| # Originally contributed by Sjoerd Mullender. | |
| # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>. | |
| """Rational, infinite-precision, real numbers.""" | |
| from __future__ import division | |
| from decimal import Decimal | |
| import math | |
| import numbers | |
| import operator | |
| import re | |
| __all__ = ['Fraction', 'gcd'] | |
| Rational = numbers.Rational | |
| def gcd(a, b): | |
| """Calculate the Greatest Common Divisor of a and b. | |
| Unless b==0, the result will have the same sign as b (so that when | |
| b is divided by it, the result comes out positive). | |
| """ | |
| while b: | |
| a, b = b, a%b | |
| return a | |
| _RATIONAL_FORMAT = re.compile(r""" | |
| \A\s* # optional whitespace at the start, then | |
| (?P<sign>[-+]?) # an optional sign, then | |
| (?=\d|\.\d) # lookahead for digit or .digit | |
| (?P<num>\d*) # numerator (possibly empty) | |
| (?: # followed by | |
| (?:/(?P<denom>\d+))? # an optional denominator | |
| | # or | |
| (?:\.(?P<decimal>\d*))? # an optional fractional part | |
| (?:E(?P<exp>[-+]?\d+))? # and optional exponent | |
| ) | |
| \s*\Z # and optional whitespace to finish | |
| """, re.VERBOSE | re.IGNORECASE) | |
| class Fraction(Rational): | |
| """This class implements rational numbers. | |
| In the two-argument form of the constructor, Fraction(8, 6) will | |
| produce a rational number equivalent to 4/3. Both arguments must | |
| be Rational. The numerator defaults to 0 and the denominator | |
| defaults to 1 so that Fraction(3) == 3 and Fraction() == 0. | |
| Fractions can also be constructed from: | |
| - numeric strings similar to those accepted by the | |
| float constructor (for example, '-2.3' or '1e10') | |
| - strings of the form '123/456' | |
| - float and Decimal instances | |
| - other Rational instances (including integers) | |
| """ | |
| __slots__ = ('_numerator', '_denominator') | |
| # We're immutable, so use __new__ not __init__ | |
| def __new__(cls, numerator=0, denominator=None): | |
| """Constructs a Fraction. | |
| Takes a string like '3/2' or '1.5', another Rational instance, a | |
| numerator/denominator pair, or a float. | |
| Examples | |
| -------- | |
| >>> Fraction(10, -8) | |
| Fraction(-5, 4) | |
| >>> Fraction(Fraction(1, 7), 5) | |
| Fraction(1, 35) | |
| >>> Fraction(Fraction(1, 7), Fraction(2, 3)) | |
| Fraction(3, 14) | |
| >>> Fraction('314') | |
| Fraction(314, 1) | |
| >>> Fraction('-35/4') | |
| Fraction(-35, 4) | |
| >>> Fraction('3.1415') # conversion from numeric string | |
| Fraction(6283, 2000) | |
| >>> Fraction('-47e-2') # string may include a decimal exponent | |
| Fraction(-47, 100) | |
| >>> Fraction(1.47) # direct construction from float (exact conversion) | |
| Fraction(6620291452234629, 4503599627370496) | |
| >>> Fraction(2.25) | |
| Fraction(9, 4) | |
| >>> Fraction(Decimal('1.47')) | |
| Fraction(147, 100) | |
| """ | |
| self = super(Fraction, cls).__new__(cls) | |
| if denominator is None: | |
| if isinstance(numerator, Rational): | |
| self._numerator = numerator.numerator | |
| self._denominator = numerator.denominator | |
| return self | |
| elif isinstance(numerator, float): | |
| # Exact conversion from float | |
| value = Fraction.from_float(numerator) | |
| self._numerator = value._numerator | |
| self._denominator = value._denominator | |
| return self | |
| elif isinstance(numerator, Decimal): | |
| value = Fraction.from_decimal(numerator) | |
| self._numerator = value._numerator | |
| self._denominator = value._denominator | |
| return self | |
| elif isinstance(numerator, basestring): | |
| # Handle construction from strings. | |
| m = _RATIONAL_FORMAT.match(numerator) | |
| if m is None: | |
| raise ValueError('Invalid literal for Fraction: %r' % | |
| numerator) | |
| numerator = int(m.group('num') or '0') | |
| denom = m.group('denom') | |
| if denom: | |
| denominator = int(denom) | |
| else: | |
| denominator = 1 | |
| decimal = m.group('decimal') | |
