| /** @file | |
| Root include file for Mde Package Base type modules | |
| This is the include file for any module of type base. Base modules only use | |
| types defined via this include file and can be ported easily to any | |
| environment. There are a set of base libraries in the Mde Package that can | |
| be used to implement base modules. | |
| Copyright (c) 2006 - 2008, Intel Corporation<BR> | |
| All rights reserved. This program and the accompanying materials | |
| are licensed and made available under the terms and conditions of the BSD License | |
| which accompanies this distribution. The full text of the license may be found at | |
| http://opensource.org/licenses/bsd-license.php | |
| THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
| WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
| **/ | |
| #ifndef __BASE_H__ | |
| #define __BASE_H__ | |
| // | |
| // Include processor specific binding | |
| // | |
| #include <ProcessorBind.h> | |
| /// | |
| /// 128 bit buffer containing a unique identifier value. | |
| /// Unless otherwise specified, aligned on a 64 bit boundary. | |
| /// | |
| typedef struct { | |
| UINT32 Data1; | |
| UINT16 Data2; | |
| UINT16 Data3; | |
| UINT8 Data4[8]; | |
| } GUID; | |
| // | |
| // 8-bytes unsigned value that represents a physical system address. | |
| // | |
| typedef UINT64 PHYSICAL_ADDRESS; | |
| /// | |
| /// LIST_ENTRY structure definition. | |
| /// | |
| typedef struct _LIST_ENTRY LIST_ENTRY; | |
| /// | |
| /// _LIST_ENTRY structure definition. | |
| /// | |
| struct _LIST_ENTRY { | |
| LIST_ENTRY *ForwardLink; | |
| LIST_ENTRY *BackLink; | |
| }; | |
| // | |
| // Modifiers to abstract standard types to aid in debug of problems | |
| // | |
| /// | |
| /// Datum is read-only | |
| /// | |
| #define CONST const | |
| /// | |
| /// Datum is scoped to the current file or function | |
| /// | |
| #define STATIC static | |
| /// | |
| /// Undeclared type | |
| /// | |
| #define VOID void | |
| // | |
| // Modifiers for Data Types used to self document code. | |
| // This concept is borrowed for UEFI specification. | |
| // | |
| /// | |
| /// Datum is passed to the function | |
| /// | |
| #define IN | |
| /// | |
| /// Datum is returned from the function | |
| /// | |
| #define OUT | |
| /// | |
| /// Passing the datum to the function is optional, and a NULL | |
| /// be passed if the value is not supplied. | |
| /// | |
| #define OPTIONAL | |
| // | |
| // UEFI specification claims 1 and 0. We are concerned about the | |
| // complier portability so we did it this way. | |
| // | |
| /// | |
| /// Boolean true value. UEFI Specification defines this value to be 1, | |
| /// but this form is more portable. | |
| /// | |
| #define TRUE ((BOOLEAN)(1==1)) | |
| /// | |
| /// Boolean false value. UEFI Specification defines this value to be 0, | |
| /// but this form is more portable. | |
| /// | |
| #define FALSE ((BOOLEAN)(0==1)) | |
| /// | |
| /// NULL pointer (VOID *) | |
| /// | |
| #define NULL ((VOID *) 0) | |
| #define BIT0 0x00000001 | |
| #define BIT1 0x00000002 | |
| #define BIT2 0x00000004 | |
| #define BIT3 0x00000008 | |
| #define BIT4 0x00000010 | |
| #define BIT5 0x00000020 | |
| #define BIT6 0x00000040 | |
| #define BIT7 0x00000080 | |
| #define BIT8 0x00000100 | |
| #define BIT9 0x00000200 | |
| #define BIT10 0x00000400 | |
| #define BIT11 0x00000800 | |
| #define BIT12 0x00001000 | |
| #define BIT13 0x00002000 | |
| #define BIT14 0x00004000 | |
| #define BIT15 0x00008000 | |
| #define BIT16 0x00010000 | |
