| /* Complex math module */ | |
| /* much code borrowed from mathmodule.c */ | |
| #include "Python.h" | |
| #include "_math.h" | |
| /* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from | |
| float.h. We assume that FLT_RADIX is either 2 or 16. */ | |
| #include <float.h> | |
| #if (FLT_RADIX != 2 && FLT_RADIX != 16) | |
| #error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16" | |
| #endif | |
| #ifndef M_LN2 | |
| #define M_LN2 (0.6931471805599453094) /* natural log of 2 */ | |
| #endif | |
| #ifndef M_LN10 | |
| #define M_LN10 (2.302585092994045684) /* natural log of 10 */ | |
| #endif | |
| /* | |
| CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log, | |
| inverse trig and inverse hyperbolic trig functions. Its log is used in the | |
| evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unnecessary | |
| overflow. | |
| */ | |
| #define CM_LARGE_DOUBLE (DBL_MAX/4.) | |
| #define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE)) | |
| #define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE)) | |
| #define CM_SQRT_DBL_MIN (sqrt(DBL_MIN)) | |
| /* | |
| CM_SCALE_UP is an odd integer chosen such that multiplication by | |
| 2**CM_SCALE_UP is sufficient to turn a subnormal into a normal. | |
| CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2). These scalings are used to compute | |
| square roots accurately when the real and imaginary parts of the argument | |
| are subnormal. | |
| */ | |
| #if FLT_RADIX==2 | |
| #define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1) | |
| #elif FLT_RADIX==16 | |
| #define CM_SCALE_UP (4*DBL_MANT_DIG+1) | |
| #endif | |
| #define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2) | |
| /* forward declarations */ | |
| static Py_complex c_asinh(Py_complex); | |
| static Py_complex c_atanh(Py_complex); | |
| static Py_complex c_cosh(Py_complex); | |
| static Py_complex c_sinh(Py_complex); | |
| static Py_complex c_sqrt(Py_complex); | |
| static Py_complex c_tanh(Py_complex); | |
| static PyObject * math_error(void); | |
| /* Code to deal with special values (infinities, NaNs, etc.). */ | |
| /* special_type takes a double and returns an integer code indicating | |
| the type of the double as follows: | |
| */ | |
| enum special_types { | |
| ST_NINF, /* 0, negative infinity */ | |
| ST_NEG, /* 1, negative finite number (nonzero) */ | |
| ST_NZERO, /* 2, -0. */ | |
| ST_PZERO, /* 3, +0. */ | |
| ST_POS, /* 4, positive finite number (nonzero) */ | |
| ST_PINF, /* 5, positive infinity */ | |
| ST_NAN /* 6, Not a Number */ | |
| }; | |
| static enum special_types | |
| special_type(double d) | |
| { | |
| if (Py_IS_FINITE(d)) { | |
| if (d != 0) { | |
| if (copysign(1., d) == 1.) | |
| return ST_POS; | |
| else | |
| return ST_NEG; | |
| } | |
| else { | |
| if (copysign(1., d) == 1.) | |
| return ST_PZERO; | |
| else | |
| return ST_NZERO; | |
| } | |
| } | |
| if (Py_IS_NAN(d)) | |
| return ST_NAN; | |
| if (copysign(1., d) == 1.) | |
| return ST_PINF; | |
| else | |
| return ST_NINF; | |
| } | |
| #define SPECIAL_VALUE(z, table) \ | |
| if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \ | |
| errno = 0; \ | |
| return table[special_type((z).real)] \ | |
| [special_type((z).imag)]; \ | |
| } | |
| #define P Py_MATH_PI | |
| #define P14 0.25*Py_MATH_PI | |
| #define P12 0.5*Py_MATH_PI | |
| #define P34 0.75*Py_MATH_PI | |
| #define INF Py_HUGE_VAL | |
| #define N Py_NAN | |
| #define U -9.5426319407711027e33 /* unlikely value, used as placeholder */ | |
| /* First, the C functions that do the real work. Each of the c_* | |
| functions computes and returns the C99 Annex G recommended result | |
| and also sets errno as follows: errno = 0 if no floating-point | |
| exception is associated with the result; errno = EDOM if C99 Annex | |
| G recommends raising divide-by-zero or invalid for this result; and | |
| errno = ERANGE where the overflow floating-point signal should be | |
| raised. | |
| */ | |
| static Py_complex acos_special_values[7][7]; | |
| static Py_complex | |
| c_acos(Py_complex z) | |
| { | |
| Py_complex s1, s2, r; | |
| SPECIAL_VALUE(z, acos_special_values); | |
| if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { | |
| /* avoid unnecessary overflow for large arguments */ | |
| r.real = atan2(fabs(z.imag), z.real); | |
| /* split into cases to make sure that the branch cut has the | |
| correct continuity on systems with unsigned zeros */ | |
| if (z.real < 0.) { | |
| r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) + | |
| M_LN2*2., z.imag); | |
| } else { | |
| r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) + | |