| if decimal: | |
| scale = 10**len(decimal) | |
| numerator = numerator * scale + int(decimal) | |
| denominator *= scale | |
| exp = m.group('exp') | |
| if exp: | |
| exp = int(exp) | |
| if exp >= 0: | |
| numerator *= 10**exp | |
| else: | |
| denominator *= 10**-exp | |
| if m.group('sign') == '-': | |
| numerator = -numerator | |
| else: | |
| raise TypeError("argument should be a string " | |
| "or a Rational instance") | |
| elif (isinstance(numerator, Rational) and | |
| isinstance(denominator, Rational)): | |
| numerator, denominator = ( | |
| numerator.numerator * denominator.denominator, | |
| denominator.numerator * numerator.denominator | |
| ) | |
| else: | |
| raise TypeError("both arguments should be " | |
| "Rational instances") | |
| if denominator == 0: | |
| raise ZeroDivisionError('Fraction(%s, 0)' % numerator) | |
| g = gcd(numerator, denominator) | |
| self._numerator = numerator // g | |
| self._denominator = denominator // g | |
| return self | |
| @classmethod | |
| def from_float(cls, f): | |
| """Converts a finite float to a rational number, exactly. | |
| Beware that Fraction.from_float(0.3) != Fraction(3, 10). | |
| """ | |
| if isinstance(f, numbers.Integral): | |
| return cls(f) | |
| elif not isinstance(f, float): | |
| raise TypeError("%s.from_float() only takes floats, not %r (%s)" % | |
| (cls.__name__, f, type(f).__name__)) | |
| if math.isnan(f) or math.isinf(f): | |
| raise TypeError("Cannot convert %r to %s." % (f, cls.__name__)) | |
| return cls(*f.as_integer_ratio()) | |
| @classmethod | |
| def from_decimal(cls, dec): | |
| """Converts a finite Decimal instance to a rational number, exactly.""" | |
| from decimal import Decimal | |
| if isinstance(dec, numbers.Integral): | |
| dec = Decimal(int(dec)) | |
| elif not isinstance(dec, Decimal): | |
| raise TypeError( | |
| "%s.from_decimal() only takes Decimals, not %r (%s)" % | |
| (cls.__name__, dec, type(dec).__name__)) | |
| if not dec.is_finite(): | |
| # Catches infinities and nans. | |
| raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__)) | |
| sign, digits, exp = dec.as_tuple() | |
| digits = int(''.join(map(str, digits))) | |
| if sign: | |
| digits = -digits | |
| if exp >= 0: | |
| return cls(digits * 10 ** exp) | |
| else: | |
| return cls(digits, 10 ** -exp) | |
| def limit_denominator(self, max_denominator=1000000): | |
| """Closest Fraction to self with denominator at most max_denominator. | |
| >>> Fraction('3.141592653589793').limit_denominator(10) | |
| Fraction(22, 7) | |
| >>> Fraction('3.141592653589793').limit_denominator(100) | |
| Fraction(311, 99) | |
| >>> Fraction(4321, 8765).limit_denominator(10000) | |
| Fraction(4321, 8765) | |
| """ | |
| # Algorithm notes: For any real number x, define a *best upper | |
| # approximation* to x to be a rational number p/q such that: | |
| # | |
| # (1) p/q >= x, and | |
| # (2) if p/q > r/s >= x then s > q, for any rational r/s. | |
| # | |
| # Define *best lower approximation* similarly. Then it can be | |
| # proved that a rational number is a best upper or lower | |
| # approximation to x if, and only if, it is a convergent or | |
| # semiconvergent of the (unique shortest) continued fraction | |
| # associated to x. | |
| # | |
| # To find a best rational approximation with denominator <= M, | |
| # we find the best upper and lower approximations with | |
| # denominator <= M and take whichever of these is closer to x. | |
| # In the event of a tie, the bound with smaller denominator is | |
| # chosen. If both denominators are equal (which can happen | |
| # only when max_denominator == 1 and self is midway between | |
| # two integers) the lower bound---i.e., the floor of self, is | |
| # taken. | |
| if max_denominator < 1: | |
| raise ValueError("max_denominator should be at least 1") | |
| if self._denominator <= max_denominator: | |
| return Fraction(self) | |
| p0, q0, p1, q1 = 0, 1, 1, 0 | |