| #define BIT17 0x00020000 | |
| #define BIT18 0x00040000 | |
| #define BIT19 0x00080000 | |
| #define BIT20 0x00100000 | |
| #define BIT21 0x00200000 | |
| #define BIT22 0x00400000 | |
| #define BIT23 0x00800000 | |
| #define BIT24 0x01000000 | |
| #define BIT25 0x02000000 | |
| #define BIT26 0x04000000 | |
| #define BIT27 0x08000000 | |
| #define BIT28 0x10000000 | |
| #define BIT29 0x20000000 | |
| #define BIT30 0x40000000 | |
| #define BIT31 0x80000000 | |
| #define BIT32 0x0000000100000000ULL | |
| #define BIT33 0x0000000200000000ULL | |
| #define BIT34 0x0000000400000000ULL | |
| #define BIT35 0x0000000800000000ULL | |
| #define BIT36 0x0000001000000000ULL | |
| #define BIT37 0x0000002000000000ULL | |
| #define BIT38 0x0000004000000000ULL | |
| #define BIT39 0x0000008000000000ULL | |
| #define BIT40 0x0000010000000000ULL | |
| #define BIT41 0x0000020000000000ULL | |
| #define BIT42 0x0000040000000000ULL | |
| #define BIT43 0x0000080000000000ULL | |
| #define BIT44 0x0000100000000000ULL | |
| #define BIT45 0x0000200000000000ULL | |
| #define BIT46 0x0000400000000000ULL | |
| #define BIT47 0x0000800000000000ULL | |
| #define BIT48 0x0001000000000000ULL | |
| #define BIT49 0x0002000000000000ULL | |
| #define BIT50 0x0004000000000000ULL | |
| #define BIT51 0x0008000000000000ULL | |
| #define BIT52 0x0010000000000000ULL | |
| #define BIT53 0x0020000000000000ULL | |
| #define BIT54 0x0040000000000000ULL | |
| #define BIT55 0x0080000000000000ULL | |
| #define BIT56 0x0100000000000000ULL | |
| #define BIT57 0x0200000000000000ULL | |
| #define BIT58 0x0400000000000000ULL | |
| #define BIT59 0x0800000000000000ULL | |
| #define BIT60 0x1000000000000000ULL | |
| #define BIT61 0x2000000000000000ULL | |
| #define BIT62 0x4000000000000000ULL | |
| #define BIT63 0x8000000000000000ULL | |
| // | |
| // Support for variable length argument lists using the ANSI standard. | |
| // | |
| // Since we are using the ANSI standard we used the standard naming and | |
| // did not follow the coding convention | |
| // | |
| // VA_LIST - typedef for argument list. | |
| // VA_START (VA_LIST Marker, argument before the ...) - Init Marker for use. | |
| // VA_END (VA_LIST Marker) - Clear Marker | |
| // VA_ARG (VA_LIST Marker, var arg size) - Use Marker to get an argument from | |
| // the ... list. You must know the size and pass it in this macro. | |
| // | |
| // example: | |
| // | |
| // UINTN | |
| // ExampleVarArg ( | |
| // IN UINTN NumberOfArgs, | |
| // ... | |
| // ) | |
| // { | |
| // VA_LIST Marker; | |
| // UINTN Index; | |
| // UINTN Result; | |
| // | |
| // // | |
| // // Initialize the Marker | |
| // // | |
| // VA_START (Marker, NumberOfArgs); | |
| // for (Index = 0, Result = 0; Index < NumberOfArgs; Index++) { | |
| // // | |
| // // The ... list is a series of UINTN values, so average them up. | |
| // // | |
| // Result += VA_ARG (Marker, UINTN); | |
| // } | |
| // | |
| // VA_END (Marker); | |
| // return Result | |
| // } | |
| // | |
| /** | |
| Return the size of argument that has been aligned to sizeof (UINTN). | |
| @param n The parameter size is to be aligned. | |
| @return The aligned size | |
| **/ | |
| #define _INT_SIZE_OF(n) ((sizeof (n) + sizeof (UINTN) - 1) &~(sizeof (UINTN) - 1)) | |
| /// | |
| /// Pointer to the start of a variable argument list. Same as CHAR8 *. | |
| /// | |
| typedef CHAR8 *VA_LIST; | |
| /** | |
| Retrieves a pointer to the beginning of a variable argument list based on | |
| the name of the parameter that immediately precedes the variable argument list. | |
