| /* Thread module */ | |
| /* Interface to Sjoerd's portable C thread library */ | |
| #include "Python.h" | |
| #include "structmember.h" /* offsetof */ | |
| #ifndef WITH_THREAD | |
| #error "Error! The rest of Python is not compiled with thread support." | |
| #error "Rerun configure, adding a --with-threads option." | |
| #error "Then run `make clean' followed by `make'." | |
| #endif | |
| #include "pythread.h" | |
| static PyObject *ThreadError; | |
| static PyObject *str_dict; | |
| static long nb_threads = 0; | |
| /* Lock objects */ | |
| typedef struct { | |
| PyObject_HEAD | |
| PyThread_type_lock lock_lock; | |
| PyObject *in_weakreflist; | |
| } lockobject; | |
| static void | |
| lock_dealloc(lockobject *self) | |
| { | |
| if (self->in_weakreflist != NULL) | |
| PyObject_ClearWeakRefs((PyObject *) self); | |
| if (self->lock_lock != NULL) { | |
| /* Unlock the lock so it's safe to free it */ | |
| PyThread_acquire_lock(self->lock_lock, 0); | |
| PyThread_release_lock(self->lock_lock); | |
| PyThread_free_lock(self->lock_lock); | |
| } | |
| PyObject_Del(self); | |
| } | |
| static PyObject * | |
| lock_PyThread_acquire_lock(lockobject *self, PyObject *args) | |
| { | |
| int i = 1; | |
| if (!PyArg_ParseTuple(args, "|i:acquire", &i)) | |
| return NULL; | |
| Py_BEGIN_ALLOW_THREADS | |
| i = PyThread_acquire_lock(self->lock_lock, i); | |
| Py_END_ALLOW_THREADS | |
| return PyBool_FromLong((long)i); | |
| } | |
| PyDoc_STRVAR(acquire_doc, | |
| "acquire([wait]) -> None or bool\n\ | |
| (acquire_lock() is an obsolete synonym)\n\ | |
| \n\ | |
| Lock the lock. Without argument, this blocks if the lock is already\n\ | |
| locked (even by the same thread), waiting for another thread to release\n\ | |
| the lock, and return None once the lock is acquired.\n\ | |
| With an argument, this will only block if the argument is true,\n\ | |
| and the return value reflects whether the lock is acquired.\n\ | |
| The blocking operation is not interruptible."); | |
| static PyObject * | |
| lock_PyThread_release_lock(lockobject *self) | |
| { | |
| /* Sanity check: the lock must be locked */ | |
| if (PyThread_acquire_lock(self->lock_lock, 0)) { | |
| PyThread_release_lock(self->lock_lock); | |
| PyErr_SetString(ThreadError, "release unlocked lock"); | |
| return NULL; | |
| } | |
| PyThread_release_lock(self->lock_lock); | |
| Py_INCREF(Py_None); | |
| return Py_None; | |
| } | |
| PyDoc_STRVAR(release_doc, | |
| "release()\n\ | |
| (release_lock() is an obsolete synonym)\n\ | |
| \n\ | |
| Release the lock, allowing another thread that is blocked waiting for\n\ | |
| the lock to acquire the lock. The lock must be in the locked state,\n\ | |
| but it needn't be locked by the same thread that unlocks it."); | |
| static PyObject * | |
| lock_locked_lock(lockobject *self) | |
| { | |
| if (PyThread_acquire_lock(self->lock_lock, 0)) { | |
| PyThread_release_lock(self->lock_lock); | |
| return PyBool_FromLong(0L); | |
| } | |
| return PyBool_FromLong(1L); | |
| } | |
| PyDoc_STRVAR(locked_doc, | |
| "locked() -> bool\n\ | |
| (locked_lock() is an obsolete synonym)\n\ | |
| \n\ | |
| Return whether the lock is in the locked state."); | |
| static PyMethodDef lock_methods[] = { | |
| {"acquire_lock", (PyCFunction)lock_PyThread_acquire_lock, | |
| METH_VARARGS, acquire_doc}, | |
| {"acquire", (PyCFunction)lock_PyThread_acquire_lock, | |
| METH_VARARGS, acquire_doc}, | |
| {"release_lock", (PyCFunction)lock_PyThread_release_lock, | |
| METH_NOARGS, release_doc}, | |
| {"release", (PyCFunction)lock_PyThread_release_lock, | |
| METH_NOARGS, release_doc}, | |
| {"locked_lock", (PyCFunction)lock_locked_lock, | |
