| /* Integer object implementation */ | |
| #include "Python.h" | |
| #include <ctype.h> | |
| #include <float.h> | |
| static PyObject *int_int(PyIntObject *v); | |
| long | |
| PyInt_GetMax(void) | |
| { | |
| return LONG_MAX; /* To initialize sys.maxint */ | |
| } | |
| /* Integers are quite normal objects, to make object handling uniform. | |
| (Using odd pointers to represent integers would save much space | |
| but require extra checks for this special case throughout the code.) | |
| Since a typical Python program spends much of its time allocating | |
| and deallocating integers, these operations should be very fast. | |
| Therefore we use a dedicated allocation scheme with a much lower | |
| overhead (in space and time) than straight malloc(): a simple | |
| dedicated free list, filled when necessary with memory from malloc(). | |
| block_list is a singly-linked list of all PyIntBlocks ever allocated, | |
| linked via their next members. PyIntBlocks are never returned to the | |
| system before shutdown (PyInt_Fini). | |
| free_list is a singly-linked list of available PyIntObjects, linked | |
| via abuse of their ob_type members. | |
| */ | |
| #define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */ | |
| #define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */ | |
| #define N_INTOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyIntObject)) | |
| struct _intblock { | |
| struct _intblock *next; | |
| PyIntObject objects[N_INTOBJECTS]; | |
| }; | |
| typedef struct _intblock PyIntBlock; | |
| static PyIntBlock *block_list = NULL; | |
| static PyIntObject *free_list = NULL; | |
| static PyIntObject * | |
| fill_free_list(void) | |
| { | |
| PyIntObject *p, *q; | |
| /* Python's object allocator isn't appropriate for large blocks. */ | |
| p = (PyIntObject *) PyMem_MALLOC(sizeof(PyIntBlock)); | |
| if (p == NULL) | |
| return (PyIntObject *) PyErr_NoMemory(); | |
| ((PyIntBlock *)p)->next = block_list; | |
| block_list = (PyIntBlock *)p; | |
| /* Link the int objects together, from rear to front, then return | |
| the address of the last int object in the block. */ | |
| p = &((PyIntBlock *)p)->objects[0]; | |
| q = p + N_INTOBJECTS; | |
| while (--q > p) | |
| Py_TYPE(q) = (struct _typeobject *)(q-1); | |
| Py_TYPE(q) = NULL; | |
| return p + N_INTOBJECTS - 1; | |
| } | |
| #ifndef NSMALLPOSINTS | |
| #define NSMALLPOSINTS 257 | |
| #endif | |
| #ifndef NSMALLNEGINTS | |
| #define NSMALLNEGINTS 5 | |
| #endif | |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0 | |
| /* References to small integers are saved in this array so that they | |
| can be shared. | |
| The integers that are saved are those in the range | |
| -NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive). | |
| */ | |
| static PyIntObject *small_ints[NSMALLNEGINTS + NSMALLPOSINTS]; | |
| #endif | |
| #ifdef COUNT_ALLOCS | |
| Py_ssize_t quick_int_allocs; | |
| Py_ssize_t quick_neg_int_allocs; | |
| #endif | |
| PyObject * | |
| PyInt_FromLong(long ival) | |
| { | |
| register PyIntObject *v; | |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0 | |
| if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { | |
| v = small_ints[ival + NSMALLNEGINTS]; | |
| Py_INCREF(v); | |
| #ifdef COUNT_ALLOCS | |
| if (ival >= 0) | |
| quick_int_allocs++; | |
| else | |
| quick_neg_int_allocs++; | |
| #endif | |
| return (PyObject *) v; | |
| } | |
| #endif | |
| if (free_list == NULL) { | |
| if ((free_list = fill_free_list()) == NULL) | |
| return NULL; | |
| } | |
| /* Inline PyObject_New */ | |
| v = free_list; | |
| free_list = (PyIntObject *)Py_TYPE(v); | |
| PyObject_INIT(v, &PyInt_Type); | |
| v->ob_ival = ival; | |
| return (PyObject *) v; | |
| } | |
| PyObject * | |
| PyInt_FromSize_t(size_t ival) | |
| { | |
| if (ival <= LONG_MAX) | |
| return PyInt_FromLong((long)ival); | |
| return _PyLong_FromSize_t(ival); | |
| } | |
| PyObject * | |
| PyInt_FromSsize_t(Py_ssize_t ival) | |
| { | |
| if (ival >= LONG_MIN && ival <= LONG_MAX) | |
| return PyInt_FromLong((long)ival); | |
| return _PyLong_FromSsize_t(ival); | |
| } | |
| static void | |
| int_dealloc(PyIntObject *v) | |
| { | |
| if (PyInt_CheckExact(v)) { | |
| Py_TYPE(v) = (struct _typeobject *)free_list; | |
| free_list = v; | |
| } | |
| else | |
| Py_TYPE(v)->tp_free((PyObject *)v); | |
| } | |
| static void | |
| int_free(PyIntObject *v) | |
| { | |
| Py_TYPE(v) = (struct _typeobject *)free_list; | |
| free_list = v; | |
| } | |
| long | |
| PyInt_AsLong(register PyObject *op) | |
| { | |
| PyNumberMethods *nb; | |
| PyIntObject *io; | |
| long val; | |
| if (op && PyInt_Check(op)) | |
| return PyInt_AS_LONG((PyIntObject*) op); | |
| if (op == NULL || (nb = Py_TYPE(op)->tp_as_number) == NULL || | |
| nb->nb_int == NULL) { | |
| PyErr_SetString(PyExc_TypeError, "an integer is required"); | |
| return -1; | |
| } | |
| io = (PyIntObject*) (*nb->nb_int) (op); | |
| if (io == NULL) | |
| return -1; | |
| if (!PyInt_Check(io)) { | |
| if (PyLong_Check(io)) { | |
| /* got a long? => retry int conversion */ | |
| val = PyLong_AsLong((PyObject *)io); | |
| Py_DECREF(io); | |
| if ((val == -1) && PyErr_Occurred()) | |
| return -1; | |
| return val; | |
| } | |
| else | |
| { | |
| Py_DECREF(io); | |
| PyErr_SetString(PyExc_TypeError, | |
| "__int__ method should return an integer"); | |
| return -1; | |
| } | |
| } | |
| val = PyInt_AS_LONG(io); | |
| Py_DECREF(io); | |
| return val; | |
| } | |
| Py_ssize_t | |
| PyInt_AsSsize_t(register PyObject *op) | |
| { | |