| M_LN2*2., -z.imag); | |
| } | |
| } else { | |
| s1.real = 1.-z.real; | |
| s1.imag = -z.imag; | |
| s1 = c_sqrt(s1); | |
| s2.real = 1.+z.real; | |
| s2.imag = z.imag; | |
| s2 = c_sqrt(s2); | |
| r.real = 2.*atan2(s1.real, s2.real); | |
| r.imag = m_asinh(s2.real*s1.imag - s2.imag*s1.real); | |
| } | |
| errno = 0; | |
| return r; | |
| } | |
| PyDoc_STRVAR(c_acos_doc, | |
| "acos(x)\n" | |
| "\n" | |
| "Return the arc cosine of x."); | |
| static Py_complex acosh_special_values[7][7]; | |
| static Py_complex | |
| c_acosh(Py_complex z) | |
| { | |
| Py_complex s1, s2, r; | |
| SPECIAL_VALUE(z, acosh_special_values); | |
| if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { | |
| /* avoid unnecessary overflow for large arguments */ | |
| r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.; | |
| r.imag = atan2(z.imag, z.real); | |
| } else { | |
| s1.real = z.real - 1.; | |
| s1.imag = z.imag; | |
| s1 = c_sqrt(s1); | |
| s2.real = z.real + 1.; | |
| s2.imag = z.imag; | |
| s2 = c_sqrt(s2); | |
| r.real = m_asinh(s1.real*s2.real + s1.imag*s2.imag); | |
| r.imag = 2.*atan2(s1.imag, s2.real); | |
| } | |
| errno = 0; | |
| return r; | |
| } | |
| PyDoc_STRVAR(c_acosh_doc, | |
| "acosh(x)\n" | |
| "\n" | |
| "Return the hyperbolic arccosine of x."); | |
| static Py_complex | |
| c_asin(Py_complex z) | |
| { | |
| /* asin(z) = -i asinh(iz) */ | |
| Py_complex s, r; | |
| s.real = -z.imag; | |
| s.imag = z.real; | |
| s = c_asinh(s); | |
| r.real = s.imag; | |
| r.imag = -s.real; | |
| return r; | |
| } | |
| PyDoc_STRVAR(c_asin_doc, | |
| "asin(x)\n" | |
| "\n" | |
| "Return the arc sine of x."); | |
| static Py_complex asinh_special_values[7][7]; | |
| static Py_complex | |
| c_asinh(Py_complex z) | |
| { | |
| Py_complex s1, s2, r; | |
| SPECIAL_VALUE(z, asinh_special_values); | |
| if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { | |
| if (z.imag >= 0.) { | |
| r.real = copysign(log(hypot(z.real/2., z.imag/2.)) + | |
| M_LN2*2., z.real); | |
| } else { | |
| r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) + | |
| M_LN2*2., -z.real); | |
| } | |
| r.imag = atan2(z.imag, fabs(z.real)); | |
| } else { | |
| s1.real = 1.+z.imag; | |
| s1.imag = -z.real; | |
| s1 = c_sqrt(s1); | |
| s2.real = 1.-z.imag; | |
| s2.imag = z.real; | |
| s2 = c_sqrt(s2); | |
| r.real = m_asinh(s1.real*s2.imag-s2.real*s1.imag); | |
| r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag); | |
| } | |
| errno = 0; | |
| return r; | |
| } | |
| PyDoc_STRVAR(c_asinh_doc, | |
| "asinh(x)\n" | |
| "\n" | |
| "Return the hyperbolic arc sine of x."); | |
| static Py_complex | |
| c_atan(Py_complex z) | |
| { | |
| /* atan(z) = -i atanh(iz) */ | |
| Py_complex s, r; | |
| s.real = -z.imag; | |
| s.imag = z.real; | |
| s = c_atanh(s); | |
| r.real = s.imag; | |
| r.imag = -s.real; | |
| return r; | |
| } | |
| /* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow | |
| C99 for atan2(0., 0.). */ | |
| static double | |
| c_atan2(Py_complex z) | |
| { | |
| if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag)) | |
| return Py_NAN; | |
| if (Py_IS_INFINITY(z.imag)) { | |
| if (Py_IS_INFINITY(z.real)) { | |
| if (copysign(1., z.real) == 1.) | |
| /* atan2(+-inf, +inf) == +-pi/4 */ | |
| return copysign(0.25*Py_MATH_PI, z.imag); | |
| else | |
| /* atan2(+-inf, -inf) == +-pi*3/4 */ | |
| return copysign(0.75*Py_MATH_PI, z.imag); | |
| } | |
| /* atan2(+-inf, x) == +-pi/2 for finite x */ | |
| return copysign(0.5*Py_MATH_PI, z.imag); | |
| } | |
| if (Py_IS_INFINITY(z.real) || z.imag == 0.) { | |
| if (copysign(1., z.real) == 1.) | |
| /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ | |
| return copysign(0., z.imag); | |
| else | |
| /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ | |
| return copysign(Py_MATH_PI, z.imag); | |
| } | |
| return atan2(z.imag, z.real); | |
| } | |
| PyDoc_STRVAR(c_atan_doc, | |
| "atan(x)\n" | |
| "\n" | |
| "Return the arc tangent of x."); | |
| static Py_complex atanh_special_values[7][7]; | |
| static Py_complex | |
| c_atanh(Py_complex z) | |
| { | |
| Py_complex r; | |
| double ay, h; | |
| SPECIAL_VALUE(z, atanh_special_values); | |
| /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */ | |
| if (z.real < 0.) { | |
| return c_neg(c_atanh(c_neg(z))); | |
| } | |
| ay = fabs(z.imag); | |
| if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) { | |
| /* | |
| if abs(z) is large then we use the approximation | |
| atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign | |
| of z.imag) | |
| */ | |
| h = hypot(z.real/2., z.imag/2.); /* safe from overflow */ | |
