| /** @file | |
| The CPU specific programming for PiSmmCpuDxeSmm module. | |
| Copyright (c) 2010 - 2015, Intel Corporation. All rights reserved.<BR> | |
| SPDX-License-Identifier: BSD-2-Clause-Patent | |
| **/ | |
| #include <IndustryStandard/Q35MchIch9.h> | |
| #include <Library/BaseLib.h> | |
| #include <Library/BaseMemoryLib.h> | |
| #include <Library/DebugLib.h> | |
| #include <Library/MemEncryptSevLib.h> | |
| #include <Library/MemoryAllocationLib.h> | |
| #include <Library/PcdLib.h> | |
| #include <Library/SafeIntLib.h> | |
| #include <Library/SmmCpuFeaturesLib.h> | |
| #include <Library/SmmServicesTableLib.h> | |
| #include <Library/UefiBootServicesTableLib.h> | |
| #include <Pcd/CpuHotEjectData.h> | |
| #include <PiSmm.h> | |
| #include <Register/Intel/SmramSaveStateMap.h> | |
| #include <Register/QemuSmramSaveStateMap.h> | |
| // | |
| // EFER register LMA bit | |
| // | |
| #define LMA BIT10 | |
| /** | |
| The constructor function | |
| @param[in] ImageHandle The firmware allocated handle for the EFI image. | |
| @param[in] SystemTable A pointer to the EFI System Table. | |
| @retval EFI_SUCCESS The constructor always returns EFI_SUCCESS. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| SmmCpuFeaturesLibConstructor ( | |
| IN EFI_HANDLE ImageHandle, | |
| IN EFI_SYSTEM_TABLE *SystemTable | |
| ) | |
| { | |
| // | |
| // No need to program SMRRs on our virtual platform. | |
| // | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Called during the very first SMI into System Management Mode to initialize | |
| CPU features, including SMBASE, for the currently executing CPU. Since this | |
| is the first SMI, the SMRAM Save State Map is at the default address of | |
| SMM_DEFAULT_SMBASE + SMRAM_SAVE_STATE_MAP_OFFSET. The currently executing | |
| CPU is specified by CpuIndex and CpuIndex can be used to access information | |
| about the currently executing CPU in the ProcessorInfo array and the | |
| HotPlugCpuData data structure. | |
| @param[in] CpuIndex The index of the CPU to initialize. The value | |
| must be between 0 and the NumberOfCpus field in | |
| the System Management System Table (SMST). | |
| @param[in] IsMonarch TRUE if the CpuIndex is the index of the CPU that | |
| was elected as monarch during System Management | |
| Mode initialization. | |
| FALSE if the CpuIndex is not the index of the CPU | |
| that was elected as monarch during System | |
| Management Mode initialization. | |
| @param[in] ProcessorInfo Pointer to an array of EFI_PROCESSOR_INFORMATION | |
| structures. ProcessorInfo[CpuIndex] contains the | |
| information for the currently executing CPU. | |
| @param[in] CpuHotPlugData Pointer to the CPU_HOT_PLUG_DATA structure that | |
| contains the ApidId and SmBase arrays. | |
| **/ | |
| VOID | |
| EFIAPI | |
| SmmCpuFeaturesInitializeProcessor ( | |
| IN UINTN CpuIndex, | |
| IN BOOLEAN IsMonarch, | |
| IN EFI_PROCESSOR_INFORMATION *ProcessorInfo, | |
| IN CPU_HOT_PLUG_DATA *CpuHotPlugData | |
| ) | |
| { | |
| QEMU_SMRAM_SAVE_STATE_MAP *CpuState; | |
| // | |
| // Configure SMBASE. | |
| // | |
| CpuState = (QEMU_SMRAM_SAVE_STATE_MAP *)(UINTN)( | |
| SMM_DEFAULT_SMBASE + | |
| SMRAM_SAVE_STATE_MAP_OFFSET | |
| ); | |
| if ((CpuState->x86.SMMRevId & 0xFFFF) == 0) { | |