| METH_NOARGS, locked_doc}, | |
| {"locked", (PyCFunction)lock_locked_lock, | |
| METH_NOARGS, locked_doc}, | |
| {"__enter__", (PyCFunction)lock_PyThread_acquire_lock, | |
| METH_VARARGS, acquire_doc}, | |
| {"__exit__", (PyCFunction)lock_PyThread_release_lock, | |
| METH_VARARGS, release_doc}, | |
| {NULL} /* sentinel */ | |
| }; | |
| static PyTypeObject Locktype = { | |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
| "thread.lock", /*tp_name*/ | |
| sizeof(lockobject), /*tp_size*/ | |
| 0, /*tp_itemsize*/ | |
| /* methods */ | |
| (destructor)lock_dealloc, /*tp_dealloc*/ | |
| 0, /*tp_print*/ | |
| 0, /*tp_getattr*/ | |
| 0, /*tp_setattr*/ | |
| 0, /*tp_compare*/ | |
| 0, /*tp_repr*/ | |
| 0, /* tp_as_number */ | |
| 0, /* tp_as_sequence */ | |
| 0, /* tp_as_mapping */ | |
| 0, /* tp_hash */ | |
| 0, /* tp_call */ | |
| 0, /* tp_str */ | |
| 0, /* tp_getattro */ | |
| 0, /* tp_setattro */ | |
| 0, /* tp_as_buffer */ | |
| Py_TPFLAGS_HAVE_WEAKREFS, /* tp_flags */ | |
| 0, /* tp_doc */ | |
| 0, /* tp_traverse */ | |
| 0, /* tp_clear */ | |
| 0, /* tp_richcompare */ | |
| offsetof(lockobject, in_weakreflist), /* tp_weaklistoffset */ | |
| 0, /* tp_iter */ | |
| 0, /* tp_iternext */ | |
| lock_methods, /* tp_methods */ | |
| }; | |
| static lockobject * | |
| newlockobject(void) | |
| { | |
| lockobject *self; | |
| self = PyObject_New(lockobject, &Locktype); | |
| if (self == NULL) | |
| return NULL; | |
| self->lock_lock = PyThread_allocate_lock(); | |
| self->in_weakreflist = NULL; | |
| if (self->lock_lock == NULL) { | |
| Py_DECREF(self); | |
| PyErr_SetString(ThreadError, "can't allocate lock"); | |
| return NULL; | |
| } | |
| return self; | |
| } | |
| /* Thread-local objects */ | |
| #include "structmember.h" | |
| /* Quick overview: | |
| We need to be able to reclaim reference cycles as soon as possible | |
| (both when a thread is being terminated, or a thread-local object | |
| becomes unreachable from user data). Constraints: | |
| - it must not be possible for thread-state dicts to be involved in | |
| reference cycles (otherwise the cyclic GC will refuse to consider | |
| objects referenced from a reachable thread-state dict, even though | |
| local_dealloc would clear them) | |
| - the death of a thread-state dict must still imply destruction of the | |
| corresponding local dicts in all thread-local objects. | |
| Our implementation uses small "localdummy" objects in order to break | |
| the reference chain. These trivial objects are hashable (using the | |
| default scheme of identity hashing) and weakrefable. | |
| Each thread-state holds a separate localdummy for each local object | |
| (as a /strong reference/), | |
| and each thread-local object holds a dict mapping /weak references/ | |
| of localdummies to local dicts. | |
| Therefore: | |
| - only the thread-state dict holds a strong reference to the dummies | |
| - only the thread-local object holds a strong reference to the local dicts | |
| - only outside objects (application- or library-level) hold strong | |
| references to the thread-local objects | |
| - as soon as a thread-state dict is destroyed, the weakref callbacks of all | |
| dummies attached to that thread are called, and destroy the corresponding | |
| local dicts from thread-local objects | |
| - as soon as a thread-local object is destroyed, its local dicts are | |
| destroyed and its dummies are manually removed from all thread states | |
| - the GC can do its work correctly when a thread-local object is dangling, | |
| without any interference from the thread-state dicts | |
| As an additional optimization, each localdummy holds a borrowed reference | |