| #if SIZEOF_SIZE_T != SIZEOF_LONG | |
| PyNumberMethods *nb; | |
| PyIntObject *io; | |
| Py_ssize_t val; | |
| #endif | |
| if (op == NULL) { | |
| PyErr_SetString(PyExc_TypeError, "an integer is required"); | |
| return -1; | |
| } | |
| if (PyInt_Check(op)) | |
| return PyInt_AS_LONG((PyIntObject*) op); | |
| if (PyLong_Check(op)) | |
| return _PyLong_AsSsize_t(op); | |
| #if SIZEOF_SIZE_T == SIZEOF_LONG | |
| return PyInt_AsLong(op); | |
| #else | |
| if ((nb = Py_TYPE(op)->tp_as_number) == NULL || | |
| (nb->nb_int == NULL && nb->nb_long == 0)) { | |
| PyErr_SetString(PyExc_TypeError, "an integer is required"); | |
| return -1; | |
| } | |
| if (nb->nb_long != 0) | |
| io = (PyIntObject*) (*nb->nb_long) (op); | |
| else | |
| io = (PyIntObject*) (*nb->nb_int) (op); | |
| if (io == NULL) | |
| return -1; | |
| if (!PyInt_Check(io)) { | |
| if (PyLong_Check(io)) { | |
| /* got a long? => retry int conversion */ | |
| val = _PyLong_AsSsize_t((PyObject *)io); | |
| Py_DECREF(io); | |
| if ((val == -1) && PyErr_Occurred()) | |
| return -1; | |
| return val; | |
| } | |
| else | |
| { | |
| Py_DECREF(io); | |
| PyErr_SetString(PyExc_TypeError, | |
| "__int__ method should return an integer"); | |
| return -1; | |
| } | |
| } | |
| val = PyInt_AS_LONG(io); | |
| Py_DECREF(io); | |
| return val; | |
| #endif | |
| } | |
| unsigned long | |
| PyInt_AsUnsignedLongMask(register PyObject *op) | |
| { | |
| PyNumberMethods *nb; | |
| PyIntObject *io; | |
| unsigned long val; | |
| if (op && PyInt_Check(op)) | |
| return PyInt_AS_LONG((PyIntObject*) op); | |
| if (op && PyLong_Check(op)) | |
| return PyLong_AsUnsignedLongMask(op); | |
| if (op == NULL || (nb = Py_TYPE(op)->tp_as_number) == NULL || | |
| nb->nb_int == NULL) { | |
| PyErr_SetString(PyExc_TypeError, "an integer is required"); | |
| return (unsigned long)-1; | |
| } | |
| io = (PyIntObject*) (*nb->nb_int) (op); | |
| if (io == NULL) | |
| return (unsigned long)-1; | |
| if (!PyInt_Check(io)) { | |
| if (PyLong_Check(io)) { | |
| val = PyLong_AsUnsignedLongMask((PyObject *)io); | |
| Py_DECREF(io); | |
| if (PyErr_Occurred()) | |
| return (unsigned long)-1; | |
| return val; | |
| } | |
| else | |
| { | |
| Py_DECREF(io); | |
| PyErr_SetString(PyExc_TypeError, | |
| "__int__ method should return an integer"); | |
| return (unsigned long)-1; | |
| } | |
| } | |
| val = PyInt_AS_LONG(io); | |
| Py_DECREF(io); | |
| return val; | |
| } | |
| #ifdef HAVE_LONG_LONG | |
| unsigned PY_LONG_LONG | |
| PyInt_AsUnsignedLongLongMask(register PyObject *op) | |
| { | |
| PyNumberMethods *nb; | |
| PyIntObject *io; | |
| unsigned PY_LONG_LONG val; | |
| if (op && PyInt_Check(op)) | |
| return PyInt_AS_LONG((PyIntObject*) op); | |
| if (op && PyLong_Check(op)) | |
| return PyLong_AsUnsignedLongLongMask(op); | |
| if (op == NULL || (nb = Py_TYPE(op)->tp_as_number) == NULL || | |
| nb->nb_int == NULL) { | |
| PyErr_SetString(PyExc_TypeError, "an integer is required"); | |
| return (unsigned PY_LONG_LONG)-1; | |
| } | |
| io = (PyIntObject*) (*nb->nb_int) (op); | |
| if (io == NULL) | |
| return (unsigned PY_LONG_LONG)-1; | |
| if (!PyInt_Check(io)) { | |
| if (PyLong_Check(io)) { | |
| val = PyLong_AsUnsignedLongLongMask((PyObject *)io); | |
| Py_DECREF(io); | |
| if (PyErr_Occurred()) | |
| return (unsigned PY_LONG_LONG)-1; | |
| return val; | |
| } | |
| else | |
| { | |
| Py_DECREF(io); | |
| PyErr_SetString(PyExc_TypeError, | |
| "__int__ method should return an integer"); | |
| return (unsigned PY_LONG_LONG)-1; | |
| } | |
| } | |
| val = PyInt_AS_LONG(io); | |
| Py_DECREF(io); | |
| return val; | |
| } | |
| #endif | |
| PyObject * | |
| PyInt_FromString(char *s, char **pend, int base) | |
| { | |
| char *end; | |
| long x; | |
| Py_ssize_t slen; | |
| PyObject *sobj, *srepr; | |
| if ((base != 0 && base < 2) || base > 36) { | |
| PyErr_SetString(PyExc_ValueError, | |
| "int() base must be >= 2 and <= 36"); | |
| return NULL; | |
| } | |
| while (*s && isspace(Py_CHARMASK(*s))) | |
| s++; | |
| errno = 0; | |
| if (base == 0 && s[0] == '0') { | |
| x = (long) PyOS_strtoul(s, &end, base); | |
| if (x < 0) | |
| return PyLong_FromString(s, pend, base); | |
| } | |
| else | |
| x = PyOS_strtol(s, &end, base); | |
| if (end == s || !isalnum(Py_CHARMASK(end[-1]))) | |
| goto bad; | |
| while (*end && isspace(Py_CHARMASK(*end))) | |
| end++; | |
| if (*end != '\0') { | |
| bad: | |
| slen = strlen(s) < 200 ? strlen(s) : 200; | |
| sobj = PyString_FromStringAndSize(s, slen); | |
| if (sobj == NULL) | |
| return NULL; | |
| srepr = PyObject_Repr(sobj); | |
| Py_DECREF(sobj); | |
| if (srepr == NULL) | |
| return NULL; | |
| PyErr_Format(PyExc_ValueError, | |
| "invalid literal for int() with base %d: %s", | |
| base, PyString_AS_STRING(srepr)); | |
| Py_DECREF(srepr); | |
| return NULL; | |
| } | |
| else if (errno != 0) | |
| return PyLong_FromString(s, pend, base); | |
| if (pend) | |
| *pend = end; | |
| return PyInt_FromLong(x); | |
| } | |
| #ifdef Py_USING_UNICODE | |
| PyObject * | |
| PyInt_FromUnicode(Py_UNICODE *s, Py_ssize_t length, int base) | |
| { | |
| PyObject *result; | |
| char *buffer = (char *)PyMem_MALLOC(length+1); | |
| if (buffer == NULL) | |
| return PyErr_NoMemory(); | |
| if (PyUnicode_EncodeDecimal(s, length, buffer, NULL)) { | |
| PyMem_FREE(buffer); | |
| return NULL; | |
| } | |
| result = PyInt_FromString(buffer, NULL, base); | |
| PyMem_FREE(buffer); | |
| return result; | |
| } | |
| #endif | |
| /* Methods */ | |
| /* Integers are seen as the "smallest" of all numeric types and thus | |
