| /* Float object implementation */ | |
| /* XXX There should be overflow checks here, but it's hard to check | |
| for any kind of float exception without losing portability. */ | |
| #include "Python.h" | |
| #include "structseq.h" | |
| #include <ctype.h> | |
| #include <float.h> | |
| #undef MAX | |
| #undef MIN | |
| #define MAX(x, y) ((x) < (y) ? (y) : (x)) | |
| #define MIN(x, y) ((x) < (y) ? (x) : (y)) | |
| #ifdef _OSF_SOURCE | |
| /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */ | |
| extern int finite(double); | |
| #endif | |
| /* Special free list -- see comments for same code in intobject.c. */ | |
| #define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */ | |
| #define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */ | |
| #define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject)) | |
| struct _floatblock { | |
| struct _floatblock *next; | |
| PyFloatObject objects[N_FLOATOBJECTS]; | |
| }; | |
| typedef struct _floatblock PyFloatBlock; | |
| static PyFloatBlock *block_list = NULL; | |
| static PyFloatObject *free_list = NULL; | |
| static PyFloatObject * | |
| fill_free_list(void) | |
| { | |
| PyFloatObject *p, *q; | |
| /* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */ | |
| p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock)); | |
| if (p == NULL) | |
| return (PyFloatObject *) PyErr_NoMemory(); | |
| ((PyFloatBlock *)p)->next = block_list; | |
| block_list = (PyFloatBlock *)p; | |
| p = &((PyFloatBlock *)p)->objects[0]; | |
| q = p + N_FLOATOBJECTS; | |
| while (--q > p) | |
| Py_TYPE(q) = (struct _typeobject *)(q-1); | |
| Py_TYPE(q) = NULL; | |
| return p + N_FLOATOBJECTS - 1; | |
| } | |
| double | |
| PyFloat_GetMax(void) | |
| { | |
| return DBL_MAX; | |
| } | |
| double | |
| PyFloat_GetMin(void) | |
| { | |
| return DBL_MIN; | |
| } | |
| static PyTypeObject FloatInfoType = {0, 0, 0, 0, 0, 0}; | |
| PyDoc_STRVAR(floatinfo__doc__, | |
| "sys.float_info\n\ | |
| \n\ | |
| A structseq holding information about the float type. It contains low level\n\ | |
| information about the precision and internal representation. Please study\n\ | |
| your system's :file:`float.h` for more information."); | |
| static PyStructSequence_Field floatinfo_fields[] = { | |
| {"max", "DBL_MAX -- maximum representable finite float"}, | |
| {"max_exp", "DBL_MAX_EXP -- maximum int e such that radix**(e-1) " | |
| "is representable"}, | |
| {"max_10_exp", "DBL_MAX_10_EXP -- maximum int e such that 10**e " | |
| "is representable"}, | |
| {"min", "DBL_MIN -- Minimum positive normalizer float"}, | |
| {"min_exp", "DBL_MIN_EXP -- minimum int e such that radix**(e-1) " | |
| "is a normalized float"}, | |
| {"min_10_exp", "DBL_MIN_10_EXP -- minimum int e such that 10**e is " | |
| "a normalized"}, | |
| {"dig", "DBL_DIG -- digits"}, | |
| {"mant_dig", "DBL_MANT_DIG -- mantissa digits"}, | |
| {"epsilon", "DBL_EPSILON -- Difference between 1 and the next " | |
| "representable float"}, | |
| {"radix", "FLT_RADIX -- radix of exponent"}, | |
| {"rounds", "FLT_ROUNDS -- addition rounds"}, | |
| {0} | |
| }; | |
| static PyStructSequence_Desc floatinfo_desc = { | |
| "sys.float_info", /* name */ | |
| floatinfo__doc__, /* doc */ | |
| floatinfo_fields, /* fields */ | |
| 11 | |
| }; | |
| PyObject * | |
| PyFloat_GetInfo(void) | |
| { | |
| PyObject* floatinfo; | |
| int pos = 0; | |
| floatinfo = PyStructSequence_New(&FloatInfoType); | |
| if (floatinfo == NULL) { | |
| return NULL; | |
| } | |
| #define SetIntFlag(flag) \ | |
| PyStructSequence_SET_ITEM(floatinfo, pos++, PyInt_FromLong(flag)) | |
| #define SetDblFlag(flag) \ | |
| PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag)) | |
| SetDblFlag(DBL_MAX); | |
| SetIntFlag(DBL_MAX_EXP); | |
| SetIntFlag(DBL_MAX_10_EXP); | |
| SetDblFlag(DBL_MIN); | |
| SetIntFlag(DBL_MIN_EXP); | |
| SetIntFlag(DBL_MIN_10_EXP); | |
| SetIntFlag(DBL_DIG); | |
| SetIntFlag(DBL_MANT_DIG); | |
| SetDblFlag(DBL_EPSILON); | |
| SetIntFlag(FLT_RADIX); | |
| SetIntFlag(FLT_ROUNDS); | |
| #undef SetIntFlag | |
| #undef SetDblFlag | |
| if (PyErr_Occurred()) { | |
| Py_CLEAR(floatinfo); | |
| return NULL; | |
| } | |
| return floatinfo; | |
| } | |
| PyObject * | |
| PyFloat_FromDouble(double fval) | |
| { | |
| register PyFloatObject *op; | |
| if (free_list == NULL) { | |
| if ((free_list = fill_free_list()) == NULL) | |
| return NULL; | |
| } | |
| /* Inline PyObject_New */ | |
| op = free_list; | |
| free_list = (PyFloatObject *)Py_TYPE(op); | |
| PyObject_INIT(op, &PyFloat_Type); | |
| op->ob_fval = fval; | |
| return (PyObject *) op; | |
| } | |
| /************************************************************************** | |
| RED_FLAG 22-Sep-2000 tim | |
| PyFloat_FromString's pend argument is braindead. Prior to this RED_FLAG, | |
| 1. If v was a regular string, *pend was set to point to its terminating | |
| null byte. That's useless (the caller can find that without any | |
| help from this function!). | |
| 2. If v was a Unicode string, or an object convertible to a character | |
| buffer, *pend was set to point into stack trash (the auto temp | |
| vector holding the character buffer). That was downright dangerous. | |
| Since we can't change the interface of a public API function, pend is | |
| still supported but now *officially* useless: if pend is not NULL, | |
| *pend is set to NULL. | |
| **************************************************************************/ | |
| PyObject * | |
| PyFloat_FromString(PyObject *v, char **pend) | |
| { | |
| const char *s, *last, *end; | |
| double x; | |
| char buffer[256]; /* for errors */ | |
| #ifdef Py_USING_UNICODE | |
| char *s_buffer = NULL; | |
| #endif | |
| Py_ssize_t len; | |
| PyObject *result = NULL; | |
| if (pend) | |
| *pend = NULL; | |
| if (PyString_Check(v)) { | |
| s = PyString_AS_STRING(v); | |
| len = PyString_GET_SIZE(v); | |
| } | |
| #ifdef Py_USING_UNICODE | |
| else if (PyUnicode_Check(v)) { | |
| s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1); | |
| if (s_buffer == NULL) | |
| return PyErr_NoMemory(); | |
| if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v), | |
| PyUnicode_GET_SIZE(v), | |
| s_buffer, | |
| NULL)) | |
| goto error; | |
| s = s_buffer; | |
| len = strlen(s); | |
| } | |
| #endif | |
| else if (PyObject_AsCharBuffer(v, &s, &len)) { | |
| PyErr_SetString(PyExc_TypeError, | |
| "float() argument must be a string or a number"); | |
| return NULL; | |
| } | |
| last = s + len; | |
| while (Py_ISSPACE(*s)) | |
| s++; | |
| /* We don't care about overflow or underflow. If the platform | |
| * supports them, infinities and signed zeroes (on underflow) are | |
| * fine. */ | |
| x = PyOS_string_to_double(s, (char **)&end, NULL); | |
| if (x == -1.0 && PyErr_Occurred()) | |
| goto error; | |
| while (Py_ISSPACE(*end)) | |
| end++; | |
| if (end == last) | |
| result = PyFloat_FromDouble(x); | |
| else { | |
| PyOS_snprintf(buffer, sizeof(buffer), | |
| "invalid literal for float(): %.200s", s); | |
| PyErr_SetString(PyExc_ValueError, buffer); | |
| result = NULL; | |
| } | |
| error: | |
| #ifdef Py_USING_UNICODE | |
| if (s_buffer) | |
| PyMem_FREE(s_buffer); | |
| #endif | |
| return result; | |
| } | |
| static void | |
| float_dealloc(PyFloatObject *op) | |
| { | |
| if (PyFloat_CheckExact(op)) { | |
| Py_TYPE(op) = (struct _typeobject *)free_list; | |
| free_list = op; | |
| } | |
| else | |
| Py_TYPE(op)->tp_free((PyObject *)op); | |
| } | |
| double | |
| PyFloat_AsDouble(PyObject *op) | |
| { | |
| PyNumberMethods *nb; | |
| PyFloatObject *fo; | |
| double val; | |
| if (op && PyFloat_Check(op)) | |
| return PyFloat_AS_DOUBLE((PyFloatObject*) op); | |
| if (op == NULL) { | |
| PyErr_BadArgument(); | |
| return -1; | |
| } | |
| if ((nb = Py_TYPE(op)->tp_as_number) == NULL || nb->nb_float == NULL) { | |
| PyErr_SetString(PyExc_TypeError, "a float is required"); | |
| return -1; | |
| } | |
| fo = (PyFloatObject*) (*nb->nb_float) (op); | |
| if (fo == NULL) | |
| return -1; | |
| if (!PyFloat_Check(fo)) { | |
| PyErr_SetString(PyExc_TypeError, | |
| "nb_float should return float object"); | |
| return -1; | |
| } | |
| val = PyFloat_AS_DOUBLE(fo); | |
| Py_DECREF(fo); | |
| return val; | |
| } | |
| /* Methods */ | |
| /* Macro and helper that convert PyObject obj to a C double and store | |
| the value in dbl; this replaces the functionality of the coercion | |
| slot function. If conversion to double raises an exception, obj is | |
| set to NULL, and the function invoking this macro returns NULL. If | |
| obj is not of float, int or long type, Py_NotImplemented is incref'ed, | |
| stored in obj, and returned from the function invoking this macro. | |
| */ | |
| #define CONVERT_TO_DOUBLE(obj, dbl) \ | |
| if (PyFloat_Check(obj)) \ | |
| dbl = PyFloat_AS_DOUBLE(obj); \ | |
| else if (convert_to_double(&(obj), &(dbl)) < 0) \ | |
| return obj; | |
| static int | |
| convert_to_double(PyObject **v, double *dbl) | |
| { | |
| register PyObject *obj = *v; | |
| if (PyInt_Check(obj)) { | |
| *dbl = (double)PyInt_AS_LONG(obj); | |
| } | |
| else if (PyLong_Check(obj)) { | |
| *dbl = PyLong_AsDouble(obj); | |
| if (*dbl == -1.0 && PyErr_Occurred()) { | |
| *v = NULL; | |
| return -1; | |
| } | |
| } | |
| else { | |
| Py_INCREF(Py_NotImplemented); | |
| *v = Py_NotImplemented; | |
| return -1; | |
