| /* Random objects */ | |
| /* ------------------------------------------------------------------ | |
| The code in this module was based on a download from: | |
| http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html | |
| It was modified in 2002 by Raymond Hettinger as follows: | |
| * the principal computational lines untouched. | |
| * renamed genrand_res53() to random_random() and wrapped | |
| in python calling/return code. | |
| * genrand_int32() and the helper functions, init_genrand() | |
| and init_by_array(), were declared static, wrapped in | |
| Python calling/return code. also, their global data | |
| references were replaced with structure references. | |
| * unused functions from the original were deleted. | |
| new, original C python code was added to implement the | |
| Random() interface. | |
| The following are the verbatim comments from the original code: | |
| A C-program for MT19937, with initialization improved 2002/1/26. | |
| Coded by Takuji Nishimura and Makoto Matsumoto. | |
| Before using, initialize the state by using init_genrand(seed) | |
| or init_by_array(init_key, key_length). | |
| Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, | |
| All rights reserved. | |
| Redistribution and use in source and binary forms, with or without | |
| modification, are permitted provided that the following conditions | |
| are met: | |
| 1. Redistributions of source code must retain the above copyright | |
| notice, this list of conditions and the following disclaimer. | |
| 2. Redistributions in binary form must reproduce the above copyright | |
| notice, this list of conditions and the following disclaimer in the | |
| documentation and/or other materials provided with the distribution. | |
| 3. The names of its contributors may not be used to endorse or promote | |
| products derived from this software without specific prior written | |
| permission. | |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | |
| CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | |
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| Any feedback is very welcome. | |
| http://www.math.keio.ac.jp/matumoto/emt.html | |
| email: matumoto@math.keio.ac.jp | |
| */ | |
| /* ---------------------------------------------------------------*/ | |
| #include "Python.h" | |
| #include <time.h> /* for seeding to current time */ | |
| /* Period parameters -- These are all magic. Don't change. */ | |
| #define N 624 | |
| #define M 397 | |
| #define MATRIX_A 0x9908b0dfUL /* constant vector a */ | |
| #define UPPER_MASK 0x80000000UL /* most significant w-r bits */ | |
| #define LOWER_MASK 0x7fffffffUL /* least significant r bits */ | |
| typedef struct { | |
| PyObject_HEAD | |
| unsigned long state[N]; | |
| int index; | |
| } RandomObject; | |
| static PyTypeObject Random_Type; | |
| #define RandomObject_Check(v) (Py_TYPE(v) == &Random_Type) | |
| /* Random methods */ | |
| /* generates a random number on [0,0xffffffff]-interval */ | |
| static unsigned long | |
| genrand_int32(RandomObject *self) | |
| { | |
| unsigned long y; | |
| static unsigned long mag01[2]={0x0UL, MATRIX_A}; | |
| /* mag01[x] = x * MATRIX_A for x=0,1 */ | |
| unsigned long *mt; | |
| mt = self->state; | |
| if (self->index >= N) { /* generate N words at one time */ | |
| int kk; | |
| for (kk=0;kk<N-M;kk++) { | |
| y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); | |
| mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL]; | |
| } | |
| for (;kk<N-1;kk++) { | |
| y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); | |
| mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL]; | |
| } | |
| y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK); | |
| mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL]; | |
| self->index = 0; | |
| } | |
| y = mt[self->index++]; | |
| y ^= (y >> 11); | |
| y ^= (y << 7) & 0x9d2c5680UL; | |
| y ^= (y << 15) & 0xefc60000UL; | |
| y ^= (y >> 18); | |
| return y; | |
| } | |
| /* random_random is the function named genrand_res53 in the original code; | |
| * generates a random number on [0,1) with 53-bit resolution; note that | |
| * 9007199254740992 == 2**53; I assume they're spelling "/2**53" as | |
| * multiply-by-reciprocal in the (likely vain) hope that the compiler will | |
| * optimize the division away at compile-time. 67108864 is 2**26. In | |
| * effect, a contains 27 random bits shifted left 26, and b fills in the | |
| * lower 26 bits of the 53-bit numerator. | |
| * The orginal code credited Isaku Wada for this algorithm, 2002/01/09. | |
| */ | |
| static PyObject * | |
| random_random(RandomObject *self) | |
| { | |
| unsigned long a=genrand_int32(self)>>5, b=genrand_int32(self)>>6; | |
| return PyFloat_FromDouble((a*67108864.0+b)*(1.0/9007199254740992.0)); | |
| } | |
| /* initializes mt[N] with a seed */ | |
| static void | |
| init_genrand(RandomObject *self, unsigned long s) | |
| { | |
| int mti; | |
| unsigned long *mt; | |
| mt = self->state; | |
| mt[0]= s & 0xffffffffUL; | |
| for (mti=1; mti<N; mti++) { | |
| mt[mti] = | |
| (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti); | |
| /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ | |
| /* In the previous versions, MSBs of the seed affect */ | |
| /* only MSBs of the array mt[]. */ | |
| /* 2002/01/09 modified by Makoto Matsumoto */ | |
| mt[mti] &= 0xffffffffUL; | |
| /* for >32 bit machines */ | |
| } | |
| self->index = mti; | |
| return; | |
| } | |
| /* initialize by an array with array-length */ | |
| /* init_key is the array for initializing keys */ | |
| /* key_length is its length */ | |
| static PyObject * | |
| init_by_array(RandomObject *self, unsigned long init_key[], unsigned long key_length) | |
| { | |
| unsigned int i, j, k; /* was signed in the original code. RDH 12/16/2002 */ | |
| unsigned long *mt; | |
| mt = self->state; | |
| init_genrand(self, 19650218UL); | |
| i=1; j=0; | |
| k = (N>key_length ? N : key_length); | |
| for (; k; k--) { | |
| mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL)) | |
| + init_key[j] + j; /* non linear */ | |
| mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ | |
| i++; j++; | |
| if (i>=N) { mt[0] = mt[N-1]; i=1; } | |
| if (j>=key_length) j=0; | |
| } | |
| for (k=N-1; k; k--) { | |
| mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL)) | |
| - i; /* non linear */ | |
| mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ | |
| i++; | |
| if (i>=N) { mt[0] = mt[N-1]; i=1; } | |
| } | |
| mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ | |
| Py_INCREF(Py_None); | |
| return Py_None; | |
| } | |
| /* | |
| * The rest is Python-specific code, neither part of, nor derived from, the | |
| * Twister download. | |
| */ | |
| static PyObject * | |
| random_seed(RandomObject *self, PyObject *args) | |
| { | |
| PyObject *result = NULL; /* guilty until proved innocent */ | |
| PyObject *masklower = NULL; | |
| PyObject *thirtytwo = NULL; | |
| PyObject *n = NULL; | |
| unsigned long *key = NULL; | |
| unsigned long keymax; /* # of allocated slots in key */ | |
| unsigned long keyused; /* # of used slots in key */ | |
| int err; | |