| to the corresponding localdict. This borrowed reference is only used | |
| by the thread-local object which has created the localdummy, which should | |
| guarantee that the localdict still exists when accessed. | |
| */ | |
| typedef struct { | |
| PyObject_HEAD | |
| PyObject *localdict; /* Borrowed reference! */ | |
| PyObject *weakreflist; /* List of weak references to self */ | |
| } localdummyobject; | |
| static void | |
| localdummy_dealloc(localdummyobject *self) | |
| { | |
| if (self->weakreflist != NULL) | |
| PyObject_ClearWeakRefs((PyObject *) self); | |
| Py_TYPE(self)->tp_free((PyObject*)self); | |
| } | |
| static PyTypeObject localdummytype = { | |
| PyVarObject_HEAD_INIT(NULL, 0) | |
| /* tp_name */ "_thread._localdummy", | |
| /* tp_basicsize */ sizeof(localdummyobject), | |
| /* tp_itemsize */ 0, | |
| /* tp_dealloc */ (destructor)localdummy_dealloc, | |
| /* tp_print */ 0, | |
| /* tp_getattr */ 0, | |
| /* tp_setattr */ 0, | |
| /* tp_reserved */ 0, | |
| /* tp_repr */ 0, | |
| /* tp_as_number */ 0, | |
| /* tp_as_sequence */ 0, | |
| /* tp_as_mapping */ 0, | |
| /* tp_hash */ 0, | |
| /* tp_call */ 0, | |
| /* tp_str */ 0, | |
| /* tp_getattro */ 0, | |
| /* tp_setattro */ 0, | |
| /* tp_as_buffer */ 0, | |
| /* tp_flags */ Py_TPFLAGS_DEFAULT, | |
| /* tp_doc */ "Thread-local dummy", | |
| /* tp_traverse */ 0, | |
| /* tp_clear */ 0, | |
| /* tp_richcompare */ 0, | |
| /* tp_weaklistoffset */ offsetof(localdummyobject, weakreflist) | |
| }; | |
| typedef struct { | |
| PyObject_HEAD | |
| PyObject *key; | |
| PyObject *args; | |
| PyObject *kw; | |
| PyObject *weakreflist; /* List of weak references to self */ | |
| /* A {localdummy weakref -> localdict} dict */ | |
| PyObject *dummies; | |
| /* The callback for weakrefs to localdummies */ | |
| PyObject *wr_callback; | |
| } localobject; | |
| /* Forward declaration */ | |
| static PyObject *_ldict(localobject *self); | |
| static PyObject *_localdummy_destroyed(PyObject *meth_self, PyObject *dummyweakref); | |
| /* Create and register the dummy for the current thread. | |
| Returns a borrowed reference of the corresponding local dict */ | |
| static PyObject * | |
| _local_create_dummy(localobject *self) | |
| { | |
| PyObject *tdict, *ldict = NULL, *wr = NULL; | |
| localdummyobject *dummy = NULL; | |
| int r; | |
| tdict = PyThreadState_GetDict(); | |
| if (tdict == NULL) { | |
| PyErr_SetString(PyExc_SystemError, | |
| "Couldn't get thread-state dictionary"); | |
| goto err; | |
| } | |
| ldict = PyDict_New(); | |
| if (ldict == NULL) | |
| goto err; | |
| dummy = (localdummyobject *) localdummytype.tp_alloc(&localdummytype, 0); | |
| if (dummy == NULL) | |
| goto err; | |
| dummy->localdict = ldict; | |
| wr = PyWeakref_NewRef((PyObject *) dummy, self->wr_callback); | |
| if (wr == NULL) | |
| goto err; | |
| /* As a side-effect, this will cache the weakref's hash before the | |
| dummy gets deleted */ | |
| r = PyDict_SetItem(self->dummies, wr, ldict); | |
| if (r < 0) | |
| goto err; | |
| Py_CLEAR(wr); | |
| r = PyDict_SetItem(tdict, self->key, (PyObject *) dummy); | |
| if (r < 0) | |
| goto err; | |
| Py_CLEAR(dummy); | |
| Py_DECREF(ldict); | |
| return ldict; | |
| err: | |
| Py_XDECREF(ldict); | |
| Py_XDECREF(wr); | |
| Py_XDECREF(dummy); | |
| return NULL; | |
| } | |
| static PyObject * | |
| local_new(PyTypeObject *type, PyObject *args, PyObject *kw) | |
| { | |
| localobject *self; | |
| PyObject *wr; | |
| static PyMethodDef wr_callback_def = { | |
| "_localdummy_destroyed", (PyCFunction) _localdummy_destroyed, METH_O | |
| }; | |
| if (type->tp_init == PyBaseObject_Type.tp_init | |
| && ((args && PyObject_IsTrue(args)) | |