| } | |
| return 0; | |
| } | |
| /* XXX PyFloat_AsString and PyFloat_AsReprString are deprecated: | |
| XXX they pass a char buffer without passing a length. | |
| */ | |
| void | |
| PyFloat_AsString(char *buf, PyFloatObject *v) | |
| { | |
| char *tmp = PyOS_double_to_string(v->ob_fval, 'g', | |
| PyFloat_STR_PRECISION, | |
| Py_DTSF_ADD_DOT_0, NULL); | |
| strcpy(buf, tmp); | |
| PyMem_Free(tmp); | |
| } | |
| void | |
| PyFloat_AsReprString(char *buf, PyFloatObject *v) | |
| { | |
| char * tmp = PyOS_double_to_string(v->ob_fval, 'r', 0, | |
| Py_DTSF_ADD_DOT_0, NULL); | |
| strcpy(buf, tmp); | |
| PyMem_Free(tmp); | |
| } | |
| /* ARGSUSED */ | |
| static int | |
| float_print(PyFloatObject *v, FILE *fp, int flags) | |
| { | |
| char *buf; | |
| if (flags & Py_PRINT_RAW) | |
| buf = PyOS_double_to_string(v->ob_fval, | |
| 'g', PyFloat_STR_PRECISION, | |
| Py_DTSF_ADD_DOT_0, NULL); | |
| else | |
| buf = PyOS_double_to_string(v->ob_fval, | |
| 'r', 0, Py_DTSF_ADD_DOT_0, NULL); | |
| Py_BEGIN_ALLOW_THREADS | |
| fputs(buf, fp); | |
| Py_END_ALLOW_THREADS | |
| PyMem_Free(buf); | |
| return 0; | |
| } | |
| static PyObject * | |
| float_str_or_repr(PyFloatObject *v, int precision, char format_code) | |
| { | |
| PyObject *result; | |
| char *buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v), | |
| format_code, precision, | |
| Py_DTSF_ADD_DOT_0, | |
| NULL); | |
| if (!buf) | |
| return PyErr_NoMemory(); | |
| result = PyString_FromString(buf); | |
| PyMem_Free(buf); | |
| return result; | |
| } | |
| static PyObject * | |
| float_repr(PyFloatObject *v) | |
| { | |
| return float_str_or_repr(v, 0, 'r'); | |
| } | |
| static PyObject * | |
| float_str(PyFloatObject *v) | |
| { | |
| return float_str_or_repr(v, PyFloat_STR_PRECISION, 'g'); | |
| } | |
| /* Comparison is pretty much a nightmare. When comparing float to float, | |
| * we do it as straightforwardly (and long-windedly) as conceivable, so | |
| * that, e.g., Python x == y delivers the same result as the platform | |
| * C x == y when x and/or y is a NaN. | |
| * When mixing float with an integer type, there's no good *uniform* approach. | |
| * Converting the double to an integer obviously doesn't work, since we | |
| * may lose info from fractional bits. Converting the integer to a double | |
| * also has two failure modes: (1) a long int may trigger overflow (too | |
| * large to fit in the dynamic range of a C double); (2) even a C long may have | |
| * more bits than fit in a C double (e.g., on a a 64-bit box long may have | |
| * 63 bits of precision, but a C double probably has only 53), and then | |
| * we can falsely claim equality when low-order integer bits are lost by | |
| * coercion to double. So this part is painful too. | |
| */ | |
| static PyObject* | |
| float_richcompare(PyObject *v, PyObject *w, int op) | |
| { | |
| double i, j; | |
| int r = 0; | |
| assert(PyFloat_Check(v)); | |
| i = PyFloat_AS_DOUBLE(v); | |
| /* Switch on the type of w. Set i and j to doubles to be compared, | |
| * and op to the richcomp to use. | |
| */ | |
| if (PyFloat_Check(w)) | |
| j = PyFloat_AS_DOUBLE(w); | |
| else if (!Py_IS_FINITE(i)) { | |
| if (PyInt_Check(w) || PyLong_Check(w)) | |
| /* If i is an infinity, its magnitude exceeds any | |
| * finite integer, so it doesn't matter which int we | |
| * compare i with. If i is a NaN, similarly. | |
| */ | |
| j = 0.0; | |
| else | |
| goto Unimplemented; | |
| } | |
| else if (PyInt_Check(w)) { | |
| long jj = PyInt_AS_LONG(w); | |
| /* In the worst realistic case I can imagine, C double is a | |
| * Cray single with 48 bits of precision, and long has 64 | |
| * bits. | |
| */ | |
| #if SIZEOF_LONG > 6 | |
| unsigned long abs = (unsigned long)(jj < 0 ? -jj : jj); | |
| if (abs >> 48) { | |
| /* Needs more than 48 bits. Make it take the | |
| * PyLong path. | |
| */ | |
| PyObject *result; | |
| PyObject *ww = PyLong_FromLong(jj); | |
| if (ww == NULL) | |
| return NULL; | |
| result = float_richcompare(v, ww, op); | |
| Py_DECREF(ww); | |
| return result; | |
| } | |
| #endif | |
| j = (double)jj; | |
| assert((long)j == jj); | |
| } | |
| else if (PyLong_Check(w)) { | |
| int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1; | |
| int wsign = _PyLong_Sign(w); | |
| size_t nbits; | |
| int exponent; | |
| if (vsign != wsign) { | |
| /* Magnitudes are irrelevant -- the signs alone | |
| * determine the outcome. | |
| */ | |
| i = (double)vsign; | |
| j = (double)wsign; | |
| goto Compare; | |
| } | |
| /* The signs are the same. */ | |
| /* Convert w to a double if it fits. In particular, 0 fits. */ | |
| nbits = _PyLong_NumBits(w); | |
| if (nbits == (size_t)-1 && PyErr_Occurred()) { | |
| /* This long is so large that size_t isn't big enough | |
| * to hold the # of bits. Replace with little doubles | |
| * that give the same outcome -- w is so large that | |
| * its magnitude must exceed the magnitude of any | |
| * finite float. | |
| */ | |
| PyErr_Clear(); | |
| i = (double)vsign; | |
| assert(wsign != 0); | |
| j = wsign * 2.0; | |
| goto Compare; | |
| } | |
| if (nbits <= 48) { | |
| j = PyLong_AsDouble(w); | |
| /* It's impossible that <= 48 bits overflowed. */ | |
| assert(j != -1.0 || ! PyErr_Occurred()); | |
| goto Compare; | |
| } | |
| assert(wsign != 0); /* else nbits was 0 */ | |
| assert(vsign != 0); /* if vsign were 0, then since wsign is | |
| * not 0, we would have taken the | |
| * vsign != wsign branch at the start */ | |
| /* We want to work with non-negative numbers. */ | |
| if (vsign < 0) { | |
| /* "Multiply both sides" by -1; this also swaps the | |
| * comparator. | |
| */ | |
| i = -i; | |
| op = _Py_SwappedOp[op]; | |
| } | |
| assert(i > 0.0); | |
| (void) frexp(i, &exponent); | |
| /* exponent is the # of bits in v before the radix point; | |
| * we know that nbits (the # of bits in w) > 48 at this point | |
| */ | |
| if (exponent < 0 || (size_t)exponent < nbits) { | |
| i = 1.0; | |
| j = 2.0; | |
| goto Compare; | |
| } | |
| if ((size_t)exponent > nbits) { | |
| i = 2.0; | |
| j = 1.0; | |
| goto Compare; | |
| } | |
| /* v and w have the same number of bits before the radix | |
| * point. Construct two longs that have the same comparison | |
| * outcome. | |
| */ | |
| { | |
| double fracpart; | |
| double intpart; | |
| PyObject *result = NULL; | |
| PyObject *one = NULL; | |
| PyObject *vv = NULL; | |
| PyObject *ww = w; | |
| if (wsign < 0) { | |
| ww = PyNumber_Negative(w); | |
| if (ww == NULL) | |
| goto Error; | |
| } | |
| else | |
| Py_INCREF(ww); | |
| fracpart = modf(i, &intpart); | |
| vv = PyLong_FromDouble(intpart); | |
| if (vv == NULL) | |
| goto Error; | |
| if (fracpart != 0.0) { | |
| /* Shift left, and or a 1 bit into vv | |
| * to represent the lost fraction. | |
| */ | |
| PyObject *temp; | |
| one = PyInt_FromLong(1); | |
| if (one == NULL) | |
| goto Error; | |
| temp = PyNumber_Lshift(ww, one); | |
| if (temp == NULL) | |
| goto Error; | |
| Py_DECREF(ww); | |
| ww = temp; | |
| temp = PyNumber_Lshift(vv, one); | |
| if (temp == NULL) | |
| goto Error; | |
| Py_DECREF(vv); | |
| vv = temp; | |
| temp = PyNumber_Or(vv, one); | |
| if (temp == NULL) | |
| goto Error; | |
| Py_DECREF(vv); | |
| vv = temp; | |
| } | |
| r = PyObject_RichCompareBool(vv, ww, op); | |
| if (r < 0) | |
| goto Error; | |
| result = PyBool_FromLong(r); | |
| Error: | |
| Py_XDECREF(vv); | |
| Py_XDECREF(ww); | |
| Py_XDECREF(one); | |
| return result; | |
| } | |
| } /* else if (PyLong_Check(w)) */ | |
| else /* w isn't float, int, or long */ | |
| goto Unimplemented; | |
| Compare: | |
| PyFPE_START_PROTECT("richcompare", return NULL) | |
| switch (op) { | |
| case Py_EQ: | |
| r = i == j; | |
| break; | |
| case Py_NE: | |
| r = i != j; | |
| break; | |
| case Py_LE: | |
| r = i <= j; | |
| break; | |
| case Py_GE: | |
| r = i >= j; | |
| break; | |
| case Py_LT: | |
| r = i < j; | |
| break; | |
| case Py_GT: | |
| r = i > j; | |
| break; | |
| } | |
| PyFPE_END_PROTECT(r) | |
| return PyBool_FromLong(r); | |
| Unimplemented: | |
| Py_INCREF(Py_NotImplemented); | |
| return Py_NotImplemented; | |
| } | |
| static long | |
| float_hash(PyFloatObject *v) | |
| { | |
| return _Py_HashDouble(v->ob_fval); | |
| } | |
| static PyObject * | |
| float_add(PyObject *v, PyObject *w) | |
| { | |
| double a,b; | |
| CONVERT_TO_DOUBLE(v, a); | |
| CONVERT_TO_DOUBLE(w, b); | |
| PyFPE_START_PROTECT("add", return 0) | |
| a = a + b; | |
| PyFPE_END_PROTECT(a) | |
| return PyFloat_FromDouble(a); | |
| } | |
| static PyObject * | |
| float_sub(PyObject *v, PyObject *w) | |
| { | |
| double a,b; | |
| CONVERT_TO_DOUBLE(v, a); | |
| CONVERT_TO_DOUBLE(w, b); | |
| PyFPE_START_PROTECT("subtract", return 0) | |
| a = a - b; | |
| PyFPE_END_PROTECT(a) | |
| return PyFloat_FromDouble(a); | |
| } | |
| static PyObject * | |
| float_mul(PyObject *v, PyObject *w) | |
| { | |
| double a,b; | |
| CONVERT_TO_DOUBLE(v, a); | |
| CONVERT_TO_DOUBLE(w, b); | |
| PyFPE_START_PROTECT("multiply", return 0) | |
| a = a * b; | |
| PyFPE_END_PROTECT(a) | |
| return PyFloat_FromDouble(a); | |
| } | |
| static PyObject * | |
| float_div(PyObject *v, PyObject *w) | |
| { | |
| double a,b; | |
| CONVERT_TO_DOUBLE(v, a); | |
| CONVERT_TO_DOUBLE(w, b); | |
| #ifdef Py_NAN | |
| if (b == 0.0) { | |
| PyErr_SetString(PyExc_ZeroDivisionError, | |