| r.real = z.real/4./h/h; | |
| /* the two negations in the next line cancel each other out | |
| except when working with unsigned zeros: they're there to | |
| ensure that the branch cut has the correct continuity on | |
| systems that don't support signed zeros */ | |
| r.imag = -copysign(Py_MATH_PI/2., -z.imag); | |
| errno = 0; | |
| } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) { | |
| /* C99 standard says: atanh(1+/-0.) should be inf +/- 0i */ | |
| if (ay == 0.) { | |
| r.real = INF; | |
| r.imag = z.imag; | |
| errno = EDOM; | |
| } else { | |
| r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.))); | |
| r.imag = copysign(atan2(2., -ay)/2, z.imag); | |
| errno = 0; | |
| } | |
| } else { | |
| r.real = m_log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.; | |
| r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.; | |
| errno = 0; | |
| } | |
| return r; | |
| } | |
| PyDoc_STRVAR(c_atanh_doc, | |
| "atanh(x)\n" | |
| "\n" | |
| "Return the hyperbolic arc tangent of x."); | |
| static Py_complex | |
| c_cos(Py_complex z) | |
| { | |
| /* cos(z) = cosh(iz) */ | |
| Py_complex r; | |
| r.real = -z.imag; | |
| r.imag = z.real; | |
| r = c_cosh(r); | |
| return r; | |
| } | |
| PyDoc_STRVAR(c_cos_doc, | |
| "cos(x)\n" | |
| "\n" | |
| "Return the cosine of x."); | |
| /* cosh(infinity + i*y) needs to be dealt with specially */ | |
| static Py_complex cosh_special_values[7][7]; | |
| static Py_complex | |
| c_cosh(Py_complex z) | |
| { | |
| Py_complex r; | |
| double x_minus_one; | |
| /* special treatment for cosh(+/-inf + iy) if y is not a NaN */ | |
| if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { | |
| if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) && | |
| (z.imag != 0.)) { | |
| if (z.real > 0) { | |
| r.real = copysign(INF, cos(z.imag)); | |
| r.imag = copysign(INF, sin(z.imag)); | |
| } | |
| else { | |
| r.real = copysign(INF, cos(z.imag)); | |
| r.imag = -copysign(INF, sin(z.imag)); | |
| } | |
| } | |
| else { | |
| r = cosh_special_values[special_type(z.real)] | |
| [special_type(z.imag)]; | |
| } | |
| /* need to set errno = EDOM if y is +/- infinity and x is not | |
| a NaN */ | |
| if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real)) | |
| errno = EDOM; | |
| else | |
| errno = 0; | |
| return r; | |
| } | |
| if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { | |
| /* deal correctly with cases where cosh(z.real) overflows but | |
| cosh(z) does not. */ | |
| x_minus_one = z.real - copysign(1., z.real); | |
| r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E; | |
| r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E; | |
| } else { | |
| r.real = cos(z.imag) * cosh(z.real); | |
| r.imag = sin(z.imag) * sinh(z.real); | |
| } | |
| /* detect overflow, and set errno accordingly */ | |
| if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) | |
| errno = ERANGE; | |
| else | |
| errno = 0; | |
| return r; | |
| } | |
| PyDoc_STRVAR(c_cosh_doc, | |
| "cosh(x)\n" | |
| "\n" | |
| "Return the hyperbolic cosine of x."); | |
| /* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for | |
| finite y */ | |
| static Py_complex exp_special_values[7][7]; | |
| static Py_complex | |
| c_exp(Py_complex z) | |
| { | |
| Py_complex r; | |
| double l; | |
| if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { | |
| if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) | |
| && (z.imag != 0.)) { | |
| if (z.real > 0) { | |
| r.real = copysign(INF, cos(z.imag)); | |
| r.imag = copysign(INF, sin(z.imag)); | |
| } | |
| else { | |
| r.real = copysign(0., cos(z.imag)); | |
| r.imag = copysign(0., sin(z.imag)); | |
| } | |
| } | |
| else { | |
| r = exp_special_values[special_type(z.real)] | |
| [special_type(z.imag)]; | |
| } | |
| /* need to set errno = EDOM if y is +/- infinity and x is not | |
| a NaN and not -infinity */ | |
| if (Py_IS_INFINITY(z.imag) && | |
| (Py_IS_FINITE(z.real) || | |
| (Py_IS_INFINITY(z.real) && z.real > 0))) | |
| errno = EDOM; | |
| else | |
| errno = 0; | |
| return r; | |
| } | |
| if (z.real > CM_LOG_LARGE_DOUBLE) { | |
| l = exp(z.real-1.); | |
| r.real = l*cos(z.imag)*Py_MATH_E; | |
| r.imag = l*sin(z.imag)*Py_MATH_E; | |
| } else { | |
| l = exp(z.real); | |
| r.real = l*cos(z.imag); | |
| r.imag = l*sin(z.imag); | |
| } | |
| /* detect overflow, and set errno accordingly */ | |
| if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) | |
| errno = ERANGE; | |
| else | |
| errno = 0; | |
| return r; | |
| } | |
| PyDoc_STRVAR(c_exp_doc, | |
| "exp(x)\n" | |
| "\n" | |
| "Return the exponential value e**x."); | |