| || (kw && PyObject_IsTrue(kw)))) { | |
| PyErr_SetString(PyExc_TypeError, | |
| "Initialization arguments are not supported"); | |
| return NULL; | |
| } | |
| self = (localobject *)type->tp_alloc(type, 0); | |
| if (self == NULL) | |
| return NULL; | |
| Py_XINCREF(args); | |
| self->args = args; | |
| Py_XINCREF(kw); | |
| self->kw = kw; | |
| self->key = PyString_FromFormat("thread.local.%p", self); | |
| if (self->key == NULL) | |
| goto err; | |
| self->dummies = PyDict_New(); | |
| if (self->dummies == NULL) | |
| goto err; | |
| /* We use a weak reference to self in the callback closure | |
| in order to avoid spurious reference cycles */ | |
| wr = PyWeakref_NewRef((PyObject *) self, NULL); | |
| if (wr == NULL) | |
| goto err; | |
| self->wr_callback = PyCFunction_New(&wr_callback_def, wr); | |
| Py_DECREF(wr); | |
| if (self->wr_callback == NULL) | |
| goto err; | |
| if (_local_create_dummy(self) == NULL) | |
| goto err; | |
| return (PyObject *)self; | |
| err: | |
| Py_DECREF(self); | |
| return NULL; | |
| } | |
| static int | |
| local_traverse(localobject *self, visitproc visit, void *arg) | |
| { | |
| Py_VISIT(self->args); | |
| Py_VISIT(self->kw); | |
| Py_VISIT(self->dummies); | |
| return 0; | |
| } | |
| static int | |
| local_clear(localobject *self) | |
| { | |
| PyThreadState *tstate; | |
| Py_CLEAR(self->args); | |
| Py_CLEAR(self->kw); | |
| Py_CLEAR(self->dummies); | |
| Py_CLEAR(self->wr_callback); | |
| /* Remove all strong references to dummies from the thread states */ | |
| if (self->key | |
| && (tstate = PyThreadState_Get()) | |
| && tstate->interp) { | |
| for(tstate = PyInterpreterState_ThreadHead(tstate->interp); | |
| tstate; | |
| tstate = PyThreadState_Next(tstate)) | |
| if (tstate->dict && | |
| PyDict_GetItem(tstate->dict, self->key)) | |
| PyDict_DelItem(tstate->dict, self->key); | |
| } | |
| return 0; | |
| } | |
| static void | |
| local_dealloc(localobject *self) | |
| { | |
| /* Weakrefs must be invalidated right now, otherwise they can be used | |
| from code called below, which is very dangerous since Py_REFCNT(self) == 0 */ | |
| if (self->weakreflist != NULL) | |
| PyObject_ClearWeakRefs((PyObject *) self); | |
| PyObject_GC_UnTrack(self); | |
| local_clear(self); | |
| Py_XDECREF(self->key); | |
| Py_TYPE(self)->tp_free((PyObject*)self); | |
| } | |
| /* Returns a borrowed reference to the local dict, creating it if necessary */ | |
| static PyObject * | |
| _ldict(localobject *self) | |
| { | |
| PyObject *tdict, *ldict, *dummy; | |
| tdict = PyThreadState_GetDict(); | |
| if (tdict == NULL) { | |
| PyErr_SetString(PyExc_SystemError, | |
| "Couldn't get thread-state dictionary"); | |
| return NULL; | |
| } | |
| dummy = PyDict_GetItem(tdict, self->key); | |
| if (dummy == NULL) { | |
| ldict = _local_create_dummy(self); | |
| if (ldict == NULL) | |
| return NULL; | |
| if (Py_TYPE(self)->tp_init != PyBaseObject_Type.tp_init && | |
| Py_TYPE(self)->tp_init((PyObject*)self, | |
| self->args, self->kw) < 0) { | |
| /* we need to get rid of ldict from thread so | |
| we create a new one the next time we do an attr | |
| access */ | |
| PyDict_DelItem(tdict, self->key); | |
| return NULL; | |
| } | |
| } | |
| else { | |
| assert(Py_TYPE(dummy) == &localdummytype); | |
| ldict = ((localdummyobject *) dummy)->localdict; | |
| } | |
| return ldict; | |
| } | |
| static int | |
| local_setattro(localobject *self, PyObject *name, PyObject *v) | |
| { | |
| PyObject *ldict; | |
| int r; | |
| ldict = _ldict(self); | |
| if (ldict == NULL) | |
| return -1; | |
| r = PyObject_RichCompareBool(name, str_dict, Py_EQ); | |
| if (r == 1) { | |
| PyErr_Format(PyExc_AttributeError, | |