| This function initializes Marker to point to the beginning of the variable argument | |
| list that immediately follows Parameter. The method for computing the pointer to the | |
| next argument in the argument list is CPU specific following the EFIAPI ABI. | |
| @param Marker Pointer to the beginning of the variable argument list. | |
| @param Parameter The name of the parameter that immediately precedes | |
| the variable argument list. | |
| @return A pointer to the beginning of a variable argument list. | |
| **/ | |
| #define VA_START(Marker, Parameter) (Marker = (VA_LIST) & (Parameter) + _INT_SIZE_OF (Parameter)) | |
| /** | |
| Returns an argument of a specified type from a variable argument list and updates | |
| the pointer to the variable argument list to point to the next argument. | |
| This function returns an argument of the type specified by TYPE from the beginning | |
| of the variable argument list specified by Marker. Marker is then updated to point | |
| to the next argument in the variable argument list. The method for computing the | |
| pointer to the next argument in the argument list is CPU specific following the EFIAPI ABI. | |
| @param Marker Pointer to the beginning of a variable argument list. | |
| @param TYPE The type of argument to retrieve from the beginning | |
| of the variable argument list. | |
| @return An argument of the type specified by TYPE. | |
| **/ | |
| #define VA_ARG(Marker, TYPE) (*(TYPE *) ((Marker += _INT_SIZE_OF (TYPE)) - _INT_SIZE_OF (TYPE))) | |
| /** | |
| Terminates the use of a variable argument list. | |
| This function initializes Marker so it can no longer be used with VA_ARG(). | |
| After this macro is used, the only way to access the variable argument list again is | |
| by using VA_START() again. | |
| @param Marker The variable to set to the beginning of the variable argument list. | |
| **/ | |
| #define VA_END(Marker) (Marker = (VA_LIST) 0) | |
| /** | |
| Macro that returns the byte offset of a field in a data structure. | |
| This function returns the offset, in bytes, of field specified by Field from the | |
| beginning of the data structure specified by TYPE. If TYPE does not contain Field, | |
| the module will not compile. | |
| @param TYPE The name of the data structure that contains the field specified by Field. | |
| @param Field The name of the field in the data structure. | |
| @return Offset, in bytes, of field. | |
| **/ | |
| #define OFFSET_OF(TYPE, Field) ((UINTN) &(((TYPE *)0)->Field)) | |
| /** | |
| Macro that returns a pointer to the data structure that contains a specified field of | |
| that data structure. This is a lightweight method to hide information by placing a | |
| public data structure inside a larger private data structure and using a pointer to | |
| the public data structure to retrieve a pointer to the private data structure. | |
| This function computes the offset, in bytes, of field specified by Field from the beginning | |
| of the data structure specified by TYPE. This offset is subtracted from Record, and is | |
| used to return a pointer to a data structure of the type specified by TYPE.If the data type | |
| specified by TYPE does not contain the field specified by Field, then the module will not compile. | |
| @param Record Pointer to the field specified by Field within a data structure of type TYPE. | |
| @param TYPE The name of the data structure type to return. This data structure must | |
| contain the field specified by Field. | |