| "float division by zero"); | |
| return NULL; | |
| } | |
| #endif | |
| PyFPE_START_PROTECT("divide", return 0) | |
| a = a / b; | |
| PyFPE_END_PROTECT(a) | |
| return PyFloat_FromDouble(a); | |
| } | |
| static PyObject * | |
| float_classic_div(PyObject *v, PyObject *w) | |
| { | |
| double a,b; | |
| CONVERT_TO_DOUBLE(v, a); | |
| CONVERT_TO_DOUBLE(w, b); | |
| if (Py_DivisionWarningFlag >= 2 && | |
| PyErr_Warn(PyExc_DeprecationWarning, "classic float division") < 0) | |
| return NULL; | |
| #ifdef Py_NAN | |
| if (b == 0.0) { | |
| PyErr_SetString(PyExc_ZeroDivisionError, | |
| "float division by zero"); | |
| return NULL; | |
| } | |
| #endif | |
| PyFPE_START_PROTECT("divide", return 0) | |
| a = a / b; | |
| PyFPE_END_PROTECT(a) | |
| return PyFloat_FromDouble(a); | |
| } | |
| static PyObject * | |
| float_rem(PyObject *v, PyObject *w) | |
| { | |
| double vx, wx; | |
| double mod; | |
| CONVERT_TO_DOUBLE(v, vx); | |
| CONVERT_TO_DOUBLE(w, wx); | |
| #ifdef Py_NAN | |
| if (wx == 0.0) { | |
| PyErr_SetString(PyExc_ZeroDivisionError, | |
| "float modulo"); | |
| return NULL; | |
| } | |
| #endif | |
| PyFPE_START_PROTECT("modulo", return 0) | |
| mod = fmod(vx, wx); | |
| if (mod) { | |
| /* ensure the remainder has the same sign as the denominator */ | |
| if ((wx < 0) != (mod < 0)) { | |
| mod += wx; | |
| } | |
| } | |
| else { | |
| /* the remainder is zero, and in the presence of signed zeroes | |
| fmod returns different results across platforms; ensure | |
| it has the same sign as the denominator; we'd like to do | |
| "mod = wx * 0.0", but that may get optimized away */ | |
| mod *= mod; /* hide "mod = +0" from optimizer */ | |
| if (wx < 0.0) | |
| mod = -mod; | |
| } | |
| PyFPE_END_PROTECT(mod) | |
| return PyFloat_FromDouble(mod); | |
| } | |
| static PyObject * | |
| float_divmod(PyObject *v, PyObject *w) | |
| { | |
| double vx, wx; | |
| double div, mod, floordiv; | |
| CONVERT_TO_DOUBLE(v, vx); | |
| CONVERT_TO_DOUBLE(w, wx); | |
| if (wx == 0.0) { | |
| PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()"); | |
| return NULL; | |
| } | |
| PyFPE_START_PROTECT("divmod", return 0) | |
| mod = fmod(vx, wx); | |
| /* fmod is typically exact, so vx-mod is *mathematically* an | |
| exact multiple of wx. But this is fp arithmetic, and fp | |
| vx - mod is an approximation; the result is that div may | |
| not be an exact integral value after the division, although | |
| it will always be very close to one. | |
| */ | |
| div = (vx - mod) / wx; | |
| if (mod) { | |
| /* ensure the remainder has the same sign as the denominator */ | |
| if ((wx < 0) != (mod < 0)) { | |
| mod += wx; | |
| div -= 1.0; | |
| } | |
| } | |
| else { | |
| /* the remainder is zero, and in the presence of signed zeroes | |
| fmod returns different results across platforms; ensure | |
| it has the same sign as the denominator; we'd like to do | |
| "mod = wx * 0.0", but that may get optimized away */ | |
| mod *= mod; /* hide "mod = +0" from optimizer */ | |
| if (wx < 0.0) | |
| mod = -mod; | |
| } | |
| /* snap quotient to nearest integral value */ | |
| if (div) { | |
| floordiv = floor(div); | |
| if (div - floordiv > 0.5) | |
| floordiv += 1.0; | |
| } | |
| else { | |
| /* div is zero - get the same sign as the true quotient */ | |
| div *= div; /* hide "div = +0" from optimizers */ | |
| floordiv = div * vx / wx; /* zero w/ sign of vx/wx */ | |
| } | |
| PyFPE_END_PROTECT(floordiv) | |
| return Py_BuildValue("(dd)", floordiv, mod); | |
| } | |
| static PyObject * | |
| float_floor_div(PyObject *v, PyObject *w) | |
| { | |
| PyObject *t, *r; | |
| t = float_divmod(v, w); | |
| if (t == NULL || t == Py_NotImplemented) | |
| return t; | |
| assert(PyTuple_CheckExact(t)); | |
| r = PyTuple_GET_ITEM(t, 0); | |
| Py_INCREF(r); | |
| Py_DECREF(t); | |
| return r; | |
| } | |
| /* determine whether x is an odd integer or not; assumes that | |
| x is not an infinity or nan. */ | |
| #define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0) | |
| static PyObject * | |
| float_pow(PyObject *v, PyObject *w, PyObject *z) | |
| { | |
| double iv, iw, ix; | |
| int negate_result = 0; | |
| if ((PyObject *)z != Py_None) { | |
| PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not " | |
| "allowed unless all arguments are integers"); | |
| return NULL; | |
| } | |
| CONVERT_TO_DOUBLE(v, iv); | |
| CONVERT_TO_DOUBLE(w, iw); | |
| /* Sort out special cases here instead of relying on pow() */ | |
| if (iw == 0) { /* v**0 is 1, even 0**0 */ | |
| return PyFloat_FromDouble(1.0); | |
| } | |
| if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */ | |
| return PyFloat_FromDouble(iv); | |
| } | |
| if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */ | |
| return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw); | |
| } | |
| if (Py_IS_INFINITY(iw)) { | |
| /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if | |
| * abs(v) > 1 (including case where v infinite) | |
| * | |
| * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if | |
| * abs(v) > 1 (including case where v infinite) | |
| */ | |
| iv = fabs(iv); | |
| if (iv == 1.0) | |
| return PyFloat_FromDouble(1.0); | |
| else if ((iw > 0.0) == (iv > 1.0)) | |
| return PyFloat_FromDouble(fabs(iw)); /* return inf */ | |
| else | |
| return PyFloat_FromDouble(0.0); | |
| } | |
| if (Py_IS_INFINITY(iv)) { | |
| /* (+-inf)**w is: inf for w positive, 0 for w negative; in | |
| * both cases, we need to add the appropriate sign if w is | |
| * an odd integer. | |
| */ | |
| int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw); | |
| if (iw > 0.0) | |
| return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv)); | |
| else | |
| return PyFloat_FromDouble(iw_is_odd ? | |
| copysign(0.0, iv) : 0.0); | |
| } | |
| if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero | |
| (already dealt with above), and an error | |
| if w is negative. */ | |
| int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw); | |
| if (iw < 0.0) { | |
| PyErr_SetString(PyExc_ZeroDivisionError, | |
| "0.0 cannot be raised to a " | |
| "negative power"); | |
| return NULL; | |
| } | |
| /* use correct sign if iw is odd */ | |
| return PyFloat_FromDouble(iw_is_odd ? iv : 0.0); | |
| } | |
| if (iv < 0.0) { | |
| /* Whether this is an error is a mess, and bumps into libm | |
| * bugs so we have to figure it out ourselves. | |
| */ | |
| if (iw != floor(iw)) { | |
| PyErr_SetString(PyExc_ValueError, "negative number " | |
| "cannot be raised to a fractional power"); | |
| return NULL; | |
| } | |
| /* iw is an exact integer, albeit perhaps a very large | |
| * one. Replace iv by its absolute value and remember | |
| * to negate the pow result if iw is odd. | |
| */ | |
| iv = -iv; | |
| negate_result = DOUBLE_IS_ODD_INTEGER(iw); | |
| } | |
| if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */ | |
| /* (-1) ** large_integer also ends up here. Here's an | |
| * extract from the comments for the previous | |
| * implementation explaining why this special case is | |
| * necessary: | |
| * | |
| * -1 raised to an exact integer should never be exceptional. | |
| * Alas, some libms (chiefly glibc as of early 2003) return | |
| * NaN and set EDOM on pow(-1, large_int) if the int doesn't | |
| * happen to be representable in a *C* integer. That's a | |
| * bug. | |
| */ | |
| return PyFloat_FromDouble(negate_result ? -1.0 : 1.0); | |
| } | |
| /* Now iv and iw are finite, iw is nonzero, and iv is | |
| * positive and not equal to 1.0. We finally allow | |
| * the platform pow to step in and do the rest. | |
| */ | |
| errno = 0; | |
| PyFPE_START_PROTECT("pow", return NULL) | |
| ix = pow(iv, iw); | |
| PyFPE_END_PROTECT(ix) | |
| Py_ADJUST_ERANGE1(ix); | |
| if (negate_result) | |
| ix = -ix; | |
| if (errno != 0) { | |
| /* We don't expect any errno value other than ERANGE, but | |
| * the range of libm bugs appears unbounded. | |
| */ | |
| PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : | |
| PyExc_ValueError); | |
| return NULL; | |
| } | |
| return PyFloat_FromDouble(ix); | |
| } | |
| #undef DOUBLE_IS_ODD_INTEGER | |
| static PyObject * | |
| float_neg(PyFloatObject *v) | |
| { | |
| return PyFloat_FromDouble(-v->ob_fval); | |
| } | |
| static PyObject * | |
| float_abs(PyFloatObject *v) | |
| { | |
| return PyFloat_FromDouble(fabs(v->ob_fval)); | |
| } | |
| static int | |
| float_nonzero(PyFloatObject *v) | |
| { | |
| return v->ob_fval != 0.0; | |
| } | |
| static int | |
| float_coerce(PyObject **pv, PyObject **pw) | |
| { | |
| if (PyInt_Check(*pw)) { | |
| long x = PyInt_AsLong(*pw); | |
| *pw = PyFloat_FromDouble((double)x); | |
| Py_INCREF(*pv); | |
| return 0; | |
| } | |
| else if (PyLong_Check(*pw)) { | |
| double x = PyLong_AsDouble(*pw); | |
| if (x == -1.0 && PyErr_Occurred()) | |
| return -1; | |
| *pw = PyFloat_FromDouble(x); | |
| Py_INCREF(*pv); | |
| return 0; | |
| } | |
| else if (PyFloat_Check(*pw)) { | |
| Py_INCREF(*pv); | |
| Py_INCREF(*pw); | |
| return 0; | |
| } | |
| return 1; /* Can't do it */ | |
| } | |
| static PyObject * | |
| float_is_integer(PyObject *v) | |
| { | |
| double x = PyFloat_AsDouble(v); | |
| PyObject *o; | |
| if (x == -1.0 && PyErr_Occurred()) | |
| return NULL; | |
| if (!Py_IS_FINITE(x)) | |
| Py_RETURN_FALSE; | |
| errno = 0; | |