| "'%.50s' object attribute '__dict__' is read-only", | |
| Py_TYPE(self)->tp_name); | |
| return -1; | |
| } | |
| if (r == -1) | |
| return -1; | |
| return _PyObject_GenericSetAttrWithDict((PyObject *)self, name, v, ldict); | |
| } | |
| static PyObject *local_getattro(localobject *, PyObject *); | |
| static PyTypeObject localtype = { | |
| PyVarObject_HEAD_INIT(NULL, 0) | |
| /* tp_name */ "thread._local", | |
| /* tp_basicsize */ sizeof(localobject), | |
| /* tp_itemsize */ 0, | |
| /* tp_dealloc */ (destructor)local_dealloc, | |
| /* tp_print */ 0, | |
| /* tp_getattr */ 0, | |
| /* tp_setattr */ 0, | |
| /* tp_compare */ 0, | |
| /* tp_repr */ 0, | |
| /* tp_as_number */ 0, | |
| /* tp_as_sequence */ 0, | |
| /* tp_as_mapping */ 0, | |
| /* tp_hash */ 0, | |
| /* tp_call */ 0, | |
| /* tp_str */ 0, | |
| /* tp_getattro */ (getattrofunc)local_getattro, | |
| /* tp_setattro */ (setattrofunc)local_setattro, | |
| /* tp_as_buffer */ 0, | |
| /* tp_flags */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | |
| | Py_TPFLAGS_HAVE_GC, | |
| /* tp_doc */ "Thread-local data", | |
| /* tp_traverse */ (traverseproc)local_traverse, | |
| /* tp_clear */ (inquiry)local_clear, | |
| /* tp_richcompare */ 0, | |
| /* tp_weaklistoffset */ offsetof(localobject, weakreflist), | |
| /* tp_iter */ 0, | |
| /* tp_iternext */ 0, | |
| /* tp_methods */ 0, | |
| /* tp_members */ 0, | |
| /* tp_getset */ 0, | |
| /* tp_base */ 0, | |
| /* tp_dict */ 0, /* internal use */ | |
| /* tp_descr_get */ 0, | |
| /* tp_descr_set */ 0, | |
| /* tp_dictoffset */ 0, | |
| /* tp_init */ 0, | |
| /* tp_alloc */ 0, | |
| /* tp_new */ local_new, | |
| /* tp_free */ 0, /* Low-level free-mem routine */ | |
| /* tp_is_gc */ 0, /* For PyObject_IS_GC */ | |
| }; | |
| static PyObject * | |
| local_getattro(localobject *self, PyObject *name) | |
| { | |
| PyObject *ldict, *value; | |
| int r; | |
| ldict = _ldict(self); | |
| if (ldict == NULL) | |
| return NULL; | |
| r = PyObject_RichCompareBool(name, str_dict, Py_EQ); | |
| if (r == 1) { | |
| Py_INCREF(ldict); | |
| return ldict; | |
| } | |
| if (r == -1) | |
| return NULL; | |
| if (Py_TYPE(self) != &localtype) | |
| /* use generic lookup for subtypes */ | |
| return _PyObject_GenericGetAttrWithDict((PyObject *)self, name, ldict); | |
| /* Optimization: just look in dict ourselves */ | |
| value = PyDict_GetItem(ldict, name); | |
| if (value == NULL) | |
| /* Fall back on generic to get __class__ and __dict__ */ | |
| return _PyObject_GenericGetAttrWithDict((PyObject *)self, name, ldict); | |
| Py_INCREF(value); | |
| return value; | |
| } | |
| /* Called when a dummy is destroyed. */ | |
| static PyObject * | |
| _localdummy_destroyed(PyObject *localweakref, PyObject *dummyweakref) | |
| { | |
| PyObject *obj; | |
| localobject *self; | |
| assert(PyWeakref_CheckRef(localweakref)); | |
| obj = PyWeakref_GET_OBJECT(localweakref); | |
| if (obj == Py_None) | |
| Py_RETURN_NONE; | |
| Py_INCREF(obj); | |
| assert(PyObject_TypeCheck(obj, &localtype)); | |
| /* If the thread-local object is still alive and not being cleared, | |
| remove the corresponding local dict */ | |
| self = (localobject *) obj; | |
| if (self->dummies != NULL) { | |
| PyObject *ldict; | |
| ldict = PyDict_GetItem(self->dummies, dummyweakref); | |
| if (ldict != NULL) { | |
| PyDict_DelItem(self->dummies, dummyweakref); | |
| } | |
| if (PyErr_Occurred()) | |
| PyErr_WriteUnraisable(obj); | |
| } | |
| Py_DECREF(obj); | |
| Py_RETURN_NONE; | |
| } | |
| /* Module functions */ | |
| struct bootstate { | |
| PyInterpreterState *interp; | |
| PyObject *func; | |
| PyObject *args; | |
| PyObject *keyw; | |
| PyThreadState *tstate; | |