| don't have any knowledge about conversion of other types to | |
| integers. */ | |
| #define CONVERT_TO_LONG(obj, lng) \ | |
| if (PyInt_Check(obj)) { \ | |
| lng = PyInt_AS_LONG(obj); \ | |
| } \ | |
| else { \ | |
| Py_INCREF(Py_NotImplemented); \ | |
| return Py_NotImplemented; \ | |
| } | |
| /* ARGSUSED */ | |
| static int | |
| int_print(PyIntObject *v, FILE *fp, int flags) | |
| /* flags -- not used but required by interface */ | |
| { | |
| long int_val = v->ob_ival; | |
| Py_BEGIN_ALLOW_THREADS | |
| fprintf(fp, "%ld", int_val); | |
| Py_END_ALLOW_THREADS | |
| return 0; | |
| } | |
| static int | |
| int_compare(PyIntObject *v, PyIntObject *w) | |
| { | |
| register long i = v->ob_ival; | |
| register long j = w->ob_ival; | |
| return (i < j) ? -1 : (i > j) ? 1 : 0; | |
| } | |
| static long | |
| int_hash(PyIntObject *v) | |
| { | |
| /* XXX If this is changed, you also need to change the way | |
| Python's long, float and complex types are hashed. */ | |
| long x = v -> ob_ival; | |
| if (x == -1) | |
| x = -2; | |
| return x; | |
| } | |
| static PyObject * | |
| int_add(PyIntObject *v, PyIntObject *w) | |
| { | |
| register long a, b, x; | |
| CONVERT_TO_LONG(v, a); | |
| CONVERT_TO_LONG(w, b); | |
| /* casts in the line below avoid undefined behaviour on overflow */ | |
| x = (long)((unsigned long)a + b); | |
| if ((x^a) >= 0 || (x^b) >= 0) | |
| return PyInt_FromLong(x); | |
| return PyLong_Type.tp_as_number->nb_add((PyObject *)v, (PyObject *)w); | |
| } | |
| static PyObject * | |
| int_sub(PyIntObject *v, PyIntObject *w) | |
| { | |
| register long a, b, x; | |
| CONVERT_TO_LONG(v, a); | |
| CONVERT_TO_LONG(w, b); | |
| /* casts in the line below avoid undefined behaviour on overflow */ | |
| x = (long)((unsigned long)a - b); | |
| if ((x^a) >= 0 || (x^~b) >= 0) | |
| return PyInt_FromLong(x); | |
| return PyLong_Type.tp_as_number->nb_subtract((PyObject *)v, | |
| (PyObject *)w); | |
| } | |
| /* | |
| Integer overflow checking for * is painful: Python tried a couple ways, but | |
| they didn't work on all platforms, or failed in endcases (a product of | |
| -sys.maxint-1 has been a particular pain). | |
| Here's another way: | |
| The native long product x*y is either exactly right or *way* off, being | |
| just the last n bits of the true product, where n is the number of bits | |
| in a long (the delivered product is the true product plus i*2**n for | |
| some integer i). | |
| The native double product (double)x * (double)y is subject to three | |
| rounding errors: on a sizeof(long)==8 box, each cast to double can lose | |
| info, and even on a sizeof(long)==4 box, the multiplication can lose info. | |
| But, unlike the native long product, it's not in *range* trouble: even | |
| if sizeof(long)==32 (256-bit longs), the product easily fits in the | |
| dynamic range of a double. So the leading 50 (or so) bits of the double | |
| product are correct. | |
| We check these two ways against each other, and declare victory if they're | |
| approximately the same. Else, because the native long product is the only | |
| one that can lose catastrophic amounts of information, it's the native long | |
| product that must have overflowed. | |
| */ | |
| static PyObject * | |
| int_mul(PyObject *v, PyObject *w) | |
| { | |
| long a, b; | |
| long longprod; /* a*b in native long arithmetic */ | |
| double doubled_longprod; /* (double)longprod */ | |
| double doubleprod; /* (double)a * (double)b */ | |
| CONVERT_TO_LONG(v, a); | |
| CONVERT_TO_LONG(w, b); | |
| /* casts in the next line avoid undefined behaviour on overflow */ | |
| longprod = (long)((unsigned long)a * b); | |
| doubleprod = (double)a * (double)b; | |
| doubled_longprod = (double)longprod; | |
| /* Fast path for normal case: small multiplicands, and no info | |
| is lost in either method. */ | |
| if (doubled_longprod == doubleprod) | |
| return PyInt_FromLong(longprod); | |
| /* Somebody somewhere lost info. Close enough, or way off? Note | |
| that a != 0 and b != 0 (else doubled_longprod == doubleprod == 0). | |
| The difference either is or isn't significant compared to the | |
| true value (of which doubleprod is a good approximation). | |
| */ | |
| { | |
| const double diff = doubled_longprod - doubleprod; | |
| const double absdiff = diff >= 0.0 ? diff : -diff; | |
| const double absprod = doubleprod >= 0.0 ? doubleprod : | |
| -doubleprod; | |
| /* absdiff/absprod <= 1/32 iff | |
| 32 * absdiff <= absprod -- 5 good bits is "close enough" */ | |
| if (32.0 * absdiff <= absprod) | |
| return PyInt_FromLong(longprod); | |
| else | |
| return PyLong_Type.tp_as_number->nb_multiply(v, w); | |
| } | |
| } | |
| /* Integer overflow checking for unary negation: on a 2's-complement | |
| * box, -x overflows iff x is the most negative long. In this case we | |
| * get -x == x. However, -x is undefined (by C) if x /is/ the most | |
| * negative long (it's a signed overflow case), and some compilers care. | |
| * So we cast x to unsigned long first. However, then other compilers | |
| * warn about applying unary minus to an unsigned operand. Hence the | |
| * weird "0-". | |
| */ | |
| #define UNARY_NEG_WOULD_OVERFLOW(x) \ | |
| ((x) < 0 && (unsigned long)(x) == 0-(unsigned long)(x)) | |
| /* Return type of i_divmod */ | |
| enum divmod_result { | |
| DIVMOD_OK, /* Correct result */ | |
| DIVMOD_OVERFLOW, /* Overflow, try again using longs */ | |
| DIVMOD_ERROR /* Exception raised */ | |
| }; | |
| static enum divmod_result | |