| static Py_complex log_special_values[7][7]; | |
| static Py_complex | |
| c_log(Py_complex z) | |
| { | |
| /* | |
| The usual formula for the real part is log(hypot(z.real, z.imag)). | |
| There are four situations where this formula is potentially | |
| problematic: | |
| (1) the absolute value of z is subnormal. Then hypot is subnormal, | |
| so has fewer than the usual number of bits of accuracy, hence may | |
| have large relative error. This then gives a large absolute error | |
| in the log. This can be solved by rescaling z by a suitable power | |
| of 2. | |
| (2) the absolute value of z is greater than DBL_MAX (e.g. when both | |
| z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX) | |
| Again, rescaling solves this. | |
| (3) the absolute value of z is close to 1. In this case it's | |
| difficult to achieve good accuracy, at least in part because a | |
| change of 1ulp in the real or imaginary part of z can result in a | |
| change of billions of ulps in the correctly rounded answer. | |
| (4) z = 0. The simplest thing to do here is to call the | |
| floating-point log with an argument of 0, and let its behaviour | |
| (returning -infinity, signaling a floating-point exception, setting | |
| errno, or whatever) determine that of c_log. So the usual formula | |
| is fine here. | |
| */ | |
| Py_complex r; | |
| double ax, ay, am, an, h; | |
| SPECIAL_VALUE(z, log_special_values); | |
| ax = fabs(z.real); | |
| ay = fabs(z.imag); | |
| if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) { | |
| r.real = log(hypot(ax/2., ay/2.)) + M_LN2; | |
| } else if (ax < DBL_MIN && ay < DBL_MIN) { | |
| if (ax > 0. || ay > 0.) { | |
| /* catch cases where hypot(ax, ay) is subnormal */ | |
| r.real = log(hypot(ldexp(ax, DBL_MANT_DIG), | |
| ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2; | |
| } | |
| else { | |
| /* log(+/-0. +/- 0i) */ | |
| r.real = -INF; | |
| r.imag = atan2(z.imag, z.real); | |
| errno = EDOM; | |
| return r; | |
| } | |
| } else { | |
| h = hypot(ax, ay); | |
| if (0.71 <= h && h <= 1.73) { | |
| am = ax > ay ? ax : ay; /* max(ax, ay) */ | |
| an = ax > ay ? ay : ax; /* min(ax, ay) */ | |
| r.real = m_log1p((am-1)*(am+1)+an*an)/2.; | |
| } else { | |
| r.real = log(h); | |
| } | |
| } | |
| r.imag = atan2(z.imag, z.real); | |
| errno = 0; | |
| return r; | |
| } | |
| static Py_complex | |
| c_log10(Py_complex z) | |
| { | |
| Py_complex r; | |
| int errno_save; | |
| r = c_log(z); | |
| errno_save = errno; /* just in case the divisions affect errno */ | |
| r.real = r.real / M_LN10; | |
| r.imag = r.imag / M_LN10; | |
| errno = errno_save; | |
| return r; | |
| } | |
| PyDoc_STRVAR(c_log10_doc, | |
| "log10(x)\n" | |
| "\n" | |
| "Return the base-10 logarithm of x."); | |
| static Py_complex | |
| c_sin(Py_complex z) | |
| { | |
| /* sin(z) = -i sin(iz) */ | |
| Py_complex s, r; | |
| s.real = -z.imag; | |
| s.imag = z.real; | |
| s = c_sinh(s); | |
| r.real = s.imag; | |
| r.imag = -s.real; | |
| return r; | |
| } | |
| PyDoc_STRVAR(c_sin_doc, | |
| "sin(x)\n" | |
| "\n" | |
| "Return the sine of x."); | |
| /* sinh(infinity + i*y) needs to be dealt with specially */ | |
| static Py_complex sinh_special_values[7][7]; | |
| static Py_complex | |
| c_sinh(Py_complex z) | |
| { | |
| Py_complex r; | |
| double x_minus_one; | |
| /* special treatment for sinh(+/-inf + iy) if y is finite and | |
| nonzero */ | |
| if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { | |
| if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) | |
| && (z.imag != 0.)) { | |
| if (z.real > 0) { | |
| r.real = copysign(INF, cos(z.imag)); | |
| r.imag = copysign(INF, sin(z.imag)); | |
| } | |
| else { | |
| r.real = -copysign(INF, cos(z.imag)); | |
| r.imag = copysign(INF, sin(z.imag)); | |
| } | |
| } | |
| else { | |
| r = sinh_special_values[special_type(z.real)] | |
| [special_type(z.imag)]; | |
| } | |
| /* need to set errno = EDOM if y is +/- infinity and x is not | |
| a NaN */ | |
| if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real)) | |
| errno = EDOM; | |
| else | |
| errno = 0; | |
| return r; | |
| } | |
| if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { | |
| x_minus_one = z.real - copysign(1., z.real); | |
| r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E; | |
| r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E; | |
| } else { | |
| r.real = cos(z.imag) * sinh(z.real); | |
| r.imag = sin(z.imag) * cosh(z.real); | |
| } | |
| /* detect overflow, and set errno accordingly */ | |
| if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) | |
| errno = ERANGE; | |