| PyFPE_START_PROTECT("is_integer", return NULL) | |
| o = (floor(x) == x) ? Py_True : Py_False; | |
| PyFPE_END_PROTECT(x) | |
| if (errno != 0) { | |
| PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : | |
| PyExc_ValueError); | |
| return NULL; | |
| } | |
| Py_INCREF(o); | |
| return o; | |
| } | |
| #if 0 | |
| static PyObject * | |
| float_is_inf(PyObject *v) | |
| { | |
| double x = PyFloat_AsDouble(v); | |
| if (x == -1.0 && PyErr_Occurred()) | |
| return NULL; | |
| return PyBool_FromLong((long)Py_IS_INFINITY(x)); | |
| } | |
| static PyObject * | |
| float_is_nan(PyObject *v) | |
| { | |
| double x = PyFloat_AsDouble(v); | |
| if (x == -1.0 && PyErr_Occurred()) | |
| return NULL; | |
| return PyBool_FromLong((long)Py_IS_NAN(x)); | |
| } | |
| static PyObject * | |
| float_is_finite(PyObject *v) | |
| { | |
| double x = PyFloat_AsDouble(v); | |
| if (x == -1.0 && PyErr_Occurred()) | |
| return NULL; | |
| return PyBool_FromLong((long)Py_IS_FINITE(x)); | |
| } | |
| #endif | |
| static PyObject * | |
| float_trunc(PyObject *v) | |
| { | |
| double x = PyFloat_AsDouble(v); | |
| double wholepart; /* integral portion of x, rounded toward 0 */ | |
| (void)modf(x, &wholepart); | |
| /* Try to get out cheap if this fits in a Python int. The attempt | |
| * to cast to long must be protected, as C doesn't define what | |
| * happens if the double is too big to fit in a long. Some rare | |
| * systems raise an exception then (RISCOS was mentioned as one, | |
| * and someone using a non-default option on Sun also bumped into | |
| * that). Note that checking for <= LONG_MAX is unsafe: if a long | |
| * has more bits of precision than a double, casting LONG_MAX to | |
| * double may yield an approximation, and if that's rounded up, | |
| * then, e.g., wholepart=LONG_MAX+1 would yield true from the C | |
| * expression wholepart<=LONG_MAX, despite that wholepart is | |
| * actually greater than LONG_MAX. However, assuming a two's complement | |
| * machine with no trap representation, LONG_MIN will be a power of 2 (and | |
| * hence exactly representable as a double), and LONG_MAX = -1-LONG_MIN, so | |
| * the comparisons with (double)LONG_MIN below should be safe. | |
| */ | |
| if ((double)LONG_MIN <= wholepart && wholepart < -(double)LONG_MIN) { | |
| const long aslong = (long)wholepart; | |
| return PyInt_FromLong(aslong); | |
| } | |
| return PyLong_FromDouble(wholepart); | |
| } | |
| static PyObject * | |
| float_long(PyObject *v) | |
| { | |
| double x = PyFloat_AsDouble(v); | |
| return PyLong_FromDouble(x); | |
| } | |
| /* _Py_double_round: rounds a finite nonzero double to the closest multiple of | |
| 10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <= | |
| ndigits <= 323). Returns a Python float, or sets a Python error and | |
| returns NULL on failure (OverflowError and memory errors are possible). */ | |
| #ifndef PY_NO_SHORT_FLOAT_REPR | |
| /* version of _Py_double_round that uses the correctly-rounded string<->double | |
| conversions from Python/dtoa.c */ | |
| /* FIVE_POW_LIMIT is the largest k such that 5**k is exactly representable as | |
| a double. Since we're using the code in Python/dtoa.c, it should be safe | |
| to assume that C doubles are IEEE 754 binary64 format. To be on the safe | |
| side, we check this. */ | |
| #if DBL_MANT_DIG == 53 | |
| #define FIVE_POW_LIMIT 22 | |
| #else | |
| #error "C doubles do not appear to be IEEE 754 binary64 format" | |
| #endif | |
| PyObject * | |
| _Py_double_round(double x, int ndigits) { | |
| double rounded, m; | |
| Py_ssize_t buflen, mybuflen=100; | |
| char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf; | |
| int decpt, sign, val, halfway_case; | |
| PyObject *result = NULL; | |
| /* The basic idea is very simple: convert and round the double to a | |
| decimal string using _Py_dg_dtoa, then convert that decimal string | |
| back to a double with _Py_dg_strtod. There's one minor difficulty: | |
| Python 2.x expects round to do round-half-away-from-zero, while | |
| _Py_dg_dtoa does round-half-to-even. So we need some way to detect | |
| and correct the halfway cases. | |
| Detection: a halfway value has the form k * 0.5 * 10**-ndigits for | |
| some odd integer k. Or in other words, a rational number x is | |
| exactly halfway between two multiples of 10**-ndigits if its | |
| 2-valuation is exactly -ndigits-1 and its 5-valuation is at least | |
| -ndigits. For ndigits >= 0 the latter condition is automatically | |
| satisfied for a binary float x, since any such float has | |
| nonnegative 5-valuation. For 0 > ndigits >= -22, x needs to be an | |
| integral multiple of 5**-ndigits; we can check this using fmod. | |
| For -22 > ndigits, there are no halfway cases: 5**23 takes 54 bits | |
| to represent exactly, so any odd multiple of 0.5 * 10**n for n >= | |
| 23 takes at least 54 bits of precision to represent exactly. | |
| Correction: a simple strategy for dealing with halfway cases is to | |
| (for the halfway cases only) call _Py_dg_dtoa with an argument of | |
| ndigits+1 instead of ndigits (thus doing an exact conversion to | |
| decimal), round the resulting string manually, and then convert | |
| back using _Py_dg_strtod. | |
| */ | |
| /* nans, infinities and zeros should have already been dealt | |
| with by the caller (in this case, builtin_round) */ | |
| assert(Py_IS_FINITE(x) && x != 0.0); | |
| /* find 2-valuation val of x */ | |
| m = frexp(x, &val); | |
| while (m != floor(m)) { | |
| m *= 2.0; | |
| val--; | |
| } | |
| /* determine whether this is a halfway case */ | |
| if (val == -ndigits-1) { | |
| if (ndigits >= 0) | |
| halfway_case = 1; | |
| else if (ndigits >= -FIVE_POW_LIMIT) { | |
| double five_pow = 1.0; | |
| int i; | |
| for (i=0; i < -ndigits; i++) | |
| five_pow *= 5.0; | |
| halfway_case = fmod(x, five_pow) == 0.0; | |
| } | |
| else | |
| halfway_case = 0; | |
| } | |
| else | |
| halfway_case = 0; | |
| /* round to a decimal string; use an extra place for halfway case */ | |
| buf = _Py_dg_dtoa(x, 3, ndigits+halfway_case, &decpt, &sign, &buf_end); | |
| if (buf == NULL) { | |
| PyErr_NoMemory(); | |
| return NULL; | |
| } | |
| buflen = buf_end - buf; | |
| /* in halfway case, do the round-half-away-from-zero manually */ | |
| if (halfway_case) { | |
| int i, carry; | |
| /* sanity check: _Py_dg_dtoa should not have stripped | |
| any zeros from the result: there should be exactly | |
| ndigits+1 places following the decimal point, and | |
| the last digit in the buffer should be a '5'.*/ | |
| assert(buflen - decpt == ndigits+1); | |
| assert(buf[buflen-1] == '5'); | |
| /* increment and shift right at the same time. */ | |
| decpt += 1; | |
| carry = 1; | |
| for (i=buflen-1; i-- > 0;) { | |
| carry += buf[i] - '0'; | |
| buf[i+1] = carry % 10 + '0'; | |
| carry /= 10; | |
| } | |
| buf[0] = carry + '0'; | |
| } | |
| /* Get new buffer if shortbuf is too small. Space needed <= buf_end - | |
| buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */ | |
| if (buflen + 8 > mybuflen) { | |
| mybuflen = buflen+8; | |
| mybuf = (char *)PyMem_Malloc(mybuflen); | |
| if (mybuf == NULL) { | |
| PyErr_NoMemory(); | |
| goto exit; | |
| } | |
| } | |
| /* copy buf to mybuf, adding exponent, sign and leading 0 */ | |
| PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""), | |
| buf, decpt - (int)buflen); | |
| /* and convert the resulting string back to a double */ | |
| errno = 0; | |
| rounded = _Py_dg_strtod(mybuf, NULL); | |
| if (errno == ERANGE && fabs(rounded) >= 1.) | |
| PyErr_SetString(PyExc_OverflowError, | |
| "rounded value too large to represent"); | |
| else | |
| result = PyFloat_FromDouble(rounded); | |
| /* done computing value; now clean up */ | |
| if (mybuf != shortbuf) | |
| PyMem_Free(mybuf); | |
| exit: | |
| _Py_dg_freedtoa(buf); | |
| return result; | |
| } | |
| #undef FIVE_POW_LIMIT | |
| #else /* PY_NO_SHORT_FLOAT_REPR */ | |
| /* fallback version, to be used when correctly rounded binary<->decimal | |
| conversions aren't available */ | |
| PyObject * | |
| _Py_double_round(double x, int ndigits) { | |
| double pow1, pow2, y, z; | |
| if (ndigits >= 0) { | |
| if (ndigits > 22) { | |
| /* pow1 and pow2 are each safe from overflow, but | |
| pow1*pow2 ~= pow(10.0, ndigits) might overflow */ | |
| pow1 = pow(10.0, (double)(ndigits-22)); | |
| pow2 = 1e22; | |
| } | |
| else { | |
| pow1 = pow(10.0, (double)ndigits); | |
| pow2 = 1.0; | |
| } | |
| y = (x*pow1)*pow2; | |
| /* if y overflows, then rounded value is exactly x */ | |
| if (!Py_IS_FINITE(y)) | |
| return PyFloat_FromDouble(x); | |
| } | |
| else { | |
| pow1 = pow(10.0, (double)-ndigits); | |
| pow2 = 1.0; /* unused; silences a gcc compiler warning */ | |
| y = x / pow1; | |
| } | |
| z = round(y); | |
| if (fabs(y-z) == 0.5) | |
| /* halfway between two integers; use round-away-from-zero */ | |
| z = y + copysign(0.5, y); | |
| if (ndigits >= 0) | |
| z = (z / pow2) / pow1; | |
| else | |
| z *= pow1; | |
| /* if computation resulted in overflow, raise OverflowError */ | |
| if (!Py_IS_FINITE(z)) { | |
| PyErr_SetString(PyExc_OverflowError, | |
| "overflow occurred during round"); | |
| return NULL; | |
| } | |
| return PyFloat_FromDouble(z); | |
| } | |
| #endif /* PY_NO_SHORT_FLOAT_REPR */ | |
| static PyObject * | |
| float_float(PyObject *v) | |
| { | |