| n, d = self._numerator, self._denominator | |
| while True: | |
| a = n//d | |
| q2 = q0+a*q1 | |
| if q2 > max_denominator: | |
| break | |
| p0, q0, p1, q1 = p1, q1, p0+a*p1, q2 | |
| n, d = d, n-a*d | |
| k = (max_denominator-q0)//q1 | |
| bound1 = Fraction(p0+k*p1, q0+k*q1) | |
| bound2 = Fraction(p1, q1) | |
| if abs(bound2 - self) <= abs(bound1-self): | |
| return bound2 | |
| else: | |
| return bound1 | |
| @property | |
| def numerator(a): | |
| return a._numerator | |
| @property | |
| def denominator(a): | |
| return a._denominator | |
| def __repr__(self): | |
| """repr(self)""" | |
| return ('Fraction(%s, %s)' % (self._numerator, self._denominator)) | |
| def __str__(self): | |
| """str(self)""" | |
| if self._denominator == 1: | |
| return str(self._numerator) | |
| else: | |
| return '%s/%s' % (self._numerator, self._denominator) | |
| def _operator_fallbacks(monomorphic_operator, fallback_operator): | |
| """Generates forward and reverse operators given a purely-rational | |
| operator and a function from the operator module. | |
| Use this like: | |
| __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op) | |
| In general, we want to implement the arithmetic operations so | |
| that mixed-mode operations either call an implementation whose | |
| author knew about the types of both arguments, or convert both | |
| to the nearest built in type and do the operation there. In | |
| Fraction, that means that we define __add__ and __radd__ as: | |
| def __add__(self, other): | |
| # Both types have numerators/denominator attributes, | |
| # so do the operation directly | |
| if isinstance(other, (int, long, Fraction)): | |
| return Fraction(self.numerator * other.denominator + | |
| other.numerator * self.denominator, | |
| self.denominator * other.denominator) | |
| # float and complex don't have those operations, but we | |
| # know about those types, so special case them. | |
| elif isinstance(other, float): | |
| return float(self) + other | |
| elif isinstance(other, complex): | |
| return complex(self) + other | |
| # Let the other type take over. | |
| return NotImplemented | |
| def __radd__(self, other): | |
| # radd handles more types than add because there's | |
| # nothing left to fall back to. | |
| if isinstance(other, Rational): | |
| return Fraction(self.numerator * other.denominator + | |
| other.numerator * self.denominator, | |
| self.denominator * other.denominator) | |
| elif isinstance(other, Real): | |
| return float(other) + float(self) | |
| elif isinstance(other, Complex): | |
| return complex(other) + complex(self) | |
| return NotImplemented | |
| There are 5 different cases for a mixed-type addition on | |
| Fraction. I'll refer to all of the above code that doesn't | |
| refer to Fraction, float, or complex as "boilerplate". 'r' | |
| will be an instance of Fraction, which is a subtype of | |
| Rational (r : Fraction <: Rational), and b : B <: | |
| Complex. The first three involve 'r + b': | |
| 1. If B <: Fraction, int, float, or complex, we handle | |
| that specially, and all is well. | |
| 2. If Fraction falls back to the boilerplate code, and it | |
| were to return a value from __add__, we'd miss the | |
| possibility that B defines a more intelligent __radd__, | |
| so the boilerplate should return NotImplemented from | |
| __add__. In particular, we don't handle Rational | |
| here, even though we could get an exact answer, in case | |
| the other type wants to do something special. | |
| 3. If B <: Fraction, Python tries B.__radd__ before | |
| Fraction.__add__. This is ok, because it was | |
| implemented with knowledge of Fraction, so it can | |
| handle those instances before delegating to Real or | |
| Complex. | |
| The next two situations describe 'b + r'. We assume that b | |
| didn't know about Fraction in its implementation, and that it | |
| uses similar boilerplate code: | |
| 4. If B <: Rational, then __radd_ converts both to the | |