| else | |
| errno = 0; | |
| return r; | |
| } | |
| PyDoc_STRVAR(c_sinh_doc, | |
| "sinh(x)\n" | |
| "\n" | |
| "Return the hyperbolic sine of x."); | |
| static Py_complex sqrt_special_values[7][7]; | |
| static Py_complex | |
| c_sqrt(Py_complex z) | |
| { | |
| /* | |
| Method: use symmetries to reduce to the case when x = z.real and y | |
| = z.imag are nonnegative. Then the real part of the result is | |
| given by | |
| s = sqrt((x + hypot(x, y))/2) | |
| and the imaginary part is | |
| d = (y/2)/s | |
| If either x or y is very large then there's a risk of overflow in | |
| computation of the expression x + hypot(x, y). We can avoid this | |
| by rewriting the formula for s as: | |
| s = 2*sqrt(x/8 + hypot(x/8, y/8)) | |
| This costs us two extra multiplications/divisions, but avoids the | |
| overhead of checking for x and y large. | |
| If both x and y are subnormal then hypot(x, y) may also be | |
| subnormal, so will lack full precision. We solve this by rescaling | |
| x and y by a sufficiently large power of 2 to ensure that x and y | |
| are normal. | |
| */ | |
| Py_complex r; | |
| double s,d; | |
| double ax, ay; | |
| SPECIAL_VALUE(z, sqrt_special_values); | |
| if (z.real == 0. && z.imag == 0.) { | |
| r.real = 0.; | |
| r.imag = z.imag; | |
| return r; | |
| } | |
| ax = fabs(z.real); | |
| ay = fabs(z.imag); | |
| if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) { | |
| /* here we catch cases where hypot(ax, ay) is subnormal */ | |
| ax = ldexp(ax, CM_SCALE_UP); | |
| s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))), | |
| CM_SCALE_DOWN); | |
| } else { | |
| ax /= 8.; | |
| s = 2.*sqrt(ax + hypot(ax, ay/8.)); | |
| } | |
| d = ay/(2.*s); | |
| if (z.real >= 0.) { | |
| r.real = s; | |
| r.imag = copysign(d, z.imag); | |
| } else { | |
| r.real = d; | |
| r.imag = copysign(s, z.imag); | |
| } | |
| errno = 0; | |
| return r; | |
| } | |
| PyDoc_STRVAR(c_sqrt_doc, | |
| "sqrt(x)\n" | |
| "\n" | |
| "Return the square root of x."); | |
| static Py_complex | |
| c_tan(Py_complex z) | |
| { | |
| /* tan(z) = -i tanh(iz) */ | |
| Py_complex s, r; | |
| s.real = -z.imag; | |
| s.imag = z.real; | |
| s = c_tanh(s); | |
| r.real = s.imag; | |
| r.imag = -s.real; | |
| return r; | |
| } | |
| PyDoc_STRVAR(c_tan_doc, | |
| "tan(x)\n" | |
| "\n" | |
| "Return the tangent of x."); | |
| /* tanh(infinity + i*y) needs to be dealt with specially */ | |
| static Py_complex tanh_special_values[7][7]; | |
| static Py_complex | |
| c_tanh(Py_complex z) | |
| { | |
| /* Formula: | |
| tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) / | |
| (1+tan(y)^2 tanh(x)^2) | |
| To avoid excessive roundoff error, 1-tanh(x)^2 is better computed | |
| as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2 | |
| by 4 exp(-2*x) instead, to avoid possible overflow in the | |
| computation of cosh(x). | |
| */ | |
| Py_complex r; | |
| double tx, ty, cx, txty, denom; | |
| /* special treatment for tanh(+/-inf + iy) if y is finite and | |
| nonzero */ | |
| if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { | |
| if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) | |
| && (z.imag != 0.)) { | |
| if (z.real > 0) { | |
| r.real = 1.0; | |
| r.imag = copysign(0., | |
| 2.*sin(z.imag)*cos(z.imag)); | |
| } | |
| else { | |
| r.real = -1.0; | |
| r.imag = copysign(0., | |
| 2.*sin(z.imag)*cos(z.imag)); | |
| } | |
| } | |
| else { | |
| r = tanh_special_values[special_type(z.real)] | |
| [special_type(z.imag)]; | |
| } | |
| /* need to set errno = EDOM if z.imag is +/-infinity and | |
| z.real is finite */ | |
| if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real)) | |
| errno = EDOM; | |
| else | |
| errno = 0; | |
| return r; | |
| } | |
| /* danger of overflow in 2.*z.imag !*/ | |
| if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { | |
| r.real = copysign(1., z.real); | |
| r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real)); | |
| } else { | |
| tx = tanh(z.real); | |
| ty = tan(z.imag); | |
| cx = 1./cosh(z.real); | |
| txty = tx*ty; | |
| denom = 1. + txty*txty; | |
| r.real = tx*(1.+ty*ty)/denom; | |
| r.imag = ((ty/denom)*cx)*cx; | |
| } | |
| errno = 0; | |
| return r; | |
| } | |
| PyDoc_STRVAR(c_tanh_doc, | |
| "tanh(x)\n" | |
| "\n" | |
| "Return the hyperbolic tangent of x."); | |
| static PyObject * | |
| cmath_log(PyObject *self, PyObject *args) | |
| { | |
| Py_complex x; | |
| Py_complex y; | |
| if (!PyArg_ParseTuple(args, "D|D", &x, &y)) | |
| return NULL; | |
| errno = 0; | |
| PyFPE_START_PROTECT("complex function", return 0) | |
| x = c_log(x); | |
| if (PyTuple_GET_SIZE(args) == 2) { | |