| PyObject *arg = NULL; | |
| if (!PyArg_UnpackTuple(args, "seed", 0, 1, &arg)) | |
| return NULL; | |
| if (arg == NULL || arg == Py_None) { | |
| time_t now; | |
| time(&now); | |
| init_genrand(self, (unsigned long)now); | |
| Py_INCREF(Py_None); | |
| return Py_None; | |
| } | |
| /* If the arg is an int or long, use its absolute value; else use | |
| * the absolute value of its hash code. | |
| */ | |
| if (PyInt_Check(arg) || PyLong_Check(arg)) | |
| n = PyNumber_Absolute(arg); | |
| else { | |
| long hash = PyObject_Hash(arg); | |
| if (hash == -1) | |
| goto Done; | |
| n = PyLong_FromUnsignedLong((unsigned long)hash); | |
| } | |
| if (n == NULL) | |
| goto Done; | |
| /* Now split n into 32-bit chunks, from the right. Each piece is | |
| * stored into key, which has a capacity of keymax chunks, of which | |
| * keyused are filled. Alas, the repeated shifting makes this a | |
| * quadratic-time algorithm; we'd really like to use | |
| * _PyLong_AsByteArray here, but then we'd have to break into the | |
| * long representation to figure out how big an array was needed | |
| * in advance. | |
| */ | |
| keymax = 8; /* arbitrary; grows later if needed */ | |
| keyused = 0; | |
| key = (unsigned long *)PyMem_Malloc(keymax * sizeof(*key)); | |
| if (key == NULL) | |
| goto Done; | |
| masklower = PyLong_FromUnsignedLong(0xffffffffU); | |
| if (masklower == NULL) | |
| goto Done; | |
| thirtytwo = PyInt_FromLong(32L); | |
| if (thirtytwo == NULL) | |
| goto Done; | |
| while ((err=PyObject_IsTrue(n))) { | |
| PyObject *newn; | |
| PyObject *pychunk; | |
| unsigned long chunk; | |
| if (err == -1) | |
| goto Done; | |
| pychunk = PyNumber_And(n, masklower); | |
| if (pychunk == NULL) | |
| goto Done; | |
| chunk = PyLong_AsUnsignedLong(pychunk); | |
| Py_DECREF(pychunk); | |
| if (chunk == (unsigned long)-1 && PyErr_Occurred()) | |
| goto Done; | |
| newn = PyNumber_Rshift(n, thirtytwo); | |
| if (newn == NULL) | |
| goto Done; | |
| Py_DECREF(n); | |
| n = newn; | |
| if (keyused >= keymax) { | |
| unsigned long bigger = keymax << 1; | |
| if ((bigger >> 1) != keymax) { | |
| PyErr_NoMemory(); | |
| goto Done; | |
| } | |
| key = (unsigned long *)PyMem_Realloc(key, | |
| bigger * sizeof(*key)); | |
| if (key == NULL) | |
| goto Done; | |
| keymax = bigger; | |
| } | |
| assert(keyused < keymax); | |
| key[keyused++] = chunk; | |
| } | |
| if (keyused == 0) | |
| key[keyused++] = 0UL; | |
| result = init_by_array(self, key, keyused); | |
| Done: | |
| Py_XDECREF(masklower); | |
| Py_XDECREF(thirtytwo); | |
| Py_XDECREF(n); | |
| PyMem_Free(key); | |
| return result; | |
| } | |
| static PyObject * | |
| random_getstate(RandomObject *self) | |
| { | |
| PyObject *state; | |
| PyObject *element; | |
| int i; | |
| state = PyTuple_New(N+1); | |
| if (state == NULL) | |
| return NULL; | |
| for (i=0; i<N ; i++) { | |
| element = PyLong_FromUnsignedLong(self->state[i]); | |
| if (element == NULL) | |
| goto Fail; | |
| PyTuple_SET_ITEM(state, i, element); | |
| } | |
| element = PyLong_FromLong((long)(self->index)); | |
| if (element == NULL) | |
| goto Fail; | |
| PyTuple_SET_ITEM(state, i, element); | |
| return state; | |
| Fail: | |
| Py_DECREF(state); | |
| return NULL; | |
| } | |
| static PyObject * | |
| random_setstate(RandomObject *self, PyObject *state) | |
| { | |
| int i; | |
| unsigned long element; | |
| long index; | |
| if (!PyTuple_Check(state)) { | |
| PyErr_SetString(PyExc_TypeError, | |
| "state vector must be a tuple"); | |
| return NULL; | |
| } | |
| if (PyTuple_Size(state) != N+1) { | |