| i_divmod(register long x, register long y, | |
| long *p_xdivy, long *p_xmody) | |
| { | |
| long xdivy, xmody; | |
| if (y == 0) { | |
| PyErr_SetString(PyExc_ZeroDivisionError, | |
| "integer division or modulo by zero"); | |
| return DIVMOD_ERROR; | |
| } | |
| /* (-sys.maxint-1)/-1 is the only overflow case. */ | |
| if (y == -1 && UNARY_NEG_WOULD_OVERFLOW(x)) | |
| return DIVMOD_OVERFLOW; | |
| xdivy = x / y; | |
| /* xdiv*y can overflow on platforms where x/y gives floor(x/y) | |
| * for x and y with differing signs. (This is unusual | |
| * behaviour, and C99 prohibits it, but it's allowed by C89; | |
| * for an example of overflow, take x = LONG_MIN, y = 5 or x = | |
| * LONG_MAX, y = -5.) However, x - xdivy*y is always | |
| * representable as a long, since it lies strictly between | |
| * -abs(y) and abs(y). We add casts to avoid intermediate | |
| * overflow. | |
| */ | |
| xmody = (long)(x - (unsigned long)xdivy * y); | |
| /* If the signs of x and y differ, and the remainder is non-0, | |
| * C89 doesn't define whether xdivy is now the floor or the | |
| * ceiling of the infinitely precise quotient. We want the floor, | |
| * and we have it iff the remainder's sign matches y's. | |
| */ | |
| if (xmody && ((y ^ xmody) < 0) /* i.e. and signs differ */) { | |
| xmody += y; | |
| --xdivy; | |
| assert(xmody && ((y ^ xmody) >= 0)); | |
| } | |
| *p_xdivy = xdivy; | |
| *p_xmody = xmody; | |
| return DIVMOD_OK; | |
| } | |
| static PyObject * | |
| int_div(PyIntObject *x, PyIntObject *y) | |
| { | |
| long xi, yi; | |
| long d, m; | |
| CONVERT_TO_LONG(x, xi); | |
| CONVERT_TO_LONG(y, yi); | |
| switch (i_divmod(xi, yi, &d, &m)) { | |
| case DIVMOD_OK: | |
| return PyInt_FromLong(d); | |
| case DIVMOD_OVERFLOW: | |
| return PyLong_Type.tp_as_number->nb_divide((PyObject *)x, | |
| (PyObject *)y); | |
| default: | |
| return NULL; | |
| } | |
| } | |
| static PyObject * | |
| int_classic_div(PyIntObject *x, PyIntObject *y) | |
| { | |
| long xi, yi; | |
| long d, m; | |
| CONVERT_TO_LONG(x, xi); | |
| CONVERT_TO_LONG(y, yi); | |
| if (Py_DivisionWarningFlag && | |
| PyErr_Warn(PyExc_DeprecationWarning, "classic int division") < 0) | |
| return NULL; | |
| switch (i_divmod(xi, yi, &d, &m)) { | |
| case DIVMOD_OK: | |
| return PyInt_FromLong(d); | |
| case DIVMOD_OVERFLOW: | |
| return PyLong_Type.tp_as_number->nb_divide((PyObject *)x, | |
| (PyObject *)y); | |
| default: | |
| return NULL; | |
| } | |
| } | |
| static PyObject * | |
| int_true_divide(PyIntObject *x, PyIntObject *y) | |
| { | |
| long xi, yi; | |
| /* If they aren't both ints, give someone else a chance. In | |
| particular, this lets int/long get handled by longs, which | |
| underflows to 0 gracefully if the long is too big to convert | |
| to float. */ | |
| CONVERT_TO_LONG(x, xi); | |
| CONVERT_TO_LONG(y, yi); | |
| if (yi == 0) { | |
| PyErr_SetString(PyExc_ZeroDivisionError, | |
| "division by zero"); | |
| return NULL; | |
| } | |
| if (xi == 0) | |
| return PyFloat_FromDouble(yi < 0 ? -0.0 : 0.0); | |
| #define WIDTH_OF_ULONG (CHAR_BIT*SIZEOF_LONG) | |
| #if DBL_MANT_DIG < WIDTH_OF_ULONG | |
| if ((xi >= 0 ? 0UL + xi : 0UL - xi) >> DBL_MANT_DIG || | |
| (yi >= 0 ? 0UL + yi : 0UL - yi) >> DBL_MANT_DIG) | |
| /* Large x or y. Use long integer arithmetic. */ | |
| return PyLong_Type.tp_as_number->nb_true_divide( | |
| (PyObject *)x, (PyObject *)y); | |
| else | |
| #endif | |
| /* Both ints can be exactly represented as doubles. Do a | |
| floating-point division. */ | |
| return PyFloat_FromDouble((double)xi / (double)yi); | |
| } | |
| static PyObject * | |
| int_mod(PyIntObject *x, PyIntObject *y) | |
| { | |
| long xi, yi; | |
| long d, m; | |
| CONVERT_TO_LONG(x, xi); | |
| CONVERT_TO_LONG(y, yi); | |
| switch (i_divmod(xi, yi, &d, &m)) { | |
| case DIVMOD_OK: | |
| return PyInt_FromLong(m); | |
| case DIVMOD_OVERFLOW: | |
| return PyLong_Type.tp_as_number->nb_remainder((PyObject *)x, | |
| (PyObject *)y); | |
| default: | |
| return NULL; | |
| } | |
| } | |
| static PyObject * | |
| int_divmod(PyIntObject *x, PyIntObject *y) | |
| { | |
| long xi, yi; | |
| long d, m; | |
| CONVERT_TO_LONG(x, xi); | |
| CONVERT_TO_LONG(y, yi); | |
| switch (i_divmod(xi, yi, &d, &m)) { | |
| case DIVMOD_OK: | |
| return Py_BuildValue("(ll)", d, m); | |
| case DIVMOD_OVERFLOW: | |
| return PyLong_Type.tp_as_number->nb_divmod((PyObject *)x, | |
| (PyObject *)y); | |
| default: | |
| return NULL; | |
| } | |
| } | |
| static PyObject * | |
| int_pow(PyIntObject *v, PyIntObject *w, PyIntObject *z) | |
| { | |
| register long iv, iw, iz=0, ix, temp, prev; | |
| CONVERT_TO_LONG(v, iv); | |
| CONVERT_TO_LONG(w, iw); | |
| if (iw < 0) { | |
| if ((PyObject *)z != Py_None) { | |
| PyErr_SetString(PyExc_TypeError, "pow() 2nd argument " | |
| "cannot be negative when 3rd argument specified"); | |
| return NULL; | |
| } | |
| /* Return a float. This works because we know that | |
| this calls float_pow() which converts its | |
| arguments to double. */ | |
| return PyFloat_Type.tp_as_number->nb_power( | |
| (PyObject *)v, (PyObject *)w, (PyObject *)z); | |
| } | |
| if ((PyObject *)z != Py_None) { | |
| CONVERT_TO_LONG(z, iz); | |
| if (iz == 0) { | |
| PyErr_SetString(PyExc_ValueError, | |
| "pow() 3rd argument cannot be 0"); | |
| return NULL; | |
| } | |
| } | |
| /* | |
| * XXX: The original exponentiation code stopped looping | |
| * when temp hit zero; this code will continue onwards | |
| * unnecessarily, but at least it won't cause any errors. | |
| * Hopefully the speed improvement from the fast exponentiation | |