| if (PyFloat_CheckExact(v)) | |
| Py_INCREF(v); | |
| else | |
| v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval); | |
| return v; | |
| } | |
| /* turn ASCII hex characters into integer values and vice versa */ | |
| static char | |
| char_from_hex(int x) | |
| { | |
| assert(0 <= x && x < 16); | |
| return "0123456789abcdef"[x]; | |
| } | |
| static int | |
| hex_from_char(char c) { | |
| int x; | |
| switch(c) { | |
| case '0': | |
| x = 0; | |
| break; | |
| case '1': | |
| x = 1; | |
| break; | |
| case '2': | |
| x = 2; | |
| break; | |
| case '3': | |
| x = 3; | |
| break; | |
| case '4': | |
| x = 4; | |
| break; | |
| case '5': | |
| x = 5; | |
| break; | |
| case '6': | |
| x = 6; | |
| break; | |
| case '7': | |
| x = 7; | |
| break; | |
| case '8': | |
| x = 8; | |
| break; | |
| case '9': | |
| x = 9; | |
| break; | |
| case 'a': | |
| case 'A': | |
| x = 10; | |
| break; | |
| case 'b': | |
| case 'B': | |
| x = 11; | |
| break; | |
| case 'c': | |
| case 'C': | |
| x = 12; | |
| break; | |
| case 'd': | |
| case 'D': | |
| x = 13; | |
| break; | |
| case 'e': | |
| case 'E': | |
| x = 14; | |
| break; | |
| case 'f': | |
| case 'F': | |
| x = 15; | |
| break; | |
| default: | |
| x = -1; | |
| break; | |
| } | |
| return x; | |
| } | |
| /* convert a float to a hexadecimal string */ | |
| /* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer | |
| of the form 4k+1. */ | |
| #define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4 | |
| static PyObject * | |
| float_hex(PyObject *v) | |
| { | |
| double x, m; | |
| int e, shift, i, si, esign; | |
| /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the | |
| trailing NUL byte. */ | |
| char s[(TOHEX_NBITS-1)/4+3]; | |
| CONVERT_TO_DOUBLE(v, x); | |
| if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) | |
| return float_str((PyFloatObject *)v); | |
| if (x == 0.0) { | |
| if (copysign(1.0, x) == -1.0) | |
| return PyString_FromString("-0x0.0p+0"); | |
| else | |
| return PyString_FromString("0x0.0p+0"); | |
| } | |
| m = frexp(fabs(x), &e); | |
| shift = 1 - MAX(DBL_MIN_EXP - e, 0); | |
| m = ldexp(m, shift); | |
| e -= shift; | |
| si = 0; | |
| s[si] = char_from_hex((int)m); | |
| si++; | |
| m -= (int)m; | |
| s[si] = '.'; | |
| si++; | |
| for (i=0; i < (TOHEX_NBITS-1)/4; i++) { | |
| m *= 16.0; | |
| s[si] = char_from_hex((int)m); | |
| si++; | |
| m -= (int)m; | |
| } | |
| s[si] = '\0'; | |
| if (e < 0) { | |
| esign = (int)'-'; | |
| e = -e; | |
| } | |
| else | |
| esign = (int)'+'; | |
| if (x < 0.0) | |
| return PyString_FromFormat("-0x%sp%c%d", s, esign, e); | |
| else | |
| return PyString_FromFormat("0x%sp%c%d", s, esign, e); | |
| } | |
| PyDoc_STRVAR(float_hex_doc, | |
| "float.hex() -> string\n\ | |
| \n\ | |
| Return a hexadecimal representation of a floating-point number.\n\ | |
| >>> (-0.1).hex()\n\ | |
| '-0x1.999999999999ap-4'\n\ | |
| >>> 3.14159.hex()\n\ | |
| '0x1.921f9f01b866ep+1'"); | |
| /* Case-insensitive locale-independent string match used for nan and inf | |
| detection. t should be lower-case and null-terminated. Return a nonzero | |
| result if the first strlen(t) characters of s match t and 0 otherwise. */ | |
| static int | |
| case_insensitive_match(const char *s, const char *t) | |
| { | |
| while(*t && Py_TOLOWER(*s) == *t) { | |
| s++; | |
| t++; | |
| } | |
| return *t ? 0 : 1; | |
| } | |
| /* Convert a hexadecimal string to a float. */ | |
| static PyObject * | |
| float_fromhex(PyObject *cls, PyObject *arg) | |
| { | |
| PyObject *result_as_float, *result; | |
| double x; | |
| long exp, top_exp, lsb, key_digit; | |
| char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end; | |
| int half_eps, digit, round_up, sign=1; | |
| Py_ssize_t length, ndigits, fdigits, i; | |
| /* | |
| * For the sake of simplicity and correctness, we impose an artificial | |
| * limit on ndigits, the total number of hex digits in the coefficient | |
| * The limit is chosen to ensure that, writing exp for the exponent, | |
| * | |
| * (1) if exp > LONG_MAX/2 then the value of the hex string is | |
| * guaranteed to overflow (provided it's nonzero) | |
| * | |
| * (2) if exp < LONG_MIN/2 then the value of the hex string is | |
| * guaranteed to underflow to 0. | |
| * | |
| * (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of | |
| * overflow in the calculation of exp and top_exp below. | |
| * | |
| * More specifically, ndigits is assumed to satisfy the following | |
| * inequalities: | |
| * | |
| * 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2 | |
| * 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP | |
| * | |
| * If either of these inequalities is not satisfied, a ValueError is | |
| * raised. Otherwise, write x for the value of the hex string, and | |
| * assume x is nonzero. Then | |
| * | |
| * 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits). | |
| * | |
| * Now if exp > LONG_MAX/2 then: | |
| * | |
| * exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP) | |
| * = DBL_MAX_EXP | |
| * | |
| * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C | |
| * double, so overflows. If exp < LONG_MIN/2, then | |
| * | |
| * exp + 4*ndigits <= LONG_MIN/2 - 1 + ( | |
| * DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2) | |
| * = DBL_MIN_EXP - DBL_MANT_DIG - 1 | |
| * | |
| * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0 | |
| * when converted to a C double. | |
| * | |
| * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both | |
| * exp+4*ndigits and exp-4*ndigits are within the range of a long. | |
| */ | |
| if (PyString_AsStringAndSize(arg, &s, &length)) | |
| return NULL; | |
| s_end = s + length; | |
| /******************** | |
| * Parse the string * | |
| ********************/ | |
| /* leading whitespace and optional sign */ | |
| while (Py_ISSPACE(*s)) | |
| s++; | |
| if (*s == '-') { | |
| s++; | |
| sign = -1; | |
| } | |
| else if (*s == '+') | |
| s++; | |
| /* infinities and nans */ | |
| if (*s == 'i' || *s == 'I') { | |
| if (!case_insensitive_match(s+1, "nf")) | |
| goto parse_error; | |
| s += 3; | |
| x = Py_HUGE_VAL; | |
| if (case_insensitive_match(s, "inity")) | |
| s += 5; | |
| goto finished; | |
| } | |
| if (*s == 'n' || *s == 'N') { | |
| if (!case_insensitive_match(s+1, "an")) | |
| goto parse_error; | |
| s += 3; | |
| x = Py_NAN; | |
| goto finished; | |
| } | |
| /* [0x] */ | |
| s_store = s; | |
| if (*s == '0') { | |
| s++; | |
| if (*s == 'x' || *s == 'X') | |
| s++; | |
| else | |
| s = s_store; | |
| } | |
| /* coefficient: <integer> [. <fraction>] */ | |
| coeff_start = s; | |
| while (hex_from_char(*s) >= 0) | |
| s++; | |
| s_store = s; | |
| if (*s == '.') { | |
| s++; | |
| while (hex_from_char(*s) >= 0) | |
| s++; | |
| coeff_end = s-1; | |
| } | |
| else | |
| coeff_end = s; | |
| /* ndigits = total # of hex digits; fdigits = # after point */ | |
| ndigits = coeff_end - coeff_start; | |
| fdigits = coeff_end - s_store; | |
| if (ndigits == 0) | |
| goto parse_error; | |
| if (ndigits > MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2, | |
| LONG_MAX/2 + 1 - DBL_MAX_EXP)/4) | |
| goto insane_length_error; | |
| /* [p <exponent>] */ | |
| if (*s == 'p' || *s == 'P') { | |
| s++; | |
| exp_start = s; | |
| if (*s == '-' || *s == '+') | |
| s++; | |
| if (!('0' <= *s && *s <= '9')) | |
| goto parse_error; | |
| s++; | |
| while ('0' <= *s && *s <= '9') | |
| s++; | |
| exp = strtol(exp_start, NULL, 10); | |
| } | |
| else | |
| exp = 0; | |
| /* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */ | |
| #define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \ | |
| coeff_end-(j) : \ | |
| coeff_end-1-(j))) | |
| /******************************************* | |
| * Compute rounded value of the hex string * | |
| *******************************************/ | |
| /* Discard leading zeros, and catch extreme overflow and underflow */ | |
| while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0) | |
| ndigits--; | |
| if (ndigits == 0 || exp < LONG_MIN/2) { | |
| x = 0.0; | |
| goto finished; | |
| } | |
| if (exp > LONG_MAX/2) | |
| goto overflow_error; | |
| /* Adjust exponent for fractional part. */ | |
| exp = exp - 4*((long)fdigits); | |
| /* top_exp = 1 more than exponent of most sig. bit of coefficient */ | |
| top_exp = exp + 4*((long)ndigits - 1); | |
| for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2) | |
| top_exp++; | |
| /* catch almost all nonextreme cases of overflow and underflow here */ | |
| if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) { | |
| x = 0.0; | |
| goto finished; | |
| } | |
| if (top_exp > DBL_MAX_EXP) | |
| goto overflow_error; | |
| /* lsb = exponent of least significant bit of the *rounded* value. | |
| This is top_exp - DBL_MANT_DIG unless result is subnormal. */ | |
| lsb = MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG; | |
| x = 0.0; | |
| if (exp >= lsb) { | |
| /* no rounding required */ | |
| for (i = ndigits-1; i >= 0; i--) | |
| x = 16.0*x + HEX_DIGIT(i); | |
| x = ldexp(x, (int)(exp)); | |
| goto finished; | |
| } | |
| /* rounding required. key_digit is the index of the hex digit | |
| containing the first bit to be rounded away. */ | |
| half_eps = 1 << (int)((lsb - exp - 1) % 4); | |
| key_digit = (lsb - exp - 1) / 4; | |
| for (i = ndigits-1; i > key_digit; i--) | |