| @param Field The name of the field in the data structure specified by TYPE to which Record points. | |
| @return A pointer to the structure from one of it's elements. | |
| **/ | |
| #define BASE_CR(Record, TYPE, Field) ((TYPE *) ((CHAR8 *) (Record) - (CHAR8 *) &(((TYPE *) 0)->Field))) | |
| /** | |
| Rounds a value up to the next boundary using a specified alignment. | |
| This function rounds Value up to the next boundary using the specified Alignment. | |
| This aligned value is returned. | |
| @param Value The value to round up. | |
| @param Alignment The alignment boundary used to return the aligned value. | |
| @return A value up to the next boundary. | |
| **/ | |
| #define ALIGN_VALUE(Value, Alignment) ((Value) + (((Alignment) - (Value)) & ((Alignment) - 1))) | |
| /** | |
| Adjust a pointer by adding the minimum offset required for it to be aligned on | |
| a specified alignment boundary. | |
| This function rounds the pointer specified by Pointer to the next alignment boundary | |
| specified by Alignment. The pointer to the aligned address is returned. | |
| @param Value The value to round up. | |
| @param Alignment The alignment boundary to use to return an aligned pointer. | |
| @return Pointer to the aligned address. | |
| **/ | |
| #define ALIGN_POINTER(Pointer, Alignment) ((VOID *) (ALIGN_VALUE ((UINTN)(Pointer), (Alignment)))) | |
| /** | |
| Rounds a value up to the next natural boundary for the current CPU. | |
| This is 4-bytes for 32-bit CPUs and 8-bytes for 64-bit CPUs. | |
| This function rounds the value specified by Value up to the next natural boundary for the | |
| current CPU. This rounded value is returned. | |
| @param Value The value to round up. | |
| @return Rounded value specified by Value. | |
| **/ | |
| #define ALIGN_VARIABLE(Value) ALIGN_VALUE ((Value), sizeof (UINTN)) | |
| /** | |
| Return the maximum of two operands. | |
| This macro returns the maximum of two operand specified by a and b. | |
| Both a and b must be the same numerical types, signed or unsigned. | |
| @param TYPE Any numerical data types. | |
| @param a The first operand with any numerical type. | |
| @param b The second operand. It should be the same any numerical type with a. | |
| @return Maximum of two operands. | |
| **/ | |
| #define MAX(a, b) \ | |
| (((a) > (b)) ? (a) : (b)) | |
| /** | |
| Return the minimum of two operands. | |
| This macro returns the minimal of two operand specified by a and b. | |
| Both a and b must be the same numerical types, signed or unsigned. | |
| @param TYPE Any numerical data types. | |
| @param a The first operand with any numerical type. | |
| @param b The second operand. It should be the same any numerical type with a. | |
| @return Minimum of two operands. | |
| **/ | |
| #define MIN(a, b) \ | |
| (((a) < (b)) ? (a) : (b)) | |
| // | |
| // Status codes common to all execution phases | |
| // | |
| typedef INTN RETURN_STATUS; | |
| /** | |
| Produces a RETURN_STATUS code with the highest bit set. | |
| @param StatusCode The status code value to convert into a warning code. | |
| StatusCode must be in the range 0x00000000..0x7FFFFFFF. | |
| @return The value specified by StatusCode with the highest bit set. | |
| **/ | |
| #define ENCODE_ERROR(StatusCode) (MAX_BIT | (StatusCode)) | |
| /** | |
| Produces a RETURN_STATUS code with the highest bit clear. | |
| @param StatusCode The status code value to convert into a warning code. | |
| StatusCode must be in the range 0x00000000..0x7FFFFFFF. | |