| * will compensate for the slight inefficiency. | |
| * XXX: Better handling of overflows is desperately needed. | |
| */ | |
| temp = iv; | |
| ix = 1; | |
| while (iw > 0) { | |
| prev = ix; /* Save value for overflow check */ | |
| if (iw & 1) { | |
| ix = ix*temp; | |
| if (temp == 0) | |
| break; /* Avoid ix / 0 */ | |
| if (ix / temp != prev) { | |
| return PyLong_Type.tp_as_number->nb_power( | |
| (PyObject *)v, | |
| (PyObject *)w, | |
| (PyObject *)z); | |
| } | |
| } | |
| iw >>= 1; /* Shift exponent down by 1 bit */ | |
| if (iw==0) break; | |
| prev = temp; | |
| temp *= temp; /* Square the value of temp */ | |
| if (prev != 0 && temp / prev != prev) { | |
| return PyLong_Type.tp_as_number->nb_power( | |
| (PyObject *)v, (PyObject *)w, (PyObject *)z); | |
| } | |
| if (iz) { | |
| /* If we did a multiplication, perform a modulo */ | |
| ix = ix % iz; | |
| temp = temp % iz; | |
| } | |
| } | |
| if (iz) { | |
| long div, mod; | |
| switch (i_divmod(ix, iz, &div, &mod)) { | |
| case DIVMOD_OK: | |
| ix = mod; | |
| break; | |
| case DIVMOD_OVERFLOW: | |
| return PyLong_Type.tp_as_number->nb_power( | |
| (PyObject *)v, (PyObject *)w, (PyObject *)z); | |
| default: | |
| return NULL; | |
| } | |
| } | |
| return PyInt_FromLong(ix); | |
| } | |
| static PyObject * | |
| int_neg(PyIntObject *v) | |
| { | |
| register long a; | |
| a = v->ob_ival; | |
| /* check for overflow */ | |
| if (UNARY_NEG_WOULD_OVERFLOW(a)) { | |
| PyObject *o = PyLong_FromLong(a); | |
| if (o != NULL) { | |
| PyObject *result = PyNumber_Negative(o); | |
| Py_DECREF(o); | |
| return result; | |
| } | |
| return NULL; | |
| } | |
| return PyInt_FromLong(-a); | |
| } | |
| static PyObject * | |
| int_abs(PyIntObject *v) | |
| { | |
| if (v->ob_ival >= 0) | |
| return int_int(v); | |
| else | |
| return int_neg(v); | |
| } | |
| static int | |
| int_nonzero(PyIntObject *v) | |
| { | |
| return v->ob_ival != 0; | |
| } | |
| static PyObject * | |
| int_invert(PyIntObject *v) | |
| { | |
| return PyInt_FromLong(~v->ob_ival); | |
| } | |
| static PyObject * | |
| int_lshift(PyIntObject *v, PyIntObject *w) | |
| { | |
| long a, b, c; | |
| PyObject *vv, *ww, *result; | |
| CONVERT_TO_LONG(v, a); | |
| CONVERT_TO_LONG(w, b); | |
| if (b < 0) { | |
| PyErr_SetString(PyExc_ValueError, "negative shift count"); | |
| return NULL; | |
| } | |
| if (a == 0 || b == 0) | |
| return int_int(v); | |
| if (b >= LONG_BIT) { | |
| vv = PyLong_FromLong(PyInt_AS_LONG(v)); | |
| if (vv == NULL) | |
| return NULL; | |
| ww = PyLong_FromLong(PyInt_AS_LONG(w)); | |
| if (ww == NULL) { | |
| Py_DECREF(vv); | |
| return NULL; | |
| } | |
| result = PyNumber_Lshift(vv, ww); | |
| Py_DECREF(vv); | |
| Py_DECREF(ww); | |
| return result; | |
| } | |
| c = a << b; | |
| if (a != Py_ARITHMETIC_RIGHT_SHIFT(long, c, b)) { | |
| vv = PyLong_FromLong(PyInt_AS_LONG(v)); | |
| if (vv == NULL) | |
| return NULL; | |
| ww = PyLong_FromLong(PyInt_AS_LONG(w)); | |
| if (ww == NULL) { | |
| Py_DECREF(vv); | |
| return NULL; | |
| } | |
| result = PyNumber_Lshift(vv, ww); | |
| Py_DECREF(vv); | |
| Py_DECREF(ww); | |
| return result; | |
| } | |
| return PyInt_FromLong(c); | |
| } | |
| static PyObject * | |
| int_rshift(PyIntObject *v, PyIntObject *w) | |
| { | |
| register long a, b; | |
| CONVERT_TO_LONG(v, a); | |
| CONVERT_TO_LONG(w, b); | |
| if (b < 0) { | |
| PyErr_SetString(PyExc_ValueError, "negative shift count"); | |
| return NULL; | |
| } | |
| if (a == 0 || b == 0) | |
| return int_int(v); | |
| if (b >= LONG_BIT) { | |
| if (a < 0) | |
| a = -1; | |
| else | |
| a = 0; | |
| } | |
| else { | |
| a = Py_ARITHMETIC_RIGHT_SHIFT(long, a, b); | |
| } | |
| return PyInt_FromLong(a); | |
| } | |
| static PyObject * | |
| int_and(PyIntObject *v, PyIntObject *w) | |
| { | |
| register long a, b; | |
| CONVERT_TO_LONG(v, a); | |
| CONVERT_TO_LONG(w, b); | |
| return PyInt_FromLong(a & b); | |
| } | |
| static PyObject * | |
| int_xor(PyIntObject *v, PyIntObject *w) | |
| { | |
| register long a, b; | |
| CONVERT_TO_LONG(v, a); | |
| CONVERT_TO_LONG(w, b); | |
| return PyInt_FromLong(a ^ b); | |
| } | |
| static PyObject * | |
| int_or(PyIntObject *v, PyIntObject *w) | |
| { | |
| register long a, b; | |
| CONVERT_TO_LONG(v, a); | |
| CONVERT_TO_LONG(w, b); | |
| return PyInt_FromLong(a | b); | |
| } | |
| static int | |
| int_coerce(PyObject **pv, PyObject **pw) | |
| { | |
| if (PyInt_Check(*pw)) { | |
| Py_INCREF(*pv); | |
| Py_INCREF(*pw); | |
| return 0; | |
| } | |
| return 1; /* Can't do it */ | |
| } | |
| static PyObject * | |
| int_int(PyIntObject *v) | |
| { | |
| if (PyInt_CheckExact(v)) | |
| Py_INCREF(v); | |
| else | |
| v = (PyIntObject *)PyInt_FromLong(v->ob_ival); | |
| return (PyObject *)v; | |
| } | |
| static PyObject * | |
| int_long(PyIntObject *v) | |
| { | |
| return PyLong_FromLong((v -> ob_ival)); | |
| } | |
| static const unsigned char BitLengthTable[32] = { | |
| 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, | |
| 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 | |
| }; | |
| static int | |
| bits_in_ulong(unsigned long d) | |
| { | |
| int d_bits = 0; | |
| while (d >= 32) { | |
| d_bits += 6; | |
| d >>= 6; | |
| } | |
| d_bits += (int)BitLengthTable[d]; | |
| return d_bits; | |
| } | |
| #if 8*SIZEOF_LONG-1 <= DBL_MANT_DIG | |
| /* Every Python int can be exactly represented as a float. */ | |
| static PyObject * | |
| int_float(PyIntObject *v) | |
| { | |
| return PyFloat_FromDouble((double)(v -> ob_ival)); | |
| } | |