| x = 16.0*x + HEX_DIGIT(i); | |
| digit = HEX_DIGIT(key_digit); | |
| x = 16.0*x + (double)(digit & (16-2*half_eps)); | |
| /* round-half-even: round up if bit lsb-1 is 1 and at least one of | |
| bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */ | |
| if ((digit & half_eps) != 0) { | |
| round_up = 0; | |
| if ((digit & (3*half_eps-1)) != 0 || | |
| (half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0)) | |
| round_up = 1; | |
| else | |
| for (i = key_digit-1; i >= 0; i--) | |
| if (HEX_DIGIT(i) != 0) { | |
| round_up = 1; | |
| break; | |
| } | |
| if (round_up == 1) { | |
| x += 2*half_eps; | |
| if (top_exp == DBL_MAX_EXP && | |
| x == ldexp((double)(2*half_eps), DBL_MANT_DIG)) | |
| /* overflow corner case: pre-rounded value < | |
| 2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */ | |
| goto overflow_error; | |
| } | |
| } | |
| x = ldexp(x, (int)(exp+4*key_digit)); | |
| finished: | |
| /* optional trailing whitespace leading to the end of the string */ | |
| while (Py_ISSPACE(*s)) | |
| s++; | |
| if (s != s_end) | |
| goto parse_error; | |
| result_as_float = Py_BuildValue("(d)", sign * x); | |
| if (result_as_float == NULL) | |
| return NULL; | |
| result = PyObject_CallObject(cls, result_as_float); | |
| Py_DECREF(result_as_float); | |
| return result; | |
| overflow_error: | |
| PyErr_SetString(PyExc_OverflowError, | |
| "hexadecimal value too large to represent as a float"); | |
| return NULL; | |
| parse_error: | |
| PyErr_SetString(PyExc_ValueError, | |
| "invalid hexadecimal floating-point string"); | |
| return NULL; | |
| insane_length_error: | |
| PyErr_SetString(PyExc_ValueError, | |
| "hexadecimal string too long to convert"); | |
| return NULL; | |
| } | |
| PyDoc_STRVAR(float_fromhex_doc, | |
| "float.fromhex(string) -> float\n\ | |
| \n\ | |
| Create a floating-point number from a hexadecimal string.\n\ | |
| >>> float.fromhex('0x1.ffffp10')\n\ | |
| 2047.984375\n\ | |
| >>> float.fromhex('-0x1p-1074')\n\ | |
| -4.9406564584124654e-324"); | |
| static PyObject * | |
| float_as_integer_ratio(PyObject *v, PyObject *unused) | |
| { | |
| double self; | |
| double float_part; | |
| int exponent; | |
| int i; | |
| PyObject *prev; | |
| PyObject *py_exponent = NULL; | |
| PyObject *numerator = NULL; | |
| PyObject *denominator = NULL; | |
| PyObject *result_pair = NULL; | |
| PyNumberMethods *long_methods = PyLong_Type.tp_as_number; | |
| #define INPLACE_UPDATE(obj, call) \ | |
| prev = obj; \ | |
| obj = call; \ | |
| Py_DECREF(prev); \ | |
| CONVERT_TO_DOUBLE(v, self); | |
| if (Py_IS_INFINITY(self)) { | |
| PyErr_SetString(PyExc_OverflowError, | |
| "Cannot pass infinity to float.as_integer_ratio."); | |
| return NULL; | |
| } | |
| #ifdef Py_NAN | |
| if (Py_IS_NAN(self)) { | |
| PyErr_SetString(PyExc_ValueError, | |
| "Cannot pass NaN to float.as_integer_ratio."); | |
| return NULL; | |
| } | |
| #endif | |
| PyFPE_START_PROTECT("as_integer_ratio", goto error); | |
| float_part = frexp(self, &exponent); /* self == float_part * 2**exponent exactly */ | |
| PyFPE_END_PROTECT(float_part); | |
| for (i=0; i<300 && float_part != floor(float_part) ; i++) { | |
| float_part *= 2.0; | |
| exponent--; | |
| } | |
| /* self == float_part * 2**exponent exactly and float_part is integral. | |
| If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part | |
| to be truncated by PyLong_FromDouble(). */ | |
| numerator = PyLong_FromDouble(float_part); | |
| if (numerator == NULL) goto error; | |
| /* fold in 2**exponent */ | |
| denominator = PyLong_FromLong(1); | |
| py_exponent = PyLong_FromLong(labs((long)exponent)); | |
| if (py_exponent == NULL) goto error; | |
| INPLACE_UPDATE(py_exponent, | |
| long_methods->nb_lshift(denominator, py_exponent)); | |
| if (py_exponent == NULL) goto error; | |
| if (exponent > 0) { | |
| INPLACE_UPDATE(numerator, | |
| long_methods->nb_multiply(numerator, py_exponent)); | |
| if (numerator == NULL) goto error; | |
| } | |
| else { | |
| Py_DECREF(denominator); | |
| denominator = py_exponent; | |
| py_exponent = NULL; | |
| } | |
| /* Returns ints instead of longs where possible */ | |
| INPLACE_UPDATE(numerator, PyNumber_Int(numerator)); | |
| if (numerator == NULL) goto error; | |
| INPLACE_UPDATE(denominator, PyNumber_Int(denominator)); | |
| if (denominator == NULL) goto error; | |
| result_pair = PyTuple_Pack(2, numerator, denominator); | |
| #undef INPLACE_UPDATE | |
| error: | |
| Py_XDECREF(py_exponent); | |
| Py_XDECREF(denominator); | |
| Py_XDECREF(numerator); | |
| return result_pair; | |
| } | |
| PyDoc_STRVAR(float_as_integer_ratio_doc, | |
| "float.as_integer_ratio() -> (int, int)\n" | |
| "\n" | |
| "Returns a pair of integers, whose ratio is exactly equal to the original\n" | |
| "float and with a positive denominator.\n" | |
| "Raises OverflowError on infinities and a ValueError on NaNs.\n" | |
| "\n" | |
| ">>> (10.0).as_integer_ratio()\n" | |
| "(10, 1)\n" | |
| ">>> (0.0).as_integer_ratio()\n" | |
| "(0, 1)\n" | |
| ">>> (-.25).as_integer_ratio()\n" | |
| "(-1, 4)"); | |
| static PyObject * | |
| float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); | |
| static PyObject * | |
| float_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | |
| { | |
| PyObject *x = Py_False; /* Integer zero */ | |
| static char *kwlist[] = {"x", 0}; | |
| if (type != &PyFloat_Type) | |
| return float_subtype_new(type, args, kwds); /* Wimp out */ | |
| if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x)) | |
| return NULL; | |
| /* If it's a string, but not a string subclass, use | |
| PyFloat_FromString. */ | |
| if (PyString_CheckExact(x)) | |
| return PyFloat_FromString(x, NULL); | |
| return PyNumber_Float(x); | |
| } | |
| /* Wimpy, slow approach to tp_new calls for subtypes of float: | |
| first create a regular float from whatever arguments we got, | |
| then allocate a subtype instance and initialize its ob_fval | |
| from the regular float. The regular float is then thrown away. | |
| */ | |
| static PyObject * | |
| float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | |
| { | |
| PyObject *tmp, *newobj; | |
| assert(PyType_IsSubtype(type, &PyFloat_Type)); | |
| tmp = float_new(&PyFloat_Type, args, kwds); | |
| if (tmp == NULL) | |
| return NULL; | |
| assert(PyFloat_CheckExact(tmp)); | |
| newobj = type->tp_alloc(type, 0); | |
| if (newobj == NULL) { | |
| Py_DECREF(tmp); | |
| return NULL; | |
| } | |
| ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval; | |
| Py_DECREF(tmp); | |
| return newobj; | |
| } | |
| static PyObject * | |
| float_getnewargs(PyFloatObject *v) | |
| { | |
| return Py_BuildValue("(d)", v->ob_fval); | |
| } | |
| /* this is for the benefit of the pack/unpack routines below */ | |
| typedef enum { | |
| unknown_format, ieee_big_endian_format, ieee_little_endian_format | |
| } float_format_type; | |
| static float_format_type double_format, float_format; | |
| static float_format_type detected_double_format, detected_float_format; | |
| static PyObject * | |
| float_getformat(PyTypeObject *v, PyObject* arg) | |
| { | |
| char* s; | |
| float_format_type r; | |
| if (!PyString_Check(arg)) { | |
| PyErr_Format(PyExc_TypeError, | |
| "__getformat__() argument must be string, not %.500s", | |
| Py_TYPE(arg)->tp_name); | |
| return NULL; | |
| } | |
| s = PyString_AS_STRING(arg); | |
| if (strcmp(s, "double") == 0) { | |
| r = double_format; | |
| } | |
| else if (strcmp(s, "float") == 0) { | |
| r = float_format; | |
| } | |
| else { | |
| PyErr_SetString(PyExc_ValueError, | |
| "__getformat__() argument 1 must be " | |
| "'double' or 'float'"); | |
| return NULL; | |
| } | |
| switch (r) { | |
| case unknown_format: | |
| return PyString_FromString("unknown"); | |
| case ieee_little_endian_format: | |
| return PyString_FromString("IEEE, little-endian"); | |
| case ieee_big_endian_format: | |
| return PyString_FromString("IEEE, big-endian"); | |
| default: | |
| Py_FatalError("insane float_format or double_format"); | |
| return NULL; | |
| } | |
| } | |
| PyDoc_STRVAR(float_getformat_doc, | |
| "float.__getformat__(typestr) -> string\n" | |
| "\n" | |
| "You probably don't want to use this function. It exists mainly to be\n" | |
| "used in Python's test suite.\n" | |
| "\n" | |
| "typestr must be 'double' or 'float'. This function returns whichever of\n" | |
| "'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n" | |
| "format of floating point numbers used by the C type named by typestr."); | |
| static PyObject * | |
| float_setformat(PyTypeObject *v, PyObject* args) | |
| { | |
| char* typestr; | |
| char* format; | |
| float_format_type f; | |
| float_format_type detected; | |
| float_format_type *p; | |
| if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format)) | |
| return NULL; | |
| if (strcmp(typestr, "double") == 0) { | |
| p = &double_format; | |
| detected = detected_double_format; | |
| } | |
| else if (strcmp(typestr, "float") == 0) { | |
| p = &float_format; | |
| detected = detected_float_format; | |
| } | |
| else { | |
| PyErr_SetString(PyExc_ValueError, | |
| "__setformat__() argument 1 must " | |
| "be 'double' or 'float'"); | |
| return NULL; | |
| } | |
| if (strcmp(format, "unknown") == 0) { | |
| f = unknown_format; | |
| } | |
| else if (strcmp(format, "IEEE, little-endian") == 0) { | |
| f = ieee_little_endian_format; | |