| PyErr_SetString(PyExc_ValueError, | |
| "state vector is the wrong size"); | |
| return NULL; | |
| } | |
| for (i=0; i<N ; i++) { | |
| element = PyLong_AsUnsignedLong(PyTuple_GET_ITEM(state, i)); | |
| if (element == (unsigned long)-1 && PyErr_Occurred()) | |
| return NULL; | |
| self->state[i] = element & 0xffffffffUL; /* Make sure we get sane state */ | |
| } | |
| index = PyLong_AsLong(PyTuple_GET_ITEM(state, i)); | |
| if (index == -1 && PyErr_Occurred()) | |
| return NULL; | |
| self->index = (int)index; | |
| Py_INCREF(Py_None); | |
| return Py_None; | |
| } | |
| /* | |
| Jumpahead should be a fast way advance the generator n-steps ahead, but | |
| lacking a formula for that, the next best is to use n and the existing | |
| state to create a new state far away from the original. | |
| The generator uses constant spaced additive feedback, so shuffling the | |
| state elements ought to produce a state which would not be encountered | |
| (in the near term) by calls to random(). Shuffling is normally | |
| implemented by swapping the ith element with another element ranging | |
| from 0 to i inclusive. That allows the element to have the possibility | |
| of not being moved. Since the goal is to produce a new, different | |
| state, the swap element is ranged from 0 to i-1 inclusive. This assures | |
| that each element gets moved at least once. | |
| To make sure that consecutive calls to jumpahead(n) produce different | |
| states (even in the rare case of involutory shuffles), i+1 is added to | |
| each element at position i. Successive calls are then guaranteed to | |
| have changing (growing) values as well as shuffled positions. | |
| Finally, the self->index value is set to N so that the generator itself | |
| kicks in on the next call to random(). This assures that all results | |
| have been through the generator and do not just reflect alterations to | |
| the underlying state. | |
| */ | |
| static PyObject * | |
| random_jumpahead(RandomObject *self, PyObject *n) | |
| { | |
| long i, j; | |
| PyObject *iobj; | |
| PyObject *remobj; | |
| unsigned long *mt, tmp; | |
| if (!PyInt_Check(n) && !PyLong_Check(n)) { | |
| PyErr_Format(PyExc_TypeError, "jumpahead requires an " | |
| "integer, not '%s'", | |
| Py_TYPE(n)->tp_name); | |
| return NULL; | |
| } | |
| mt = self->state; | |
| for (i = N-1; i > 1; i--) { | |
| iobj = PyInt_FromLong(i); | |
| if (iobj == NULL) | |
| return NULL; | |
| remobj = PyNumber_Remainder(n, iobj); | |
| Py_DECREF(iobj); | |
| if (remobj == NULL) | |
| return NULL; | |
| j = PyInt_AsLong(remobj); | |
| Py_DECREF(remobj); | |
| if (j == -1L && PyErr_Occurred()) | |
| return NULL; | |
| tmp = mt[i]; | |
| mt[i] = mt[j]; | |
| mt[j] = tmp; | |
| } | |
| for (i = 0; i < N; i++) | |
| mt[i] += i+1; | |
| self->index = N; | |
| Py_INCREF(Py_None); | |
| return Py_None; | |
| } | |
| static PyObject * | |
| random_getrandbits(RandomObject *self, PyObject *args) | |
| { | |
| int k, i, bytes; | |
| unsigned long r; | |
| unsigned char *bytearray; | |
| PyObject *result; | |
| if (!PyArg_ParseTuple(args, "i:getrandbits", &k)) | |
| return NULL; | |
| if (k <= 0) { | |
| PyErr_SetString(PyExc_ValueError, | |
| "number of bits must be greater than zero"); | |
| return NULL; | |
| } | |
| bytes = ((k - 1) / 32 + 1) * 4; | |
| bytearray = (unsigned char *)PyMem_Malloc(bytes); | |
| if (bytearray == NULL) { | |
| PyErr_NoMemory(); | |
| return NULL; | |
| } | |
| /* Fill-out whole words, byte-by-byte to avoid endianness issues */ | |
| for (i=0 ; i<bytes ; i+=4, k-=32) { | |