| #else | |
| /* Here not all Python ints are exactly representable as floats, so we may | |
| have to round. We do this manually, since the C standards don't specify | |
| whether converting an integer to a float rounds up or down */ | |
| static PyObject * | |
| int_float(PyIntObject *v) | |
| { | |
| unsigned long abs_ival, lsb; | |
| int round_up; | |
| if (v->ob_ival < 0) | |
| abs_ival = 0U-(unsigned long)v->ob_ival; | |
| else | |
| abs_ival = (unsigned long)v->ob_ival; | |
| if (abs_ival < (1L << DBL_MANT_DIG)) | |
| /* small integer; no need to round */ | |
| return PyFloat_FromDouble((double)v->ob_ival); | |
| /* Round abs_ival to MANT_DIG significant bits, using the | |
| round-half-to-even rule. abs_ival & lsb picks out the 'rounding' | |
| bit: the first bit after the most significant MANT_DIG bits of | |
| abs_ival. We round up if this bit is set, provided that either: | |
| (1) abs_ival isn't exactly halfway between two floats, in which | |
| case at least one of the bits following the rounding bit must be | |
| set; i.e., abs_ival & lsb-1 != 0, or: | |
| (2) the resulting rounded value has least significant bit 0; or | |
| in other words the bit above the rounding bit is set (this is the | |
| 'to-even' bit of round-half-to-even); i.e., abs_ival & 2*lsb != 0 | |
| The condition "(1) or (2)" equates to abs_ival & 3*lsb-1 != 0. */ | |
| lsb = 1L << (bits_in_ulong(abs_ival)-DBL_MANT_DIG-1); | |
| round_up = (abs_ival & lsb) && (abs_ival & (3*lsb-1)); | |
| abs_ival &= -2*lsb; | |
| if (round_up) | |
| abs_ival += 2*lsb; | |
| return PyFloat_FromDouble(v->ob_ival < 0 ? | |
| -(double)abs_ival : | |
| (double)abs_ival); | |
| } | |
| #endif | |
| static PyObject * | |
| int_oct(PyIntObject *v) | |
| { | |
| return _PyInt_Format(v, 8, 0); | |
| } | |
| static PyObject * | |
| int_hex(PyIntObject *v) | |
| { | |
| return _PyInt_Format(v, 16, 0); | |
| } | |
| static PyObject * | |
| int_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); | |
| static PyObject * | |
| int_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | |
| { | |
| PyObject *x = NULL; | |
| int base = -909; | |
| static char *kwlist[] = {"x", "base", 0}; | |
| if (type != &PyInt_Type) | |
| return int_subtype_new(type, args, kwds); /* Wimp out */ | |
| if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:int", kwlist, | |
| &x, &base)) | |
| return NULL; | |
| if (x == NULL) | |
| return PyInt_FromLong(0L); | |
| if (base == -909) | |
| return PyNumber_Int(x); | |
| if (PyString_Check(x)) { | |
| /* Since PyInt_FromString doesn't have a length parameter, | |
| * check here for possible NULs in the string. */ | |
| char *string = PyString_AS_STRING(x); | |
| if (strlen(string) != PyString_Size(x)) { | |
| /* create a repr() of the input string, | |
| * just like PyInt_FromString does */ | |
| PyObject *srepr; | |
| srepr = PyObject_Repr(x); | |
| if (srepr == NULL) | |
| return NULL; | |
| PyErr_Format(PyExc_ValueError, | |
| "invalid literal for int() with base %d: %s", | |
| base, PyString_AS_STRING(srepr)); | |
| Py_DECREF(srepr); | |
| return NULL; | |
| } | |
| return PyInt_FromString(string, NULL, base); | |
| } | |
| #ifdef Py_USING_UNICODE | |
| if (PyUnicode_Check(x)) | |
| return PyInt_FromUnicode(PyUnicode_AS_UNICODE(x), | |
| PyUnicode_GET_SIZE(x), | |
| base); | |
| #endif | |
| PyErr_SetString(PyExc_TypeError, | |
| "int() can't convert non-string with explicit base"); | |
| return NULL; | |
| } | |
| /* Wimpy, slow approach to tp_new calls for subtypes of int: | |
| first create a regular int from whatever arguments we got, | |
| then allocate a subtype instance and initialize its ob_ival | |
| from the regular int. The regular int is then thrown away. | |
| */ | |
| static PyObject * | |
| int_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | |
| { | |
| PyObject *tmp, *newobj; | |
| long ival; | |
| assert(PyType_IsSubtype(type, &PyInt_Type)); | |
| tmp = int_new(&PyInt_Type, args, kwds); | |
| if (tmp == NULL) | |
| return NULL; | |
| if (!PyInt_Check(tmp)) { | |
| ival = PyLong_AsLong(tmp); | |
| if (ival == -1 && PyErr_Occurred()) { | |
| Py_DECREF(tmp); | |
| return NULL; | |
| } | |
| } else { | |
| ival = ((PyIntObject *)tmp)->ob_ival; | |
| } | |
| newobj = type->tp_alloc(type, 0); | |
| if (newobj == NULL) { | |
| Py_DECREF(tmp); | |
| return NULL; | |
| } | |
| ((PyIntObject *)newobj)->ob_ival = ival; | |
| Py_DECREF(tmp); | |
| return newobj; | |
| } | |
| static PyObject * | |
| int_getnewargs(PyIntObject *v) | |
| { | |
| return Py_BuildValue("(l)", v->ob_ival); | |
| } | |
| static PyObject * | |
| int_get0(PyIntObject *v, void *context) { | |
| return PyInt_FromLong(0L); | |
| } | |
| static PyObject * | |
| int_get1(PyIntObject *v, void *context) { | |
| return PyInt_FromLong(1L); | |
| } | |
| /* Convert an integer to a decimal string. On many platforms, this | |
| will be significantly faster than the general arbitrary-base | |
| conversion machinery in _PyInt_Format, thanks to optimization | |
| opportunities offered by division by a compile-time constant. */ | |
| static PyObject * | |
| int_to_decimal_string(PyIntObject *v) { | |
| char buf[sizeof(long)*CHAR_BIT/3+6], *p, *bufend; | |
| long n = v->ob_ival; | |
| unsigned long absn; | |
| p = bufend = buf + sizeof(buf); | |
| absn = n < 0 ? 0UL - n : n; | |
| do { | |
| *--p = '0' + (char)(absn % 10); | |
| absn /= 10; | |
| } while (absn); | |
| if (n < 0) | |
| *--p = '-'; | |
| return PyString_FromStringAndSize(p, bufend - p); | |
| } | |