| @return The value specified by StatusCode with the highest bit clear. | |
| **/ | |
| #define ENCODE_WARNING(StatusCode) (StatusCode) | |
| /** | |
| Returns TRUE if a specified RETURN_STATUS code is an error code. | |
| This function returns TRUE if StatusCode has the high bit set. Otherwise FALSE is returned. | |
| @param StatusCode The status code value to evaluate. | |
| @retval TRUE The high bit of StatusCode is set. | |
| @retval FALSE The high bit of StatusCode is clear. | |
| **/ | |
| #define RETURN_ERROR(StatusCode) ((INTN) (StatusCode) < 0) | |
| /// | |
| /// The operation completed successfully. | |
| /// | |
| #define RETURN_SUCCESS 0 | |
| /// | |
| /// The image failed to load. | |
| /// | |
| #define RETURN_LOAD_ERROR ENCODE_ERROR (1) | |
| /// | |
| /// The parameter was incorrect. | |
| /// | |
| #define RETURN_INVALID_PARAMETER ENCODE_ERROR (2) | |
| /// | |
| /// The operation is not supported. | |
| /// | |
| #define RETURN_UNSUPPORTED ENCODE_ERROR (3) | |
| /// | |
| /// The buffer was not the proper size for the request. | |
| /// | |
| #define RETURN_BAD_BUFFER_SIZE ENCODE_ERROR (4) | |
| /// | |
| /// The buffer was not large enough to hold the requested data. | |
| /// The required buffer size is returned in the appropriate | |
| /// parameter when this error occurs. | |
| /// | |
| #define RETURN_BUFFER_TOO_SMALL ENCODE_ERROR (5) | |
| /// | |
| /// There is no data pending upon return. | |
| /// | |
| #define RETURN_NOT_READY ENCODE_ERROR (6) | |
| /// | |
| /// The physical device reported an error while attempting the | |
| /// operation. | |
| /// | |
| #define RETURN_DEVICE_ERROR ENCODE_ERROR (7) | |
| /// | |
| /// The device can not be written to. | |
| /// | |
| #define RETURN_WRITE_PROTECTED ENCODE_ERROR (8) | |
| /// | |
| /// The resource has run out. | |
| /// | |
| #define RETURN_OUT_OF_RESOURCES ENCODE_ERROR (9) | |
| /// | |
| /// An inconsistency was detected on the file system causing the | |
| /// operation to fail. | |
| /// | |
| #define RETURN_VOLUME_CORRUPTED ENCODE_ERROR (10) | |
| /// | |
| /// There is no more space on the file system. | |
| /// | |
| #define RETURN_VOLUME_FULL ENCODE_ERROR (11) | |
| /// | |
| /// The device does not contain any medium to perform the | |
| /// operation. | |
| /// | |
| #define RETURN_NO_MEDIA ENCODE_ERROR (12) | |
| /// | |
| /// The medium in the device has changed since the last | |
| /// access. | |
| /// | |
| #define RETURN_MEDIA_CHANGED ENCODE_ERROR (13) | |
| /// | |
| /// The item was not found. | |
| /// | |
| #define RETURN_NOT_FOUND ENCODE_ERROR (14) | |
| /// | |
| /// Access was denied. | |
| /// | |
| #define RETURN_ACCESS_DENIED ENCODE_ERROR (15) | |
| /// | |
| /// The server was not found or did not respond to the request. | |
| /// | |
| #define RETURN_NO_RESPONSE ENCODE_ERROR (16) | |
| /// | |
| /// A mapping to the device does not exist. | |
| /// | |
| #define RETURN_NO_MAPPING ENCODE_ERROR (17) | |
| /// | |
| /// A timeout time expired. | |
| /// | |
| #define RETURN_TIMEOUT ENCODE_ERROR (18) | |
| /// | |
| /// The protocol has not been started. | |
| /// | |
| #define RETURN_NOT_STARTED ENCODE_ERROR (19) | |
| /// | |
| /// The protocol has already been started. | |
| /// | |
| #define RETURN_ALREADY_STARTED ENCODE_ERROR (20) | |
| /// | |
| /// The operation was aborted. | |
| /// | |
| #define RETURN_ABORTED ENCODE_ERROR (21) | |
| /// | |
| /// An ICMP error occurred during the network operation. | |
| /// | |
| #define RETURN_ICMP_ERROR ENCODE_ERROR (22) | |
| /// | |