| }; | |
| static void | |
| t_bootstrap(void *boot_raw) | |
| { | |
| struct bootstate *boot = (struct bootstate *) boot_raw; | |
| PyThreadState *tstate; | |
| PyObject *res; | |
| tstate = boot->tstate; | |
| tstate->thread_id = PyThread_get_thread_ident(); | |
| _PyThreadState_Init(tstate); | |
| PyEval_AcquireThread(tstate); | |
| nb_threads++; | |
| res = PyEval_CallObjectWithKeywords( | |
| boot->func, boot->args, boot->keyw); | |
| if (res == NULL) { | |
| if (PyErr_ExceptionMatches(PyExc_SystemExit)) | |
| PyErr_Clear(); | |
| else { | |
| PyObject *file; | |
| PySys_WriteStderr( | |
| "Unhandled exception in thread started by "); | |
| file = PySys_GetObject("stderr"); | |
| if (file) | |
| PyFile_WriteObject(boot->func, file, 0); | |
| else | |
| PyObject_Print(boot->func, stderr, 0); | |
| PySys_WriteStderr("\n"); | |
| PyErr_PrintEx(0); | |
| } | |
| } | |
| else | |
| Py_DECREF(res); | |
| Py_DECREF(boot->func); | |
| Py_DECREF(boot->args); | |
| Py_XDECREF(boot->keyw); | |
| PyMem_DEL(boot_raw); | |
| nb_threads--; | |
| PyThreadState_Clear(tstate); | |
| PyThreadState_DeleteCurrent(); | |
| PyThread_exit_thread(); | |
| } | |
| static PyObject * | |
| thread_PyThread_start_new_thread(PyObject *self, PyObject *fargs) | |
| { | |
| PyObject *func, *args, *keyw = NULL; | |
| struct bootstate *boot; | |
| long ident; | |
| if (!PyArg_UnpackTuple(fargs, "start_new_thread", 2, 3, | |
| &func, &args, &keyw)) | |
| return NULL; | |
| if (!PyCallable_Check(func)) { | |
| PyErr_SetString(PyExc_TypeError, | |
| "first arg must be callable"); | |
| return NULL; | |
| } | |
| if (!PyTuple_Check(args)) { | |
| PyErr_SetString(PyExc_TypeError, | |
| "2nd arg must be a tuple"); | |
| return NULL; | |
| } | |
| if (keyw != NULL && !PyDict_Check(keyw)) { | |
| PyErr_SetString(PyExc_TypeError, | |
| "optional 3rd arg must be a dictionary"); | |
| return NULL; | |
| } | |
| boot = PyMem_NEW(struct bootstate, 1); | |
| if (boot == NULL) | |
| return PyErr_NoMemory(); | |
| boot->interp = PyThreadState_GET()->interp; | |
| boot->func = func; | |
| boot->args = args; | |
| boot->keyw = keyw; | |
| boot->tstate = _PyThreadState_Prealloc(boot->interp); | |
| if (boot->tstate == NULL) { | |
| PyMem_DEL(boot); | |
| return PyErr_NoMemory(); | |
| } | |
| Py_INCREF(func); | |
| Py_INCREF(args); | |
| Py_XINCREF(keyw); | |
| PyEval_InitThreads(); /* Start the interpreter's thread-awareness */ | |
| ident = PyThread_start_new_thread(t_bootstrap, (void*) boot); | |
| if (ident == -1) { | |
| PyErr_SetString(ThreadError, "can't start new thread"); | |
| Py_DECREF(func); | |
| Py_DECREF(args); | |
| Py_XDECREF(keyw); | |
| PyThreadState_Clear(boot->tstate); | |
| PyMem_DEL(boot); | |
| return NULL; | |
| } | |
| return PyInt_FromLong(ident); | |
| } | |
| PyDoc_STRVAR(start_new_doc, | |
| "start_new_thread(function, args[, kwargs])\n\ | |
| (start_new() is an obsolete synonym)\n\ | |
| \n\ | |
| Start a new thread and return its identifier. The thread will call the\n\ | |
| function with positional arguments from the tuple args and keyword arguments\n\ | |
| taken from the optional dictionary kwargs. The thread exits when the\n\ | |
| function returns; the return value is ignored. The thread will also exit\n\ | |
| when the function raises an unhandled exception; a stack trace will be\n\ | |
| printed unless the exception is SystemExit.\n"); | |
| static PyObject * | |
| thread_PyThread_exit_thread(PyObject *self) | |
| { | |
| PyErr_SetNone(PyExc_SystemExit); | |
| return NULL; | |
| } | |
| PyDoc_STRVAR(exit_doc, | |
| "exit()\n\ | |
| (PyThread_exit_thread() is an obsolete synonym)\n\ | |
| \n\ | |