| CpuState->x86.SMBASE = (UINT32)CpuHotPlugData->SmBase[CpuIndex]; | |
| } else { | |
| CpuState->x64.SMBASE = (UINT32)CpuHotPlugData->SmBase[CpuIndex]; | |
| } | |
| // | |
| // No need to program SMRRs on our virtual platform. | |
| // | |
| } | |
| /** | |
| This function updates the SMRAM save state on the currently executing CPU | |
| to resume execution at a specific address after an RSM instruction. This | |
| function must evaluate the SMRAM save state to determine the execution mode | |
| the RSM instruction resumes and update the resume execution address with | |
| either NewInstructionPointer32 or NewInstructionPoint. The auto HALT restart | |
| flag in the SMRAM save state must always be cleared. This function returns | |
| the value of the instruction pointer from the SMRAM save state that was | |
| replaced. If this function returns 0, then the SMRAM save state was not | |
| modified. | |
| This function is called during the very first SMI on each CPU after | |
| SmmCpuFeaturesInitializeProcessor() to set a flag in normal execution mode | |
| to signal that the SMBASE of each CPU has been updated before the default | |
| SMBASE address is used for the first SMI to the next CPU. | |
| @param[in] CpuIndex The index of the CPU to hook. The value | |
| must be between 0 and the NumberOfCpus | |
| field in the System Management System | |
| Table (SMST). | |
| @param[in] CpuState Pointer to SMRAM Save State Map for the | |
| currently executing CPU. | |
| @param[in] NewInstructionPointer32 Instruction pointer to use if resuming to | |
| 32-bit execution mode from 64-bit SMM. | |
| @param[in] NewInstructionPointer Instruction pointer to use if resuming to | |
| same execution mode as SMM. | |
| @retval 0 This function did modify the SMRAM save state. | |
| @retval > 0 The original instruction pointer value from the SMRAM save state | |
| before it was replaced. | |
| **/ | |
| UINT64 | |
| EFIAPI | |
| SmmCpuFeaturesHookReturnFromSmm ( | |
| IN UINTN CpuIndex, | |
| IN SMRAM_SAVE_STATE_MAP *CpuState, | |
| IN UINT64 NewInstructionPointer32, | |
| IN UINT64 NewInstructionPointer | |
| ) | |
| { | |
| UINT64 OriginalInstructionPointer; | |
| QEMU_SMRAM_SAVE_STATE_MAP *CpuSaveState; | |
| CpuSaveState = (QEMU_SMRAM_SAVE_STATE_MAP *)CpuState; | |
| if ((CpuSaveState->x86.SMMRevId & 0xFFFF) == 0) { | |
| OriginalInstructionPointer = (UINT64)CpuSaveState->x86._EIP; | |
| CpuSaveState->x86._EIP = (UINT32)NewInstructionPointer; | |
| // | |
| // Clear the auto HALT restart flag so the RSM instruction returns | |
| // program control to the instruction following the HLT instruction. | |
| // | |
| if ((CpuSaveState->x86.AutoHALTRestart & BIT0) != 0) { | |
| CpuSaveState->x86.AutoHALTRestart &= ~BIT0; | |
| } | |
| } else { | |
| OriginalInstructionPointer = CpuSaveState->x64._RIP; | |
| if ((CpuSaveState->x64.IA32_EFER & LMA) == 0) { | |
| CpuSaveState->x64._RIP = (UINT32)NewInstructionPointer32; | |
| } else { | |
| CpuSaveState->x64._RIP = (UINT32)NewInstructionPointer; | |
| } | |
| // | |
| // Clear the auto HALT restart flag so the RSM instruction returns | |
| // program control to the instruction following the HLT instruction. | |
| // | |
| if ((CpuSaveState->x64.AutoHALTRestart & BIT0) != 0) { | |
| CpuSaveState->x64.AutoHALTRestart &= ~BIT0; | |
| } | |