| /// A TFTP error occurred during the network operation. | |
| /// | |
| #define RETURN_TFTP_ERROR ENCODE_ERROR (23) | |
| /// | |
| /// A protocol error occurred during the network operation. | |
| /// | |
| #define RETURN_PROTOCOL_ERROR ENCODE_ERROR (24) | |
| /// | |
| /// A function encountered an internal version that was | |
| /// incompatible with a version requested by the caller. | |
| /// | |
| #define RETURN_INCOMPATIBLE_VERSION ENCODE_ERROR (25) | |
| /// | |
| /// The function was not performed due to a security violation. | |
| /// | |
| #define RETURN_SECURITY_VIOLATION ENCODE_ERROR (26) | |
| /// | |
| /// A CRC error was detected. | |
| /// | |
| #define RETURN_CRC_ERROR ENCODE_ERROR (27) | |
| /// | |
| /// Beginning or end of media was reached. | |
| /// | |
| #define RETURN_END_OF_MEDIA ENCODE_ERROR (28) | |
| /// | |
| /// The end of the file was reached. | |
| /// | |
| #define RETURN_END_OF_FILE ENCODE_ERROR (31) | |
| /// | |
| /// The language specified was invalid. | |
| /// | |
| #define RETURN_INVALID_LANGUAGE ENCODE_ERROR (32) | |
| /// | |
| /// The Unicode string contained one or more characters that | |
| /// the device could not render and were skipped. | |
| /// | |
| #define RETURN_WARN_UNKNOWN_GLYPH ENCODE_WARNING (1) | |
| /// | |
| /// The handle was closed, but the file was not deleted. | |
| /// | |
| #define RETURN_WARN_DELETE_FAILURE ENCODE_WARNING (2) | |
| /// | |
| /// The handle was closed, but the data to the file was not | |
| /// flushed properly. | |
| /// | |
| #define RETURN_WARN_WRITE_FAILURE ENCODE_WARNING (3) | |
| /// | |
| /// The resulting buffer was too small, and the data was | |
| /// truncated to the buffer size. | |
| /// | |
| #define RETURN_WARN_BUFFER_TOO_SMALL ENCODE_WARNING (4) | |
| /** | |
| Returns a 16-bit signature built from 2 ASCII characters. | |
| This macro returns a 16-bit value built from the two ASCII characters specified | |
| by A and B. | |
| @param A The first ASCII character. | |
| @param B The second ASCII character. | |
| @return A 16-bit value built from the two ASCII characters specified by A and B. | |
| **/ | |
| #define SIGNATURE_16(A, B) ((A) | (B << 8)) | |
| /** | |
| Returns a 32-bit signature built from 4 ASCII characters. | |
| This macro returns a 32-bit value built from the four ASCII characters specified | |
| by A, B, C, and D. | |
| @param A The first ASCII character. | |
| @param B The second ASCII character. | |
| @param C The third ASCII character. | |
| @param D The fourth ASCII character. | |
| @return A 32-bit value built from the two ASCII characters specified by A, B, | |
| C and D. | |
| **/ | |
| #define SIGNATURE_32(A, B, C, D) (SIGNATURE_16 (A, B) | (SIGNATURE_16 (C, D) << 16)) | |
| /** | |
| Returns a 64-bit signature built from 8 ASCII characters. | |
| This macro returns a 64-bit value built from the eight ASCII characters specified | |
| by A, B, C, D, E, F, G,and H. | |
| @param A The first ASCII character. | |
| @param B The second ASCII character. | |
| @param C The third ASCII character. | |
| @param D The fourth ASCII character. | |
| @param E The fifth ASCII character. | |
| @param F The sixth ASCII character. | |
| @param G The seventh ASCII character. | |
| @param H The eighth ASCII character. | |
| @return A 64-bit value built from the two ASCII characters specified by A, B, | |
| C, D, E, F, G and H. | |
| **/ | |
| #define SIGNATURE_64(A, B, C, D, E, F, G, H) \ | |
| (SIGNATURE_32 (A, B, C, D) | ((UINT64) (SIGNATURE_32 (E, F, G, H)) << 32)) | |
| #endif | |