase = NewFdtBlobBase; | |
| *FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(NewFdtBlobBase)); | |
| return EFI_SUCCESS; | |
| FAIL_COMPLETE_FDT: | |
| gBS->FreePages (NewFdtBlobAllocation, EFI_SIZE_TO_PAGES (NewFdtBlobSize)); | |
| FAIL_RELOCATE_FDT: | |
| *FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase)); | |
| // Return success even if we failed to update the FDT blob. | |
| // The original one is still valid. | |
| return EFI_SUCCESS; | |
| } |