| y = c_log(y); | |
| x = c_quot(x, y); | |
| } | |
| PyFPE_END_PROTECT(x) | |
| if (errno != 0) | |
| return math_error(); | |
| return PyComplex_FromCComplex(x); | |
| } | |
| PyDoc_STRVAR(cmath_log_doc, | |
| "log(x[, base]) -> the logarithm of x to the given base.\n\ | |
| If the base not specified, returns the natural logarithm (base e) of x."); | |
| /* And now the glue to make them available from Python: */ | |
| static PyObject * | |
| math_error(void) | |
| { | |
| if (errno == EDOM) | |
| PyErr_SetString(PyExc_ValueError, "math domain error"); | |
| else if (errno == ERANGE) | |
| PyErr_SetString(PyExc_OverflowError, "math range error"); | |
| else /* Unexpected math error */ | |
| PyErr_SetFromErrno(PyExc_ValueError); | |
| return NULL; | |
| } | |
| static PyObject * | |
| math_1(PyObject *args, Py_complex (*func)(Py_complex)) | |
| { | |
| Py_complex x,r ; | |
| if (!PyArg_ParseTuple(args, "D", &x)) | |
| return NULL; | |
| errno = 0; | |
| PyFPE_START_PROTECT("complex function", return 0); | |
| r = (*func)(x); | |
| PyFPE_END_PROTECT(r); | |
| if (errno == EDOM) { | |
| PyErr_SetString(PyExc_ValueError, "math domain error"); | |
| return NULL; | |
| } | |
| else if (errno == ERANGE) { | |
| PyErr_SetString(PyExc_OverflowError, "math range error"); | |
| return NULL; | |
| } | |
| else { | |
| return PyComplex_FromCComplex(r); | |
| } | |
| } | |
| #define FUNC1(stubname, func) \ | |
| static PyObject * stubname(PyObject *self, PyObject *args) { \ | |
| return math_1(args, func); \ | |
| } | |
| FUNC1(cmath_acos, c_acos) | |
| FUNC1(cmath_acosh, c_acosh) | |
| FUNC1(cmath_asin, c_asin) | |
| FUNC1(cmath_asinh, c_asinh) | |
| FUNC1(cmath_atan, c_atan) | |
| FUNC1(cmath_atanh, c_atanh) | |
| FUNC1(cmath_cos, c_cos) | |
| FUNC1(cmath_cosh, c_cosh) | |
| FUNC1(cmath_exp, c_exp) | |
| FUNC1(cmath_log10, c_log10) | |
| FUNC1(cmath_sin, c_sin) | |
| FUNC1(cmath_sinh, c_sinh) | |
| FUNC1(cmath_sqrt, c_sqrt) | |
| FUNC1(cmath_tan, c_tan) | |
| FUNC1(cmath_tanh, c_tanh) | |
| static PyObject * | |
| cmath_phase(PyObject *self, PyObject *args) | |
| { | |
| Py_complex z; | |
| double phi; | |
| if (!PyArg_ParseTuple(args, "D:phase", &z)) | |
| return NULL; | |
| errno = 0; | |
| PyFPE_START_PROTECT("arg function", return 0) | |
| phi = c_atan2(z); | |
| PyFPE_END_PROTECT(phi) | |
| if (errno != 0) | |
| return math_error(); | |
| else | |
| return PyFloat_FromDouble(phi); | |
| } | |
| PyDoc_STRVAR(cmath_phase_doc, | |
| "phase(z) -> float\n\n\ | |
| Return argument, also known as the phase angle, of a complex."); | |
| static PyObject * | |
| cmath_polar(PyObject *self, PyObject *args) | |
| { | |
| Py_complex z; | |
| double r, phi; | |
| if (!PyArg_ParseTuple(args, "D:polar", &z)) | |
| return NULL; | |
| PyFPE_START_PROTECT("polar function", return 0) | |
| phi = c_atan2(z); /* should not cause any exception */ | |
| r = c_abs(z); /* sets errno to ERANGE on overflow; otherwise 0 */ | |
| PyFPE_END_PROTECT(r) | |
| if (errno != 0) | |
| return math_error(); | |
| else | |
| return Py_BuildValue("dd", r, phi); | |
| } | |
| PyDoc_STRVAR(cmath_polar_doc, | |
| "polar(z) -> r: float, phi: float\n\n\ | |
| Convert a complex from rectangular coordinates to polar coordinates. r is\n\ | |
| the distance from 0 and phi the phase angle."); | |
| /* | |
| rect() isn't covered by the C99 standard, but it's not too hard to | |
| figure out 'spirit of C99' rules for special value handing: | |
| rect(x, t) should behave like exp(log(x) + it) for positive-signed x | |
| rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x | |
| rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0) | |
| gives nan +- i0 with the sign of the imaginary part unspecified. | |
| */ | |
| static Py_complex rect_special_values[7][7]; | |
| static PyObject * | |
| cmath_rect(PyObject *self, PyObject *args) | |
| { | |
| Py_complex z; | |
| double r, phi; | |
| if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi)) | |
| return NULL; | |
| errno = 0; | |
| PyFPE_START_PROTECT("rect function", return 0) | |
| /* deal with special values */ | |
| if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) { | |
| /* if r is +/-infinity and phi is finite but nonzero then | |
| result is (+-INF +-INF i), but we need to compute cos(phi) | |
| and sin(phi) to figure out the signs. */ | |
| if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi) | |
| && (phi != 0.))) { | |
| if (r > 0) { | |
| z.real = copysign(INF, cos(phi)); | |
| z.imag = copysign(INF, sin(phi)); | |
| } | |
| else { | |
| z.real = -copysign(INF, cos(phi)); | |