| } | |
| else if (strcmp(format, "IEEE, big-endian") == 0) { | |
| f = ieee_big_endian_format; | |
| } | |
| else { | |
| PyErr_SetString(PyExc_ValueError, | |
| "__setformat__() argument 2 must be " | |
| "'unknown', 'IEEE, little-endian' or " | |
| "'IEEE, big-endian'"); | |
| return NULL; | |
| } | |
| if (f != unknown_format && f != detected) { | |
| PyErr_Format(PyExc_ValueError, | |
| "can only set %s format to 'unknown' or the " | |
| "detected platform value", typestr); | |
| return NULL; | |
| } | |
| *p = f; | |
| Py_RETURN_NONE; | |
| } | |
| PyDoc_STRVAR(float_setformat_doc, | |
| "float.__setformat__(typestr, fmt) -> None\n" | |
| "\n" | |
| "You probably don't want to use this function. It exists mainly to be\n" | |
| "used in Python's test suite.\n" | |
| "\n" | |
| "typestr must be 'double' or 'float'. fmt must be one of 'unknown',\n" | |
| "'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n" | |
| "one of the latter two if it appears to match the underlying C reality.\n" | |
| "\n" | |
| "Overrides the automatic determination of C-level floating point type.\n" | |
| "This affects how floats are converted to and from binary strings."); | |
| static PyObject * | |
| float_getzero(PyObject *v, void *closure) | |
| { | |
| return PyFloat_FromDouble(0.0); | |
| } | |
| static PyObject * | |
| float__format__(PyObject *self, PyObject *args) | |
| { | |
| PyObject *format_spec; | |
| if (!PyArg_ParseTuple(args, "O:__format__", &format_spec)) | |
| return NULL; | |
| if (PyBytes_Check(format_spec)) | |
| return _PyFloat_FormatAdvanced(self, | |
| PyBytes_AS_STRING(format_spec), | |
| PyBytes_GET_SIZE(format_spec)); | |
| if (PyUnicode_Check(format_spec)) { | |
| /* Convert format_spec to a str */ | |
| PyObject *result; | |
| PyObject *str_spec = PyObject_Str(format_spec); | |
| if (str_spec == NULL) | |
| return NULL; | |
| result = _PyFloat_FormatAdvanced(self, | |
| PyBytes_AS_STRING(str_spec), | |
| PyBytes_GET_SIZE(str_spec)); | |
| Py_DECREF(str_spec); | |
| return result; | |
| } | |
| PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode"); | |
| return NULL; | |
| } | |
| PyDoc_STRVAR(float__format__doc, | |
| "float.__format__(format_spec) -> string\n" | |
| "\n" | |
| "Formats the float according to format_spec."); | |
| static PyMethodDef float_methods[] = { | |
| {"conjugate", (PyCFunction)float_float, METH_NOARGS, | |
| "Returns self, the complex conjugate of any float."}, | |
| {"__trunc__", (PyCFunction)float_trunc, METH_NOARGS, | |
| "Returns the Integral closest to x between 0 and x."}, | |
| {"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS, | |
| float_as_integer_ratio_doc}, | |
| {"fromhex", (PyCFunction)float_fromhex, | |
| METH_O|METH_CLASS, float_fromhex_doc}, | |
| {"hex", (PyCFunction)float_hex, | |
| METH_NOARGS, float_hex_doc}, | |
| {"is_integer", (PyCFunction)float_is_integer, METH_NOARGS, | |
| "Returns True if the float is an integer."}, | |
| #if 0 | |
| {"is_inf", (PyCFunction)float_is_inf, METH_NOARGS, | |
| "Returns True if the float is positive or negative infinite."}, | |
| {"is_finite", (PyCFunction)float_is_finite, METH_NOARGS, | |
| "Returns True if the float is finite, neither infinite nor NaN."}, | |
| {"is_nan", (PyCFunction)float_is_nan, METH_NOARGS, | |
| "Returns True if the float is not a number (NaN)."}, | |
| #endif | |
| {"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS}, | |
| {"__getformat__", (PyCFunction)float_getformat, | |
| METH_O|METH_CLASS, float_getformat_doc}, | |
| {"__setformat__", (PyCFunction)float_setformat, | |
| METH_VARARGS|METH_CLASS, float_setformat_doc}, | |
| {"__format__", (PyCFunction)float__format__, | |
| METH_VARARGS, float__format__doc}, | |
| {NULL, NULL} /* sentinel */ | |
| }; | |
| static PyGetSetDef float_getset[] = { | |
| {"real", | |
| (getter)float_float, (setter)NULL, | |
| "the real part of a complex number", | |
| NULL}, | |
| {"imag", | |
| (getter)float_getzero, (setter)NULL, | |
| "the imaginary part of a complex number", | |
| NULL}, | |
| {NULL} /* Sentinel */ | |
| }; | |
| PyDoc_STRVAR(float_doc, | |
| "float(x) -> floating point number\n\ | |
| \n\ | |
| Convert a string or number to a floating point number, if possible."); | |
| static PyNumberMethods float_as_number = { | |
| float_add, /*nb_add*/ | |
| float_sub, /*nb_subtract*/ | |
| float_mul, /*nb_multiply*/ | |
| float_classic_div, /*nb_divide*/ | |
| float_rem, /*nb_remainder*/ | |
| float_divmod, /*nb_divmod*/ | |
| float_pow, /*nb_power*/ | |
| (unaryfunc)float_neg, /*nb_negative*/ | |
| (unaryfunc)float_float, /*nb_positive*/ | |
| (unaryfunc)float_abs, /*nb_absolute*/ | |
| (inquiry)float_nonzero, /*nb_nonzero*/ | |
| 0, /*nb_invert*/ | |
| 0, /*nb_lshift*/ | |
| 0, /*nb_rshift*/ | |
| 0, /*nb_and*/ | |
| 0, /*nb_xor*/ | |
| 0, /*nb_or*/ | |
| float_coerce, /*nb_coerce*/ | |
| float_trunc, /*nb_int*/ | |
| float_long, /*nb_long*/ | |
| float_float, /*nb_float*/ | |
| 0, /* nb_oct */ | |
| 0, /* nb_hex */ | |
| 0, /* nb_inplace_add */ | |
| 0, /* nb_inplace_subtract */ | |
| 0, /* nb_inplace_multiply */ | |
| 0, /* nb_inplace_divide */ | |
| 0, /* nb_inplace_remainder */ | |
| 0, /* nb_inplace_power */ | |
| 0, /* nb_inplace_lshift */ | |
| 0, /* nb_inplace_rshift */ | |
| 0, /* nb_inplace_and */ | |
| 0, /* nb_inplace_xor */ | |
| 0, /* nb_inplace_or */ | |
| float_floor_div, /* nb_floor_divide */ | |
| float_div, /* nb_true_divide */ | |
| 0, /* nb_inplace_floor_divide */ | |
| 0, /* nb_inplace_true_divide */ | |
| }; | |
| PyTypeObject PyFloat_Type = { | |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
| "float", | |
| sizeof(PyFloatObject), | |
| 0, | |
| (destructor)float_dealloc, /* tp_dealloc */ | |
| (printfunc)float_print, /* tp_print */ | |
| 0, /* tp_getattr */ | |
| 0, /* tp_setattr */ | |
| 0, /* tp_compare */ | |
| (reprfunc)float_repr, /* tp_repr */ | |
| &float_as_number, /* tp_as_number */ | |
| 0, /* tp_as_sequence */ | |
| 0, /* tp_as_mapping */ | |
| (hashfunc)float_hash, /* tp_hash */ | |
| 0, /* tp_call */ | |
| (reprfunc)float_str, /* tp_str */ | |
| PyObject_GenericGetAttr, /* tp_getattro */ | |
| 0, /* tp_setattro */ | |
| 0, /* tp_as_buffer */ | |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | | |
| Py_TPFLAGS_BASETYPE, /* tp_flags */ | |
| float_doc, /* tp_doc */ | |
| 0, /* tp_traverse */ | |
| 0, /* tp_clear */ | |
| float_richcompare, /* tp_richcompare */ | |
| 0, /* tp_weaklistoffset */ | |
| 0, /* tp_iter */ | |
| 0, /* tp_iternext */ | |
| float_methods, /* tp_methods */ | |
| 0, /* tp_members */ | |
| float_getset, /* tp_getset */ | |
| 0, /* tp_base */ | |
| 0, /* tp_dict */ | |
| 0, /* tp_descr_get */ | |
| 0, /* tp_descr_set */ | |
| 0, /* tp_dictoffset */ | |
| 0, /* tp_init */ | |
| 0, /* tp_alloc */ | |
| float_new, /* tp_new */ | |
| }; | |
| void | |
| _PyFloat_Init(void) | |
| { | |
| /* We attempt to determine if this machine is using IEEE | |
| floating point formats by peering at the bits of some | |
| carefully chosen values. If it looks like we are on an | |
| IEEE platform, the float packing/unpacking routines can | |
| just copy bits, if not they resort to arithmetic & shifts | |
| and masks. The shifts & masks approach works on all finite | |
| values, but what happens to infinities, NaNs and signed | |
| zeroes on packing is an accident, and attempting to unpack | |
| a NaN or an infinity will raise an exception. | |
| Note that if we're on some whacked-out platform which uses | |
| IEEE formats but isn't strictly little-endian or big- | |
| endian, we will fall back to the portable shifts & masks | |
| method. */ | |
| #if SIZEOF_DOUBLE == 8 | |
| { | |
| double x = 9006104071832581.0; | |
| if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0) | |
| detected_double_format = ieee_big_endian_format; | |
| else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0) | |
| detected_double_format = ieee_little_endian_format; | |
| else | |
| detected_double_format = unknown_format; | |
| } | |
| #else | |
| detected_double_format = unknown_format; | |
| #endif | |
| #if SIZEOF_FLOAT == 4 | |
| { | |
| float y = 16711938.0; | |
| if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0) | |
| detected_float_format = ieee_big_endian_format; | |
| else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0) | |
| detected_float_format = ieee_little_endian_format; | |
| else | |
| detected_float_format = unknown_format; | |
| } | |
| #else | |
| detected_float_format = unknown_format; | |
| #endif | |
| double_format = detected_double_format; | |
| float_format = detected_float_format; | |
| /* Init float info */ | |
| if (FloatInfoType.tp_name == 0) | |
| PyStructSequence_InitType(&FloatInfoType, &floatinfo_desc); | |
| } | |
| int | |
| PyFloat_ClearFreeList(void) | |
| { | |
| PyFloatObject *p; | |
| PyFloatBlock *list, *next; | |
| int i; | |
| int u; /* remaining unfreed ints per block */ | |
| int freelist_size = 0; | |
| list = block_list; | |
| block_list = NULL; | |
| free_list = NULL; | |
| while (list != NULL) { | |
| u = 0; | |
| for (i = 0, p = &list->objects[0]; | |
| i < N_FLOATOBJECTS; | |
| i++, p++) { | |
| if (PyFloat_CheckExact(p) && Py_REFCNT(p) != 0) | |
| u++; | |
| } | |
| next = list->next; | |
| if (u) { | |
| list->next = block_list; | |
| block_list = list; | |