| builtin rational type (hey look, that's us) and | |
| proceeds. | |
| 5. Otherwise, __radd__ tries to find the nearest common | |
| base ABC, and fall back to its builtin type. Since this | |
| class doesn't subclass a concrete type, there's no | |
| implementation to fall back to, so we need to try as | |
| hard as possible to return an actual value, or the user | |
| will get a TypeError. | |
| """ | |
| def forward(a, b): | |
| if isinstance(b, (int, long, Fraction)): | |
| return monomorphic_operator(a, b) | |
| elif isinstance(b, float): | |
| return fallback_operator(float(a), b) | |
| elif isinstance(b, complex): | |
| return fallback_operator(complex(a), b) | |
| else: | |
| return NotImplemented | |
| forward.__name__ = '__' + fallback_operator.__name__ + '__' | |
| forward.__doc__ = monomorphic_operator.__doc__ | |
| def reverse(b, a): | |
| if isinstance(a, Rational): | |
| # Includes ints. | |
| return monomorphic_operator(a, b) | |
| elif isinstance(a, numbers.Real): | |
| return fallback_operator(float(a), float(b)) | |
| elif isinstance(a, numbers.Complex): | |
| return fallback_operator(complex(a), complex(b)) | |
| else: | |
| return NotImplemented | |
| reverse.__name__ = '__r' + fallback_operator.__name__ + '__' | |
| reverse.__doc__ = monomorphic_operator.__doc__ | |
| return forward, reverse | |
| def _add(a, b): | |
| """a + b""" | |
| return Fraction(a.numerator * b.denominator + | |
| b.numerator * a.denominator, | |
| a.denominator * b.denominator) | |
| __add__, __radd__ = _operator_fallbacks(_add, operator.add) | |
| def _sub(a, b): | |
| """a - b""" | |
| return Fraction(a.numerator * b.denominator - | |
| b.numerator * a.denominator, | |
| a.denominator * b.denominator) | |
| __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub) | |
| def _mul(a, b): | |
| """a * b""" | |
| return Fraction(a.numerator * b.numerator, a.denominator * b.denominator) | |
| __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul) | |
| def _div(a, b): | |
| """a / b""" | |
| return Fraction(a.numerator * b.denominator, | |
| a.denominator * b.numerator) | |
| __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv) | |
| __div__, __rdiv__ = _operator_fallbacks(_div, operator.div) | |
| def __floordiv__(a, b): | |
| """a // b""" | |
| # Will be math.floor(a / b) in 3.0. | |
| div = a / b | |
| if isinstance(div, Rational): | |
| # trunc(math.floor(div)) doesn't work if the rational is | |
| # more precise than a float because the intermediate | |
| # rounding may cross an integer boundary. | |
| return div.numerator // div.denominator | |
| else: | |
| return math.floor(div) | |
| def __rfloordiv__(b, a): | |
| """a // b""" | |
| # Will be math.floor(a / b) in 3.0. | |
| div = a / b | |
| if isinstance(div, Rational): | |
| # trunc(math.floor(div)) doesn't work if the rational is | |
| # more precise than a float because the intermediate | |
| # rounding may cross an integer boundary. | |
| return div.numerator // div.denominator | |
| else: | |
| return math.floor(div) | |
| def __mod__(a, b): | |
| """a % b""" | |
| div = a // b | |
| return a - b * div | |
| def __rmod__(b, a): | |
| """a % b""" | |
| div = a // b | |
| return a - b * div | |
| def __pow__(a, b): | |
| """a ** b | |
| If b is not an integer, the result will be a float or complex | |
| since roots are generally irrational. If b is an integer, the | |
| result will be rational. | |
| """ | |
| if isinstance(b, Rational): | |
| if b.denominator == 1: | |
| power = b.numerator | |
| if power >= 0: | |
| return Fraction(a._numerator ** power, | |
| a._denominator ** power) | |
| else: | |
| return Fraction(a._denominator ** -power, | |
| a._numerator ** -power) | |
| else: | |
| # A fractional power will generally produce an | |
| # irrational number. | |
| return float(a) ** float(b) | |
| else: | |
| return float(a) ** b | |
| def __rpow__(b, a): | |
| """a ** b""" | |
| if b._denominator == 1 and b._numerator >= 0: | |