| z.imag = -copysign(INF, sin(phi)); | |
| } | |
| } | |
| else { | |
| z = rect_special_values[special_type(r)] | |
| [special_type(phi)]; | |
| } | |
| /* need to set errno = EDOM if r is a nonzero number and phi | |
| is infinite */ | |
| if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi)) | |
| errno = EDOM; | |
| else | |
| errno = 0; | |
| } | |
| else { | |
| z.real = r * cos(phi); | |
| z.imag = r * sin(phi); | |
| errno = 0; | |
| } | |
| PyFPE_END_PROTECT(z) | |
| if (errno != 0) | |
| return math_error(); | |
| else | |
| return PyComplex_FromCComplex(z); | |
| } | |
| PyDoc_STRVAR(cmath_rect_doc, | |
| "rect(r, phi) -> z: complex\n\n\ | |
| Convert from polar coordinates to rectangular coordinates."); | |
| static PyObject * | |
| cmath_isnan(PyObject *self, PyObject *args) | |
| { | |
| Py_complex z; | |
| if (!PyArg_ParseTuple(args, "D:isnan", &z)) | |
| return NULL; | |
| return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag)); | |
| } | |
| PyDoc_STRVAR(cmath_isnan_doc, | |
| "isnan(z) -> bool\n\ | |
| Checks if the real or imaginary part of z not a number (NaN)"); | |
| static PyObject * | |
| cmath_isinf(PyObject *self, PyObject *args) | |
| { | |
| Py_complex z; | |
| if (!PyArg_ParseTuple(args, "D:isnan", &z)) | |
| return NULL; | |
| return PyBool_FromLong(Py_IS_INFINITY(z.real) || | |
| Py_IS_INFINITY(z.imag)); | |
| } | |
| PyDoc_STRVAR(cmath_isinf_doc, | |
| "isinf(z) -> bool\n\ | |
| Checks if the real or imaginary part of z is infinite."); | |
| PyDoc_STRVAR(module_doc, | |
| "This module is always available. It provides access to mathematical\n" | |
| "functions for complex numbers."); | |
| static PyMethodDef cmath_methods[] = { | |
| {"acos", cmath_acos, METH_VARARGS, c_acos_doc}, | |
| {"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc}, | |
| {"asin", cmath_asin, METH_VARARGS, c_asin_doc}, | |
| {"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc}, | |
| {"atan", cmath_atan, METH_VARARGS, c_atan_doc}, | |
| {"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc}, | |
| {"cos", cmath_cos, METH_VARARGS, c_cos_doc}, | |
| {"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc}, | |
| {"exp", cmath_exp, METH_VARARGS, c_exp_doc}, | |
| {"isinf", cmath_isinf, METH_VARARGS, cmath_isinf_doc}, | |
| {"isnan", cmath_isnan, METH_VARARGS, cmath_isnan_doc}, | |
| {"log", cmath_log, METH_VARARGS, cmath_log_doc}, | |
| {"log10", cmath_log10, METH_VARARGS, c_log10_doc}, | |
| {"phase", cmath_phase, METH_VARARGS, cmath_phase_doc}, | |
| {"polar", cmath_polar, METH_VARARGS, cmath_polar_doc}, | |
| {"rect", cmath_rect, METH_VARARGS, cmath_rect_doc}, | |
| {"sin", cmath_sin, METH_VARARGS, c_sin_doc}, | |
| {"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc}, | |
| {"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc}, | |
| {"tan", cmath_tan, METH_VARARGS, c_tan_doc}, | |
| {"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc}, | |
| {NULL, NULL} /* sentinel */ | |
| }; | |
| PyMODINIT_FUNC | |
| initcmath(void) | |
| { | |
| PyObject *m; | |
| m = Py_InitModule3("cmath", cmath_methods, module_doc); | |
| if (m == NULL) | |
| return; | |
| PyModule_AddObject(m, "pi", | |
| PyFloat_FromDouble(Py_MATH_PI)); | |
| PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); | |
| /* initialize special value tables */ | |
| #define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY } | |
| #define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p; | |
| INIT_SPECIAL_VALUES(acos_special_values, { | |
| C(P34,INF) C(P,INF) C(P,INF) C(P,-INF) C(P,-INF) C(P34,-INF) C(N,INF) | |
| C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N) | |
| C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N) | |
| C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N) | |
| C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N) | |
| C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF) | |
| C(N,INF) C(N,N) C(N,N) C(N,N) C(N,N) C(N,-INF) C(N,N) | |
| }) | |
| INIT_SPECIAL_VALUES(acosh_special_values, { | |
| C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N) | |
| C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) | |
| C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N) | |
| C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N) | |
| C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) | |
| C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N) | |
| C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N) | |
| }) | |
| INIT_SPECIAL_VALUES(asinh_special_values, { | |
| C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N) | |