| r = genrand_int32(self); | |
| if (k < 32) | |
| r >>= (32 - k); | |
| bytearray[i+0] = (unsigned char)r; | |
| bytearray[i+1] = (unsigned char)(r >> 8); | |
| bytearray[i+2] = (unsigned char)(r >> 16); | |
| bytearray[i+3] = (unsigned char)(r >> 24); | |
| } | |
| /* little endian order to match bytearray assignment order */ | |
| result = _PyLong_FromByteArray(bytearray, bytes, 1, 0); | |
| PyMem_Free(bytearray); | |
| return result; | |
| } | |
| static PyObject * | |
| random_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | |
| { | |
| RandomObject *self; | |
| PyObject *tmp; | |
| if (type == &Random_Type && !_PyArg_NoKeywords("Random()", kwds)) | |
| return NULL; | |
| self = (RandomObject *)type->tp_alloc(type, 0); | |
| if (self == NULL) | |
| return NULL; | |
| tmp = random_seed(self, args); | |
| if (tmp == NULL) { | |
| Py_DECREF(self); | |
| return NULL; | |
| } | |
| Py_DECREF(tmp); | |
| return (PyObject *)self; | |
| } | |
| static PyMethodDef random_methods[] = { | |
| {"random", (PyCFunction)random_random, METH_NOARGS, | |
| PyDoc_STR("random() -> x in the interval [0, 1).")}, | |
| {"seed", (PyCFunction)random_seed, METH_VARARGS, | |
| PyDoc_STR("seed([n]) -> None. Defaults to current time.")}, | |
| {"getstate", (PyCFunction)random_getstate, METH_NOARGS, | |
| PyDoc_STR("getstate() -> tuple containing the current state.")}, | |
| {"setstate", (PyCFunction)random_setstate, METH_O, | |
| PyDoc_STR("setstate(state) -> None. Restores generator state.")}, | |
| {"jumpahead", (PyCFunction)random_jumpahead, METH_O, | |
| PyDoc_STR("jumpahead(int) -> None. Create new state from " | |
| "existing state and integer.")}, | |
| {"getrandbits", (PyCFunction)random_getrandbits, METH_VARARGS, | |
| PyDoc_STR("getrandbits(k) -> x. Generates a long int with " | |
| "k random bits.")}, | |
| {NULL, NULL} /* sentinel */ | |
| }; | |
| PyDoc_STRVAR(random_doc, | |
| "Random() -> create a random number generator with its own internal state."); | |
| static PyTypeObject Random_Type = { | |
| PyVarObject_HEAD_INIT(NULL, 0) | |
| "_random.Random", /*tp_name*/ | |
| sizeof(RandomObject), /*tp_basicsize*/ | |
| 0, /*tp_itemsize*/ | |
| /* methods */ | |
| 0, /*tp_dealloc*/ | |
| 0, /*tp_print*/ | |
| 0, /*tp_getattr*/ | |
| 0, /*tp_setattr*/ | |
| 0, /*tp_compare*/ | |
| 0, /*tp_repr*/ | |
| 0, /*tp_as_number*/ | |
| 0, /*tp_as_sequence*/ | |
| 0, /*tp_as_mapping*/ | |
| 0, /*tp_hash*/ | |
| 0, /*tp_call*/ | |
| 0, /*tp_str*/ | |
| PyObject_GenericGetAttr, /*tp_getattro*/ | |
| 0, /*tp_setattro*/ | |
| 0, /*tp_as_buffer*/ | |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/ | |
| random_doc, /*tp_doc*/ | |
| 0, /*tp_traverse*/ | |
| 0, /*tp_clear*/ | |
| 0, /*tp_richcompare*/ | |
| 0, /*tp_weaklistoffset*/ | |
| 0, /*tp_iter*/ | |
| 0, /*tp_iternext*/ | |
| random_methods, /*tp_methods*/ | |
| 0, /*tp_members*/ | |
| 0, /*tp_getset*/ | |
| 0, /*tp_base*/ | |
| 0, /*tp_dict*/ | |
| 0, /*tp_descr_get*/ | |
| 0, /*tp_descr_set*/ | |
| 0, /*tp_dictoffset*/ | |
| 0, /*tp_init*/ | |
| 0, /*tp_alloc*/ | |
| random_new, /*tp_new*/ | |
| _PyObject_Del, /*tp_free*/ | |
| 0, /*tp_is_gc*/ | |
| }; | |
| PyDoc_STRVAR(module_doc, | |
| "Module implements the Mersenne Twister random number generator."); | |
| PyMODINIT_FUNC | |
| init_random(void) | |
| { | |
| PyObject *m; | |
| if (PyType_Ready(&Random_Type) < 0) | |
| return; | |
| m = Py_InitModule3("_random", NULL, module_doc); | |
| if (m == NULL) | |
| return; | |
| Py_INCREF(&Random_Type); | |
| PyModule_AddObject(m, "Random", (PyObject *)&Random_Type); | |
| } |