| /* adler32.c -- compute the Adler-32 checksum of a data stream | |
| * Copyright (C) 1995-2004 Mark Adler | |
| * For conditions of distribution and use, see copyright notice in zlib.h | |
| */ | |
| /* @(#) $Id$ */ | |
| #define ZLIB_INTERNAL | |
| #include "zlib.h" | |
| #define BASE 65521UL /* largest prime smaller than 65536 */ | |
| #define NMAX 5552 | |
| /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ | |
| #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} | |
| #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); | |
| #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); | |
| #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); | |
| #define DO16(buf) DO8(buf,0); DO8(buf,8); | |
| /* use NO_DIVIDE if your processor does not do division in hardware */ | |
| #ifdef NO_DIVIDE | |
| # define MOD(a) \ | |
| do { \ | |
| if (a >= (BASE << 16)) a -= (BASE << 16); \ | |
| if (a >= (BASE << 15)) a -= (BASE << 15); \ | |
| if (a >= (BASE << 14)) a -= (BASE << 14); \ | |
| if (a >= (BASE << 13)) a -= (BASE << 13); \ | |
| if (a >= (BASE << 12)) a -= (BASE << 12); \ | |
| if (a >= (BASE << 11)) a -= (BASE << 11); \ | |
| if (a >= (BASE << 10)) a -= (BASE << 10); \ | |
| if (a >= (BASE << 9)) a -= (BASE << 9); \ | |
| if (a >= (BASE << 8)) a -= (BASE << 8); \ | |
| if (a >= (BASE << 7)) a -= (BASE << 7); \ | |
| if (a >= (BASE << 6)) a -= (BASE << 6); \ | |
| if (a >= (BASE << 5)) a -= (BASE << 5); \ | |
| if (a >= (BASE << 4)) a -= (BASE << 4); \ | |
| if (a >= (BASE << 3)) a -= (BASE << 3); \ | |
| if (a >= (BASE << 2)) a -= (BASE << 2); \ | |
| if (a >= (BASE << 1)) a -= (BASE << 1); \ | |
| if (a >= BASE) a -= BASE; \ | |
| } while (0) | |
| # define MOD4(a) \ | |
| do { \ | |
| if (a >= (BASE << 4)) a -= (BASE << 4); \ | |
| if (a >= (BASE << 3)) a -= (BASE << 3); \ | |
| if (a >= (BASE << 2)) a -= (BASE << 2); \ | |
| if (a >= (BASE << 1)) a -= (BASE << 1); \ | |
| if (a >= BASE) a -= BASE; \ | |
| } while (0) | |
| #else | |
| # define MOD(a) a %= BASE | |
| # define MOD4(a) a %= BASE | |
| #endif | |
| /* ========================================================================= */ | |
| uLong ZEXPORT adler32(adler, buf, len) | |
| uLong adler; | |
| const Bytef *buf; | |
| uInt len; | |
| { | |
| unsigned long sum2; | |
| unsigned n; | |
| /* split Adler-32 into component sums */ | |
| sum2 = (adler >> 16) & 0xffff; | |
| adler &= 0xffff; | |
| /* in case user likes doing a byte at a time, keep it fast */ | |
| if (len == 1) { | |
| adler += buf[0]; | |
| if (adler >= BASE) | |
| adler -= BASE; | |
| sum2 += adler; | |
| if (sum2 >= BASE) | |
| sum2 -= BASE; | |
| return adler | (sum2 << 16); | |
| } | |
| /* initial Adler-32 value (deferred check for len == 1 speed) */ | |
| if (buf == Z_NULL) | |
| return 1L; | |
| /* in case short lengths are provided, keep it somewhat fast */ | |
| if (len < 16) { | |
| while (len--) { | |
| adler += *buf++; | |
| sum2 += adler; | |
| } | |
| if (adler >= BASE) | |
| adler -= BASE; | |
| MOD4(sum2); /* only added so many BASE's */ | |
| return adler | (sum2 << 16); | |
| } | |
| /* do length NMAX blocks -- requires just one modulo operation */ | |
| while (len >= NMAX) { | |
| len -= NMAX; | |
| n = NMAX / 16; /* NMAX is divisible by 16 */ | |
| do { | |
| DO16(buf); /* 16 sums unrolled */ | |
| buf += 16; | |
| } while (--n); | |
| MOD(adler); | |
| MOD(sum2); | |
| } | |
| /* do remaining bytes (less than NMAX, still just one modulo) */ | |
| if (len) { /* avoid modulos if none remaining */ | |
| while (len >= 16) { | |
| len -= 16; | |
| DO16(buf); | |
| buf += 16; | |
| } | |
| while (len--) { | |
| adler += *buf++; | |
| sum2 += adler; | |
| } | |
| MOD(adler); | |
| MOD(sum2); | |
| } | |
| /* return recombined sums */ | |
| return adler | (sum2 << 16); | |
| } | |
| /* ========================================================================= */ | |
| uLong ZEXPORT adler32_combine(adler1, adler2, len2) | |
| uLong adler1; | |
| uLong adler2; | |
| z_off_t len2; | |
| { | |
| unsigned long sum1; | |
| unsigned long sum2; | |
| unsigned rem; | |
| /* the derivation of this formula is left as an exercise for the reader */ | |
| rem = (unsigned)(len2 % BASE); | |
| sum1 = adler1 & 0xffff; | |
| sum2 = rem * sum1; | |
| MOD(sum2); | |
| sum1 += (adler2 & 0xffff) + BASE - 1; | |
| sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; | |
| if (sum1 > BASE) sum1 -= BASE; | |
| if (sum1 > BASE) sum1 -= BASE; | |
| if (sum2 > (BASE << 1)) sum2 -= (BASE << 1); | |
| if (sum2 > BASE) sum2 -= BASE; | |
| return sum1 | (sum2 << 16); | |
| } |