| /* Convert an integer to the given base. Returns a string. | |
| If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'. | |
| If newstyle is zero, then use the pre-2.6 behavior of octal having | |
| a leading "0" */ | |
| PyAPI_FUNC(PyObject*) | |
| _PyInt_Format(PyIntObject *v, int base, int newstyle) | |
| { | |
| /* There are no doubt many, many ways to optimize this, using code | |
| similar to _PyLong_Format */ | |
| long n = v->ob_ival; | |
| int negative = n < 0; | |
| int is_zero = n == 0; | |
| /* For the reasoning behind this size, see | |
| http://c-faq.com/misc/hexio.html. Then, add a few bytes for | |
| the possible sign and prefix "0[box]" */ | |
| char buf[sizeof(n)*CHAR_BIT+6]; | |
| /* Start by pointing to the end of the buffer. We fill in from | |
| the back forward. */ | |
| char* p = &buf[sizeof(buf)]; | |
| assert(base >= 2 && base <= 36); | |
| /* Special case base 10, for speed */ | |
| if (base == 10) | |
| return int_to_decimal_string(v); | |
| do { | |
| /* I'd use i_divmod, except it doesn't produce the results | |
| I want when n is negative. So just duplicate the salient | |
| part here. */ | |
| long div = n / base; | |
| long mod = n - div * base; | |
| /* convert abs(mod) to the right character in [0-9, a-z] */ | |
| char cdigit = (char)(mod < 0 ? -mod : mod); | |
| cdigit += (cdigit < 10) ? '0' : 'a'-10; | |
| *--p = cdigit; | |
| n = div; | |
| } while(n); | |
| if (base == 2) { | |
| *--p = 'b'; | |
| *--p = '0'; | |
| } | |
| else if (base == 8) { | |
| if (newstyle) { | |
| *--p = 'o'; | |
| *--p = '0'; | |
| } | |
| else | |
| if (!is_zero) | |
| *--p = '0'; | |
| } | |
| else if (base == 16) { | |
| *--p = 'x'; | |
| *--p = '0'; | |
| } | |
| else { | |
| *--p = '#'; | |
| *--p = '0' + base%10; | |
| if (base > 10) | |
| *--p = '0' + base/10; | |
| } | |
| if (negative) | |
| *--p = '-'; | |
| return PyString_FromStringAndSize(p, &buf[sizeof(buf)] - p); | |
| } | |
| static PyObject * | |
| int__format__(PyObject *self, PyObject *args) | |
| { | |
| PyObject *format_spec; | |
| if (!PyArg_ParseTuple(args, "O:__format__", &format_spec)) | |
| return NULL; | |
| if (PyBytes_Check(format_spec)) | |
| return _PyInt_FormatAdvanced(self, | |
| PyBytes_AS_STRING(format_spec), | |
| PyBytes_GET_SIZE(format_spec)); | |
| if (PyUnicode_Check(format_spec)) { | |
| /* Convert format_spec to a str */ | |
| PyObject *result; | |
| PyObject *str_spec = PyObject_Str(format_spec); | |
| if (str_spec == NULL) | |
| return NULL; | |
| result = _PyInt_FormatAdvanced(self, | |
| PyBytes_AS_STRING(str_spec), | |
| PyBytes_GET_SIZE(str_spec)); | |
| Py_DECREF(str_spec); | |
| return result; | |
| } | |
| PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode"); | |
| return NULL; | |
| } | |
| static PyObject * | |
| int_bit_length(PyIntObject *v) | |
| { | |
| unsigned long n; | |
| if (v->ob_ival < 0) | |
| /* avoid undefined behaviour when v->ob_ival == -LONG_MAX-1 */ | |
| n = 0U-(unsigned long)v->ob_ival; | |
| else | |
| n = (unsigned long)v->ob_ival; | |
| return PyInt_FromLong(bits_in_ulong(n)); | |
| } | |
| PyDoc_STRVAR(int_bit_length_doc, | |
| "int.bit_length() -> int\n\ | |
| \n\ | |
| Number of bits necessary to represent self in binary.\n\ | |
| >>> bin(37)\n\ | |
| '0b100101'\n\ | |
| >>> (37).bit_length()\n\ | |
| 6"); | |
| #if 0 | |
| static PyObject * | |
| int_is_finite(PyObject *v) | |
| { | |
| Py_RETURN_TRUE; | |
| } | |
| #endif | |
| static PyMethodDef int_methods[] = { | |
| {"conjugate", (PyCFunction)int_int, METH_NOARGS, | |
| "Returns self, the complex conjugate of any int."}, | |
| {"bit_length", (PyCFunction)int_bit_length, METH_NOARGS, | |
| int_bit_length_doc}, | |
| #if 0 | |
| {"is_finite", (PyCFunction)int_is_finite, METH_NOARGS, | |
| "Returns always True."}, | |
| #endif | |
| {"__trunc__", (PyCFunction)int_int, METH_NOARGS, | |
| "Truncating an Integral returns itself."}, | |
| {"__getnewargs__", (PyCFunction)int_getnewargs, METH_NOARGS}, | |
| {"__format__", (PyCFunction)int__format__, METH_VARARGS}, | |
| {NULL, NULL} /* sentinel */ | |
| }; | |
| static PyGetSetDef int_getset[] = { | |
| {"real", | |
| (getter)int_int, (setter)NULL, | |
| "the real part of a complex number", | |
| NULL}, | |
| {"imag", | |
| (getter)int_get0, (setter)NULL, | |
| "the imaginary part of a complex number", | |
| NULL}, | |
| {"numerator", | |
| (getter)int_int, (setter)NULL, | |
| "the numerator of a rational number in lowest terms", | |
| NULL}, | |
| {"denominator", | |
| (getter)int_get1, (setter)NULL, | |
| "the denominator of a rational number in lowest terms", | |
| NULL}, | |
| {NULL} /* Sentinel */ | |
| }; | |
| PyDoc_STRVAR(int_doc, | |
| "int(x[, base]) -> integer\n\ | |
| \n\ | |
| Convert a string or number to an integer, if possible. A floating point\n\ | |
| argument will be truncated towards zero (this does not include a string\n\ | |
| representation of a floating point number!) When converting a string, use\n\ | |
| the optional base. It is an error to supply a base when converting a\n\ | |
| non-string. If base is zero, the proper base is guessed based on the\n\ | |
| string content. If the argument is outside the integer range a\n\ | |
| long object will be returned instead."); | |
| static PyNumberMethods int_as_number = { | |
| (binaryfunc)int_add, /*nb_add*/ | |
| (binaryfunc)int_sub, /*nb_subtract*/ | |
| (binaryfunc)int_mul, /*nb_multiply*/ | |
| (binaryfunc)int_classic_div, /*nb_divide*/ | |
| (binaryfunc)int_mod, /*nb_remainder*/ | |
| (binaryfunc)int_divmod, /*nb_divmod*/ | |