| This is synonymous to ``raise SystemExit''. It will cause the current\n\ | |
| thread to exit silently unless the exception is caught."); | |
| static PyObject * | |
| thread_PyThread_interrupt_main(PyObject * self) | |
| { | |
| PyErr_SetInterrupt(); | |
| Py_INCREF(Py_None); | |
| return Py_None; | |
| } | |
| PyDoc_STRVAR(interrupt_doc, | |
| "interrupt_main()\n\ | |
| \n\ | |
| Raise a KeyboardInterrupt in the main thread.\n\ | |
| A subthread can use this function to interrupt the main thread." | |
| ); | |
| static lockobject *newlockobject(void); | |
| static PyObject * | |
| thread_PyThread_allocate_lock(PyObject *self) | |
| { | |
| return (PyObject *) newlockobject(); | |
| } | |
| PyDoc_STRVAR(allocate_doc, | |
| "allocate_lock() -> lock object\n\ | |
| (allocate() is an obsolete synonym)\n\ | |
| \n\ | |
| Create a new lock object. See help(LockType) for information about locks."); | |
| static PyObject * | |
| thread_get_ident(PyObject *self) | |
| { | |
| long ident; | |
| ident = PyThread_get_thread_ident(); | |
| if (ident == -1) { | |
| PyErr_SetString(ThreadError, "no current thread ident"); | |
| return NULL; | |
| } | |
| return PyInt_FromLong(ident); | |
| } | |
| PyDoc_STRVAR(get_ident_doc, | |
| "get_ident() -> integer\n\ | |
| \n\ | |
| Return a non-zero integer that uniquely identifies the current thread\n\ | |
| amongst other threads that exist simultaneously.\n\ | |
| This may be used to identify per-thread resources.\n\ | |
| Even though on some platforms threads identities may appear to be\n\ | |
| allocated consecutive numbers starting at 1, this behavior should not\n\ | |
| be relied upon, and the number should be seen purely as a magic cookie.\n\ | |
| A thread's identity may be reused for another thread after it exits."); | |
| static PyObject * | |
| thread__count(PyObject *self) | |
| { | |
| return PyInt_FromLong(nb_threads); | |
| } | |
| PyDoc_STRVAR(_count_doc, | |
| "_count() -> integer\n\ | |
| \n\ | |
| \ | |
| Return the number of currently running Python threads, excluding \n\ | |
| the main thread. The returned number comprises all threads created\n\ | |
| through `start_new_thread()` as well as `threading.Thread`, and not\n\ | |
| yet finished.\n\ | |
| \n\ | |
| This function is meant for internal and specialized purposes only.\n\ | |
| In most applications `threading.enumerate()` should be used instead."); | |
| static PyObject * | |
| thread_stack_size(PyObject *self, PyObject *args) | |
| { | |
| size_t old_size; | |
| Py_ssize_t new_size = 0; | |
| int rc; | |
| if (!PyArg_ParseTuple(args, "|n:stack_size", &new_size)) | |
| return NULL; | |
| if (new_size < 0) { | |
| PyErr_SetString(PyExc_ValueError, | |
| "size must be 0 or a positive value"); | |
| return NULL; | |
| } | |
| old_size = PyThread_get_stacksize(); | |
| rc = PyThread_set_stacksize((size_t) new_size); | |
| if (rc == -1) { | |
| PyErr_Format(PyExc_ValueError, | |
| "size not valid: %zd bytes", | |
| new_size); | |
| return NULL; | |
| } | |
| if (rc == -2) { | |
| PyErr_SetString(ThreadError, | |
| "setting stack size not supported"); | |
| return NULL; | |
| } | |
| return PyInt_FromSsize_t((Py_ssize_t) old_size); | |
| } | |
| PyDoc_STRVAR(stack_size_doc, | |
| "stack_size([size]) -> size\n\ | |
| \n\ | |
| Return the thread stack size used when creating new threads. The\n\ | |
| optional size argument specifies the stack size (in bytes) to be used\n\ | |
| for subsequently created threads, and must be 0 (use platform or\n\ | |
| configured default) or a positive integer value of at least 32,768 (32k).\n\ | |
| If changing the thread stack size is unsupported, a ThreadError\n\ | |
