| #include "rotatingtree.h" | |
| #define KEY_LOWER_THAN(key1, key2) ((char*)(key1) < (char*)(key2)) | |
| /* The randombits() function below is a fast-and-dirty generator that | |
| * is probably irregular enough for our purposes. Note that it's biased: | |
| * I think that ones are slightly more probable than zeroes. It's not | |
| * important here, though. | |
| */ | |
| static unsigned int random_value = 1; | |
| static unsigned int random_stream = 0; | |
| static int | |
| randombits(int bits) | |
| { | |
| int result; | |
| if (random_stream < (1U << bits)) { | |
| random_value *= 1082527; | |
| random_stream = random_value; | |
| } | |
| result = random_stream & ((1<<bits)-1); | |
| random_stream >>= bits; | |
| return result; | |
| } | |
| /* Insert a new node into the tree. | |
| (*root) is modified to point to the new root. */ | |
| void | |
| RotatingTree_Add(rotating_node_t **root, rotating_node_t *node) | |
| { | |
| while (*root != NULL) { | |
| if (KEY_LOWER_THAN(node->key, (*root)->key)) | |
| root = &((*root)->left); | |
| else | |
| root = &((*root)->right); | |
| } | |
| node->left = NULL; | |
| node->right = NULL; | |
| *root = node; | |
| } | |
| /* Locate the node with the given key. This is the most complicated | |
| function because it occasionally rebalances the tree to move the | |
| resulting node closer to the root. */ | |
| rotating_node_t * | |
| RotatingTree_Get(rotating_node_t **root, void *key) | |
| { | |
| if (randombits(3) != 4) { | |
| /* Fast path, no rebalancing */ | |
| rotating_node_t *node = *root; | |
| while (node != NULL) { | |
| if (node->key == key) | |
| return node; | |
| if (KEY_LOWER_THAN(key, node->key)) | |
| node = node->left; | |
| else | |
| node = node->right; | |
| } | |
| return NULL; | |
| } | |
| else { | |
| rotating_node_t **pnode = root; | |
| rotating_node_t *node = *pnode; | |
| rotating_node_t *next; | |
| int rotate; | |
| if (node == NULL) | |
| return NULL; | |
| while (1) { | |
| if (node->key == key) | |
| return node; | |
| rotate = !randombits(1); | |
| if (KEY_LOWER_THAN(key, node->key)) { | |
| next = node->left; | |
| if (next == NULL) | |
| return NULL; | |
| if (rotate) { | |
| node->left = next->right; | |
| next->right = node; | |
| *pnode = next; | |
| } | |
| else | |
| pnode = &(node->left); | |
| } | |
| else { | |
| next = node->right; | |
| if (next == NULL) | |
| return NULL; | |
| if (rotate) { | |
| node->right = next->left; | |
| next->left = node; | |
| *pnode = next; | |
| } | |
| else | |
| pnode = &(node->right); | |
| } | |
| node = next; | |
| } | |
| } | |
| } | |
| /* Enumerate all nodes in the tree. The callback enumfn() should return | |
| zero to continue the enumeration, or non-zero to interrupt it. | |
| A non-zero value is directly returned by RotatingTree_Enum(). */ | |
| int | |
| RotatingTree_Enum(rotating_node_t *root, rotating_tree_enum_fn enumfn, | |
| void *arg) | |
| { | |
| int result; | |
| rotating_node_t *node; | |
| while (root != NULL) { | |
| result = RotatingTree_Enum(root->left, enumfn, arg); | |
| if (result != 0) return result; | |
| node = root->right; | |
| result = enumfn(root, arg); | |
| if (result != 0) return result; | |
| root = node; | |
| } | |
| return 0; | |
| } |