| (ternaryfunc)int_pow, /*nb_power*/ | |
| (unaryfunc)int_neg, /*nb_negative*/ | |
| (unaryfunc)int_int, /*nb_positive*/ | |
| (unaryfunc)int_abs, /*nb_absolute*/ | |
| (inquiry)int_nonzero, /*nb_nonzero*/ | |
| (unaryfunc)int_invert, /*nb_invert*/ | |
| (binaryfunc)int_lshift, /*nb_lshift*/ | |
| (binaryfunc)int_rshift, /*nb_rshift*/ | |
| (binaryfunc)int_and, /*nb_and*/ | |
| (binaryfunc)int_xor, /*nb_xor*/ | |
| (binaryfunc)int_or, /*nb_or*/ | |
| int_coerce, /*nb_coerce*/ | |
| (unaryfunc)int_int, /*nb_int*/ | |
| (unaryfunc)int_long, /*nb_long*/ | |
| (unaryfunc)int_float, /*nb_float*/ | |
| (unaryfunc)int_oct, /*nb_oct*/ | |
| (unaryfunc)int_hex, /*nb_hex*/ | |
| 0, /*nb_inplace_add*/ | |
| 0, /*nb_inplace_subtract*/ | |
| 0, /*nb_inplace_multiply*/ | |
| 0, /*nb_inplace_divide*/ | |
| 0, /*nb_inplace_remainder*/ | |
| 0, /*nb_inplace_power*/ | |
| 0, /*nb_inplace_lshift*/ | |
| 0, /*nb_inplace_rshift*/ | |
| 0, /*nb_inplace_and*/ | |
| 0, /*nb_inplace_xor*/ | |
| 0, /*nb_inplace_or*/ | |
| (binaryfunc)int_div, /* nb_floor_divide */ | |
| (binaryfunc)int_true_divide, /* nb_true_divide */ | |
| 0, /* nb_inplace_floor_divide */ | |
| 0, /* nb_inplace_true_divide */ | |
| (unaryfunc)int_int, /* nb_index */ | |
| }; | |
| PyTypeObject PyInt_Type = { | |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
| "int", | |
| sizeof(PyIntObject), | |
| 0, | |
| (destructor)int_dealloc, /* tp_dealloc */ | |
| (printfunc)int_print, /* tp_print */ | |
| 0, /* tp_getattr */ | |
| 0, /* tp_setattr */ | |
| (cmpfunc)int_compare, /* tp_compare */ | |
| (reprfunc)int_to_decimal_string, /* tp_repr */ | |
| &int_as_number, /* tp_as_number */ | |
| 0, /* tp_as_sequence */ | |
| 0, /* tp_as_mapping */ | |
| (hashfunc)int_hash, /* tp_hash */ | |
| 0, /* tp_call */ | |
| (reprfunc)int_to_decimal_string, /* tp_str */ | |
| PyObject_GenericGetAttr, /* tp_getattro */ | |
| 0, /* tp_setattro */ | |
| 0, /* tp_as_buffer */ | |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | | |
| Py_TPFLAGS_BASETYPE | Py_TPFLAGS_INT_SUBCLASS, /* tp_flags */ | |
| int_doc, /* tp_doc */ | |
| 0, /* tp_traverse */ | |
| 0, /* tp_clear */ | |
| 0, /* tp_richcompare */ | |
| 0, /* tp_weaklistoffset */ | |
| 0, /* tp_iter */ | |
| 0, /* tp_iternext */ | |
| int_methods, /* tp_methods */ | |
| 0, /* tp_members */ | |
| int_getset, /* tp_getset */ | |
| 0, /* tp_base */ | |
| 0, /* tp_dict */ | |
| 0, /* tp_descr_get */ | |
| 0, /* tp_descr_set */ | |
| 0, /* tp_dictoffset */ | |
| 0, /* tp_init */ | |
| 0, /* tp_alloc */ | |
| int_new, /* tp_new */ | |
| (freefunc)int_free, /* tp_free */ | |
| }; | |
| int | |
| _PyInt_Init(void) | |
| { | |
| PyIntObject *v; | |
| int ival; | |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0 | |
| for (ival = -NSMALLNEGINTS; ival < NSMALLPOSINTS; ival++) { | |
| if (!free_list && (free_list = fill_free_list()) == NULL) | |
| return 0; | |
| /* PyObject_New is inlined */ | |
| v = free_list; | |
| free_list = (PyIntObject *)Py_TYPE(v); | |
| PyObject_INIT(v, &PyInt_Type); | |
| v->ob_ival = ival; | |
| small_ints[ival + NSMALLNEGINTS] = v; | |
| } | |
| #endif | |
| return 1; | |
| } | |
| int | |
| PyInt_ClearFreeList(void) | |
| { | |
| PyIntObject *p; | |
| PyIntBlock *list, *next; | |
| int i; | |
| int u; /* remaining unfreed ints per block */ | |
| int freelist_size = 0; | |
| list = block_list; | |
| block_list = NULL; | |
| free_list = NULL; | |
| while (list != NULL) { | |
| u = 0; | |
| for (i = 0, p = &list->objects[0]; | |
| i < N_INTOBJECTS; | |
| i++, p++) { | |
| if (PyInt_CheckExact(p) && p->ob_refcnt != 0) | |
| u++; | |
| } | |
| next = list->next; | |
| if (u) { | |
| list->next = block_list; | |
| block_list = list; | |
| for (i = 0, p = &list->objects[0]; | |
| i < N_INTOBJECTS; | |
| i++, p++) { | |
| if (!PyInt_CheckExact(p) || | |
| p->ob_refcnt == 0) { | |
| Py_TYPE(p) = (struct _typeobject *) | |
| free_list; | |
| free_list = p; | |
| } | |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0 | |
| else if (-NSMALLNEGINTS <= p->ob_ival && | |
| p->ob_ival < NSMALLPOSINTS && | |
| small_ints[p->ob_ival + | |
| NSMALLNEGINTS] == NULL) { | |
| Py_INCREF(p); | |
| small_ints[p->ob_ival + | |
| NSMALLNEGINTS] = p; | |
| } | |
| #endif | |
| } | |
| } | |
| else { | |
| PyMem_FREE(list); | |
| } | |
| freelist_size += u; | |
| list = next; | |
| } | |
| return freelist_size; | |
| } | |
| void | |
| PyInt_Fini(void) | |
| { | |
| PyIntObject *p; | |
| PyIntBlock *list; | |
| int i; | |
| int u; /* total unfreed ints per block */ | |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0 | |
| PyIntObject **q; | |
| i = NSMALLNEGINTS + NSMALLPOSINTS; | |
| q = small_ints; | |
| while (--i >= 0) { | |
| Py_XDECREF(*q); | |
| *q++ = NULL; | |
| } | |
| #endif | |
| u = PyInt_ClearFreeList(); | |
| if (!Py_VerboseFlag) | |
| return; | |
| fprintf(stderr, "# cleanup ints"); | |
| if (!u) { | |
| fprintf(stderr, "\n"); | |
| } | |
| else { | |
| fprintf(stderr, | |
| ": %d unfreed int%s\n", | |
| u, u == 1 ? "" : "s"); | |
| } | |
| if (Py_VerboseFlag > 1) { | |
| list = block_list; | |
| while (list != NULL) { | |
| for (i = 0, p = &list->objects[0]; | |
| i < N_INTOBJECTS; | |
| i++, p++) { | |
| if (PyInt_CheckExact(p) && p->ob_refcnt != 0) | |
| /* XXX(twouters) cast refcount to | |
| long until %zd is universally | |
| available | |
| */ | |
| fprintf(stderr, | |
| "# <int at %p, refcnt=%ld, val=%ld>\n", | |
| p, (long)p->ob_refcnt, | |
| p->ob_ival); | |
| } | |
| list = list->next; | |
| } | |
| } | |
| } |