| exception is raised. If the specified size is invalid, a ValueError\n\ | |
| exception is raised, and the stack size is unmodified. 32k bytes\n\ | |
| currently the minimum supported stack size value to guarantee\n\ | |
| sufficient stack space for the interpreter itself.\n\ | |
| \n\ | |
| Note that some platforms may have particular restrictions on values for\n\ | |
| the stack size, such as requiring a minimum stack size larger than 32kB or\n\ | |
| requiring allocation in multiples of the system memory page size\n\ | |
| - platform documentation should be referred to for more information\n\ | |
| (4kB pages are common; using multiples of 4096 for the stack size is\n\ | |
| the suggested approach in the absence of more specific information)."); | |
| static PyMethodDef thread_methods[] = { | |
| {"start_new_thread", (PyCFunction)thread_PyThread_start_new_thread, | |
| METH_VARARGS, | |
| start_new_doc}, | |
| {"start_new", (PyCFunction)thread_PyThread_start_new_thread, | |
| METH_VARARGS, | |
| start_new_doc}, | |
| {"allocate_lock", (PyCFunction)thread_PyThread_allocate_lock, | |
| METH_NOARGS, allocate_doc}, | |
| {"allocate", (PyCFunction)thread_PyThread_allocate_lock, | |
| METH_NOARGS, allocate_doc}, | |
| {"exit_thread", (PyCFunction)thread_PyThread_exit_thread, | |
| METH_NOARGS, exit_doc}, | |
| {"exit", (PyCFunction)thread_PyThread_exit_thread, | |
| METH_NOARGS, exit_doc}, | |
| {"interrupt_main", (PyCFunction)thread_PyThread_interrupt_main, | |
| METH_NOARGS, interrupt_doc}, | |
| {"get_ident", (PyCFunction)thread_get_ident, | |
| METH_NOARGS, get_ident_doc}, | |
| {"_count", (PyCFunction)thread__count, | |
| METH_NOARGS, _count_doc}, | |
| {"stack_size", (PyCFunction)thread_stack_size, | |
| METH_VARARGS, | |
| stack_size_doc}, | |
| {NULL, NULL} /* sentinel */ | |
| }; | |
| /* Initialization function */ | |
| PyDoc_STRVAR(thread_doc, | |
| "This module provides primitive operations to write multi-threaded programs.\n\ | |
| The 'threading' module provides a more convenient interface."); | |
| PyDoc_STRVAR(lock_doc, | |
| "A lock object is a synchronization primitive. To create a lock,\n\ | |
| call the PyThread_allocate_lock() function. Methods are:\n\ | |
| \n\ | |
| acquire() -- lock the lock, possibly blocking until it can be obtained\n\ | |
| release() -- unlock of the lock\n\ | |
| locked() -- test whether the lock is currently locked\n\ | |
| \n\ | |
| A lock is not owned by the thread that locked it; another thread may\n\ | |
| unlock it. A thread attempting to lock a lock that it has already locked\n\ | |
| will block until another thread unlocks it. Deadlocks may ensue."); | |
| PyMODINIT_FUNC | |
| initthread(void) | |
| { | |
| PyObject *m, *d; | |
| /* Initialize types: */ | |
| if (PyType_Ready(&localdummytype) < 0) | |
| return; | |
| if (PyType_Ready(&localtype) < 0) | |
| return; | |
| /* Create the module and add the functions */ | |
| m = Py_InitModule3("thread", thread_methods, thread_doc); | |
| if (m == NULL) | |
| return; | |
| /* Add a symbolic constant */ | |
| d = PyModule_GetDict(m); | |
| ThreadError = PyErr_NewException("thread.error", NULL, NULL); | |
| PyDict_SetItemString(d, "error", ThreadError); | |
| Locktype.tp_doc = lock_doc; | |
| if (PyType_Ready(&Locktype) < 0) | |
| return; | |
| Py_INCREF(&Locktype); | |
| PyDict_SetItemString(d, "LockType", (PyObject *)&Locktype); | |
| Py_INCREF(&localtype); | |
| if (PyModule_AddObject(m, "_local", (PyObject *)&localtype) < 0) | |
| return; | |
| nb_threads = 0; | |
| str_dict = PyString_InternFromString("__dict__"); | |
| if (str_dict == NULL) | |
| return; | |
| /* Initialize the C thread library */ | |
| PyThread_init_thread(); | |
| } |