| # If a is an int, keep it that way if possible. | |
| return a ** b._numerator | |
| if isinstance(a, Rational): | |
| return Fraction(a.numerator, a.denominator) ** b | |
| if b._denominator == 1: | |
| return a ** b._numerator | |
| return a ** float(b) | |
| def __pos__(a): | |
| """+a: Coerces a subclass instance to Fraction""" | |
| return Fraction(a._numerator, a._denominator) | |
| def __neg__(a): | |
| """-a""" | |
| return Fraction(-a._numerator, a._denominator) | |
| def __abs__(a): | |
| """abs(a)""" | |
| return Fraction(abs(a._numerator), a._denominator) | |
| def __trunc__(a): | |
| """trunc(a)""" | |
| if a._numerator < 0: | |
| return -(-a._numerator // a._denominator) | |
| else: | |
| return a._numerator // a._denominator | |
| def __hash__(self): | |
| """hash(self) | |
| Tricky because values that are exactly representable as a | |
| float must have the same hash as that float. | |
| """ | |
| # XXX since this method is expensive, consider caching the result | |
| if self._denominator == 1: | |
| # Get integers right. | |
| return hash(self._numerator) | |
| # Expensive check, but definitely correct. | |
| if self == float(self): | |
| return hash(float(self)) | |
| else: | |
| # Use tuple's hash to avoid a high collision rate on | |
| # simple fractions. | |
| return hash((self._numerator, self._denominator)) | |
| def __eq__(a, b): | |
| """a == b""" | |
| if isinstance(b, Rational): | |
| return (a._numerator == b.numerator and | |
| a._denominator == b.denominator) | |
| if isinstance(b, numbers.Complex) and b.imag == 0: | |
| b = b.real | |
| if isinstance(b, float): | |
| if math.isnan(b) or math.isinf(b): | |
| # comparisons with an infinity or nan should behave in | |
| # the same way for any finite a, so treat a as zero. | |
| return 0.0 == b | |
| else: | |
| return a == a.from_float(b) | |
| else: | |
| # Since a doesn't know how to compare with b, let's give b | |
| # a chance to compare itself with a. | |
| return NotImplemented | |
| def _richcmp(self, other, op): | |
| """Helper for comparison operators, for internal use only. | |
| Implement comparison between a Rational instance `self`, and | |
| either another Rational instance or a float `other`. If | |
| `other` is not a Rational instance or a float, return | |
| NotImplemented. `op` should be one of the six standard | |
| comparison operators. | |
| """ | |
| # convert other to a Rational instance where reasonable. | |
| if isinstance(other, Rational): | |
| return op(self._numerator * other.denominator, | |
| self._denominator * other.numerator) | |
| # comparisons with complex should raise a TypeError, for consistency | |
| # with int<->complex, float<->complex, and complex<->complex comparisons. | |
| if isinstance(other, complex): | |
| raise TypeError("no ordering relation is defined for complex numbers") | |
| if isinstance(other, float): | |
| if math.isnan(other) or math.isinf(other): | |
| return op(0.0, other) | |
| else: | |
| return op(self, self.from_float(other)) | |
| else: | |
| return NotImplemented | |
| def __lt__(a, b): | |
| """a < b""" | |
| return a._richcmp(b, operator.lt) | |
| def __gt__(a, b): | |
| """a > b""" | |
| return a._richcmp(b, operator.gt) | |
| def __le__(a, b): | |
| """a <= b""" | |
| return a._richcmp(b, operator.le) | |
| def __ge__(a, b): | |
| """a >= b""" | |
| return a._richcmp(b, operator.ge) | |
| def __nonzero__(a): | |
| """a != 0""" | |
| return a._numerator != 0 | |
| # support for pickling, copy, and deepcopy | |
| def __reduce__(self): | |
| return (self.__class__, (str(self),)) | |
| def __copy__(self): | |
| if type(self) == Fraction: | |
| return self # I'm immutable; therefore I am my own clone | |
| return self.__class__(self._numerator, self._denominator) | |
| def __deepcopy__(self, memo): | |
| if type(self) == Fraction: | |
| return self # My components are also immutable | |
| return self.__class__(self._numerator, self._denominator) |