| C(-INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-INF,P12) C(N,N) | |
| C(-INF,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-INF,P12) C(N,N) | |
| C(INF,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,P12) C(N,N) | |
| C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) | |
| C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N) | |
| C(INF,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(INF,N) C(N,N) | |
| }) | |
| INIT_SPECIAL_VALUES(atanh_special_values, { | |
| C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N) | |
| C(-0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-0.,P12) C(N,N) | |
| C(-0.,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-0.,P12) C(-0.,N) | |
| C(0.,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,P12) C(0.,N) | |
| C(0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(0.,P12) C(N,N) | |
| C(0.,-P12) C(0.,-P12) C(0.,-P12) C(0.,P12) C(0.,P12) C(0.,P12) C(0.,N) | |
| C(0.,-P12) C(N,N) C(N,N) C(N,N) C(N,N) C(0.,P12) C(N,N) | |
| }) | |
| INIT_SPECIAL_VALUES(cosh_special_values, { | |
| C(INF,N) C(U,U) C(INF,0.) C(INF,-0.) C(U,U) C(INF,N) C(INF,N) | |
| C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) | |
| C(N,0.) C(U,U) C(1.,0.) C(1.,-0.) C(U,U) C(N,0.) C(N,0.) | |
| C(N,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,0.) C(N,0.) | |
| C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) | |
| C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) | |
| C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N) | |
| }) | |
| INIT_SPECIAL_VALUES(exp_special_values, { | |
| C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.) | |
| C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) | |
| C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N) | |
| C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N) | |
| C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) | |
| C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) | |
| C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N) | |
| }) | |
| INIT_SPECIAL_VALUES(log_special_values, { | |
| C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N) | |
| C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) | |
| C(INF,-P12) C(U,U) C(-INF,-P) C(-INF,P) C(U,U) C(INF,P12) C(N,N) | |
| C(INF,-P12) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,P12) C(N,N) | |
| C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) | |
| C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N) | |
| C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N) | |
| }) | |
| INIT_SPECIAL_VALUES(sinh_special_values, { | |
| C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N) | |
| C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) | |
| C(0.,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(0.,N) C(0.,N) | |
| C(0.,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,N) C(0.,N) | |
| C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) | |
| C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) | |
| C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N) | |
| }) | |
| INIT_SPECIAL_VALUES(sqrt_special_values, { | |
| C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF) | |
| C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N) | |
| C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N) | |
| C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N) | |
| C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N) | |
| C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N) | |
| C(INF,-INF) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,INF) C(N,N) | |
| }) | |
| INIT_SPECIAL_VALUES(tanh_special_values, { | |
| C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.) | |
| C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) | |
| C(N,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N) C(N,N) | |
| C(N,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(N,N) C(N,N) | |
| C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) | |
| C(1.,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(1.,0.) C(1.,0.) | |
| C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N) | |
| }) | |
| INIT_SPECIAL_VALUES(rect_special_values, { | |
| C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N) | |
| C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) | |
| C(0.,0.) C(U,U) C(-0.,0.) C(-0.,-0.) C(U,U) C(0.,0.) C(0.,0.) | |
| C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.) | |
| C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) | |
| C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) | |
| C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N) | |
| }) | |
| } |