| for (i = 0, p = &list->objects[0]; | |
| i < N_FLOATOBJECTS; | |
| i++, p++) { | |
| if (!PyFloat_CheckExact(p) || | |
| Py_REFCNT(p) == 0) { | |
| Py_TYPE(p) = (struct _typeobject *) | |
| free_list; | |
| free_list = p; | |
| } | |
| } | |
| } | |
| else { | |
| PyMem_FREE(list); | |
| } | |
| freelist_size += u; | |
| list = next; | |
| } | |
| return freelist_size; | |
| } | |
| void | |
| PyFloat_Fini(void) | |
| { | |
| PyFloatObject *p; | |
| PyFloatBlock *list; | |
| int i; | |
| int u; /* total unfreed floats per block */ | |
| u = PyFloat_ClearFreeList(); | |
| if (!Py_VerboseFlag) | |
| return; | |
| fprintf(stderr, "# cleanup floats"); | |
| if (!u) { | |
| fprintf(stderr, "\n"); | |
| } | |
| else { | |
| fprintf(stderr, | |
| ": %d unfreed float%s\n", | |
| u, u == 1 ? "" : "s"); | |
| } | |
| if (Py_VerboseFlag > 1) { | |
| list = block_list; | |
| while (list != NULL) { | |
| for (i = 0, p = &list->objects[0]; | |
| i < N_FLOATOBJECTS; | |
| i++, p++) { | |
| if (PyFloat_CheckExact(p) && | |
| Py_REFCNT(p) != 0) { | |
| char *buf = PyOS_double_to_string( | |
| PyFloat_AS_DOUBLE(p), 'r', | |
| 0, 0, NULL); | |
| if (buf) { | |
| /* XXX(twouters) cast | |
| refcount to long | |
| until %zd is | |
| universally | |
| available | |
| */ | |
| fprintf(stderr, | |
| "# <float at %p, refcnt=%ld, val=%s>\n", | |
| p, (long)Py_REFCNT(p), buf); | |
| PyMem_Free(buf); | |
| } | |
| } | |
| } | |
| list = list->next; | |
| } | |
| } | |
| } | |
| /*---------------------------------------------------------------------------- | |
| * _PyFloat_{Pack,Unpack}{4,8}. See floatobject.h. | |
| */ | |
| int | |
| _PyFloat_Pack4(double x, unsigned char *p, int le) | |
| { | |
| if (float_format == unknown_format) { | |
| unsigned char sign; | |
| int e; | |
| double f; | |
| unsigned int fbits; | |
| int incr = 1; | |
| if (le) { | |
| p += 3; | |
| incr = -1; | |
| } | |
| if (x < 0) { | |
| sign = 1; | |
| x = -x; | |
| } | |
| else | |
| sign = 0; | |
| f = frexp(x, &e); | |
| /* Normalize f to be in the range [1.0, 2.0) */ | |
| if (0.5 <= f && f < 1.0) { | |
| f *= 2.0; | |
| e--; | |
| } | |
| else if (f == 0.0) | |
| e = 0; | |
| else { | |
| PyErr_SetString(PyExc_SystemError, | |
| "frexp() result out of range"); | |
| return -1; | |
| } | |
| if (e >= 128) | |
| goto Overflow; | |
| else if (e < -126) { | |
| /* Gradual underflow */ | |
| f = ldexp(f, 126 + e); | |
| e = 0; | |
| } | |
| else if (!(e == 0 && f == 0.0)) { | |
| e += 127; | |
| f -= 1.0; /* Get rid of leading 1 */ | |
| } | |
| f *= 8388608.0; /* 2**23 */ | |
| fbits = (unsigned int)(f + 0.5); /* Round */ | |
| assert(fbits <= 8388608); | |
| if (fbits >> 23) { | |
| /* The carry propagated out of a string of 23 1 bits. */ | |
| fbits = 0; | |
| ++e; | |
| if (e >= 255) | |
| goto Overflow; | |
| } | |
| /* First byte */ | |
| *p = (sign << 7) | (e >> 1); | |
| p += incr; | |
| /* Second byte */ | |
| *p = (char) (((e & 1) << 7) | (fbits >> 16)); | |
| p += incr; | |
| /* Third byte */ | |
| *p = (fbits >> 8) & 0xFF; | |
| p += incr; | |
| /* Fourth byte */ | |
| *p = fbits & 0xFF; | |
| /* Done */ | |
| return 0; | |
| } | |
| else { | |
| float y = (float)x; | |
| const char *s = (char*)&y; | |
| int i, incr = 1; | |
| if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x)) | |
| goto Overflow; | |
| if ((float_format == ieee_little_endian_format && !le) | |
| || (float_format == ieee_big_endian_format && le)) { | |
| p += 3; | |
| incr = -1; | |
| } | |
| for (i = 0; i < 4; i++) { | |
| *p = *s++; | |
| p += incr; | |
| } | |
| return 0; | |
| } | |
| Overflow: | |
| PyErr_SetString(PyExc_OverflowError, | |
| "float too large to pack with f format"); | |
| return -1; | |
| } | |
| int | |
| _PyFloat_Pack8(double x, unsigned char *p, int le) | |
| { | |
| if (double_format == unknown_format) { | |
| unsigned char sign; | |
| int e; | |
| double f; | |
| unsigned int fhi, flo; | |
| int incr = 1; | |
| if (le) { | |
| p += 7; | |
| incr = -1; | |
| } | |
| if (x < 0) { | |
| sign = 1; | |
| x = -x; | |
| } | |
| else | |
| sign = 0; | |
| f = frexp(x, &e); | |
| /* Normalize f to be in the range [1.0, 2.0) */ | |
| if (0.5 <= f && f < 1.0) { | |
| f *= 2.0; | |
| e--; | |
| } | |
| else if (f == 0.0) | |
| e = 0; | |
| else { | |
| PyErr_SetString(PyExc_SystemError, | |
| "frexp() result out of range"); | |
| return -1; | |
| } | |
| if (e >= 1024) | |
| goto Overflow; | |
| else if (e < -1022) { | |
| /* Gradual underflow */ | |
| f = ldexp(f, 1022 + e); | |
| e = 0; | |
| } | |
| else if (!(e == 0 && f == 0.0)) { | |
| e += 1023; | |
| f -= 1.0; /* Get rid of leading 1 */ | |
| } | |
| /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */ | |
| f *= 268435456.0; /* 2**28 */ | |
| fhi = (unsigned int)f; /* Truncate */ | |
| assert(fhi < 268435456); | |
| f -= (double)fhi; | |
| f *= 16777216.0; /* 2**24 */ | |
| flo = (unsigned int)(f + 0.5); /* Round */ | |
| assert(flo <= 16777216); | |
| if (flo >> 24) { | |
| /* The carry propagated out of a string of 24 1 bits. */ | |
| flo = 0; | |
| ++fhi; | |
| if (fhi >> 28) { | |
| /* And it also progagated out of the next 28 bits. */ | |
| fhi = 0; | |
| ++e; | |
| if (e >= 2047) | |
| goto Overflow; | |
| } | |
| } | |
| /* First byte */ | |
| *p = (sign << 7) | (e >> 4); | |
| p += incr; | |
| /* Second byte */ | |
| *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24)); | |
| p += incr; | |
| /* Third byte */ | |
| *p = (fhi >> 16) & 0xFF; | |
| p += incr; | |
| /* Fourth byte */ | |
| *p = (fhi >> 8) & 0xFF; | |
| p += incr; | |
| /* Fifth byte */ | |
| *p = fhi & 0xFF; | |
| p += incr; | |
| /* Sixth byte */ | |
| *p = (flo >> 16) & 0xFF; | |
| p += incr; | |
| /* Seventh byte */ | |
| *p = (flo >> 8) & 0xFF; | |
| p += incr; | |
| /* Eighth byte */ | |
| *p = flo & 0xFF; | |
| /* p += incr; Unneeded (for now) */ | |
| /* Done */ | |
| return 0; | |
| Overflow: | |
| PyErr_SetString(PyExc_OverflowError, | |
| "float too large to pack with d format"); | |
| return -1; | |
| } | |
| else { | |
| const char *s = (char*)&x; | |
| int i, incr = 1; | |
| if ((double_format == ieee_little_endian_format && !le) | |
| || (double_format == ieee_big_endian_format && le)) { | |
| p += 7; | |
| incr = -1; | |
| } | |
| for (i = 0; i < 8; i++) { | |
| *p = *s++; | |
| p += incr; | |
| } | |
| return 0; | |
| } | |
| } | |
| double | |
| _PyFloat_Unpack4(const unsigned char *p, int le) | |
| { | |
| if (float_format == unknown_format) { | |
| unsigned char sign; | |
| int e; | |
| unsigned int f; | |
| double x; | |
| int incr = 1; | |
| if (le) { | |
| p += 3; | |
| incr = -1; | |
| } | |
| /* First byte */ | |
| sign = (*p >> 7) & 1; | |
| e = (*p & 0x7F) << 1; | |
| p += incr; | |
| /* Second byte */ | |
| e |= (*p >> 7) & 1; | |
| f = (*p & 0x7F) << 16; | |
| p += incr; | |
| if (e == 255) { | |
| PyErr_SetString( | |
| PyExc_ValueError, | |
| "can't unpack IEEE 754 special value " | |
| "on non-IEEE platform"); | |
| return -1; | |
| } | |
| /* Third byte */ | |
| f |= *p << 8; | |
| p += incr; | |
| /* Fourth byte */ | |
| f |= *p; | |
| x = (double)f / 8388608.0; | |
| /* XXX This sadly ignores Inf/NaN issues */ | |
| if (e == 0) | |
| e = -126; | |
| else { | |
| x += 1.0; | |
| e -= 127; | |
| } | |
| x = ldexp(x, e); | |
| if (sign) | |
| x = -x; | |
| return x; | |
| } | |
| else { | |
| float x; | |
| if ((float_format == ieee_little_endian_format && !le) | |
| || (float_format == ieee_big_endian_format && le)) { | |
| char buf[4]; | |
| char *d = &buf[3]; | |
| int i; | |
| for (i = 0; i < 4; i++) { | |
| *d-- = *p++; | |
| } | |
| memcpy(&x, buf, 4); | |
| } | |
| else { | |
| memcpy(&x, p, 4); | |
| } | |
| return x; | |
| } | |
| } | |
| double | |
| _PyFloat_Unpack8(const unsigned char *p, int le) | |
| { | |
| if (double_format == unknown_format) { | |
| unsigned char sign; | |
| int e; | |
| unsigned int fhi, flo; | |
| double x; | |
| int incr = 1; | |
| if (le) { | |
| p += 7; | |
| incr = -1; | |
| } | |
| /* First byte */ | |
| sign = (*p >> 7) & 1; | |
| e = (*p & 0x7F) << 4; | |
| p += incr; | |
| /* Second byte */ | |
| e |= (*p >> 4) & 0xF; | |
| fhi = (*p & 0xF) << 24; | |
| p += incr; | |
| if (e == 2047) { | |
| PyErr_SetString( | |
| PyExc_ValueError, | |
| "can't unpack IEEE 754 special value " | |
| "on non-IEEE platform"); | |
| return -1.0; | |
| } | |
| /* Third byte */ | |
| fhi |= *p << 16; | |
| p += incr; | |
| /* Fourth byte */ | |
| fhi |= *p << 8; | |
| p += incr; | |
| /* Fifth byte */ | |
| fhi |= *p; | |
| p += incr; | |
| /* Sixth byte */ | |
| flo = *p << 16; | |
| p += incr; | |
| /* Seventh byte */ | |
| flo |= *p << 8; | |
| p += incr; | |
| /* Eighth byte */ | |
| flo |= *p; | |
| x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */ | |
| x /= 268435456.0; /* 2**28 */ | |
| if (e == 0) | |
| e = -1022; | |
| else { | |
| x += 1.0; | |
| e -= 1023; | |
| } | |
| x = ldexp(x, e); | |
| if (sign) | |
| x = -x; | |
| return x; | |
| } | |
| else { | |
| double x; | |
| if ((double_format == ieee_little_endian_format && !le) | |
| || (double_format == ieee_big_endian_format && le)) { | |
| char buf[8]; | |
| char *d = &buf[7]; | |
| int i; | |
| for (i = 0; i < 8; i++) { | |
| *d-- = *p++; | |
| } | |
| memcpy(&x, buf, 8); | |
| } | |
| else { | |
| memcpy(&x, p, 8); | |
| } | |
| return x; | |
| } | |
| } |