| } | |
| return OriginalInstructionPointer; | |
| } | |
| STATIC CPU_HOT_EJECT_DATA *mCpuHotEjectData = NULL; | |
| /** | |
| Initialize mCpuHotEjectData if PcdCpuMaxLogicalProcessorNumber > 1. | |
| Also setup the corresponding PcdCpuHotEjectDataAddress. | |
| **/ | |
| STATIC | |
| VOID | |
| InitCpuHotEjectData ( | |
| VOID | |
| ) | |
| { | |
| UINTN Size; | |
| UINT32 Idx; | |
| UINT32 MaxNumberOfCpus; | |
| RETURN_STATUS PcdStatus; | |
| MaxNumberOfCpus = PcdGet32 (PcdCpuMaxLogicalProcessorNumber); | |
| if (MaxNumberOfCpus == 1) { | |
| return; | |
| } | |
| // | |
| // We allocate CPU_HOT_EJECT_DATA and CPU_HOT_EJECT_DATA->QemuSelectorMap[] | |
| // in a single allocation, and explicitly align the QemuSelectorMap[] (which | |
| // is a UINT64 array) at its natural boundary. | |
| // Accordingly, allocate: | |
| // sizeof(*mCpuHotEjectData) + (MaxNumberOfCpus * sizeof(UINT64)) | |
| // and, add sizeof(UINT64) - 1 to use as padding if needed. | |
| // | |
| if (RETURN_ERROR (SafeUintnMult (MaxNumberOfCpus, sizeof (UINT64), &Size)) || | |
| RETURN_ERROR (SafeUintnAdd (Size, sizeof (*mCpuHotEjectData), &Size)) || | |
| RETURN_ERROR (SafeUintnAdd (Size, sizeof (UINT64) - 1, &Size))) | |
| { | |
| DEBUG ((DEBUG_ERROR, "%a: invalid CPU_HOT_EJECT_DATA\n", __FUNCTION__)); | |
| goto Fatal; | |
| } | |
| mCpuHotEjectData = AllocatePool (Size); | |
| if (mCpuHotEjectData == NULL) { | |
| ASSERT (mCpuHotEjectData != NULL); | |
| goto Fatal; | |
| } | |
| mCpuHotEjectData->Handler = NULL; | |
| mCpuHotEjectData->ArrayLength = MaxNumberOfCpus; | |
| mCpuHotEjectData->QemuSelectorMap = ALIGN_POINTER ( | |
| mCpuHotEjectData + 1, | |
| sizeof (UINT64) | |
| ); | |
| // | |
| // We use mCpuHotEjectData->QemuSelectorMap to map | |
| // ProcessorNum -> QemuSelector. Initialize to invalid values. | |
| // | |
| for (Idx = 0; Idx < mCpuHotEjectData->ArrayLength; Idx++) { | |
| mCpuHotEjectData->QemuSelectorMap[Idx] = CPU_EJECT_QEMU_SELECTOR_INVALID; | |
| } | |
| // | |
| // Expose address of CPU Hot eject Data structure | |
| // | |
| PcdStatus = PcdSet64S ( | |
| PcdCpuHotEjectDataAddress, | |
| (UINTN)(VOID *)mCpuHotEjectData | |
| ); | |
| ASSERT_RETURN_ERROR (PcdStatus); | |
| return; | |
| Fatal: | |
| CpuDeadLoop (); | |
| } | |
| /** | |
| Hook point in normal execution mode that allows the one CPU that was elected | |
| as monarch during System Management Mode initialization to perform additional | |
| initialization actions immediately after all of the CPUs have processed their | |
| first SMI and called SmmCpuFeaturesInitializeProcessor() relocating SMBASE | |
| into a buffer in SMRAM and called SmmCpuFeaturesHookReturnFromSmm(). | |
| **/ | |
| VOID | |
| EFIAPI | |
| SmmCpuFeaturesSmmRelocationComplete ( | |
| VOID | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| UINTN MapPagesBase; | |
| UINTN MapPagesCount; | |
| InitCpuHotEjectData (); | |
| if (!MemEncryptSevIsEnabled ()) { | |
| return; | |
| } | |
| // | |
| // Now that SMBASE relocation is complete, re-encrypt the original SMRAM save | |
| // state map's container pages, and release the pages to DXE. (The pages were | |
| // allocated in PlatformPei.) | |
| // | |
| Status = MemEncryptSevLocateInitialSmramSaveStateMapPages ( | |
| &MapPagesBase, | |
| &MapPagesCount | |
| ); | |
| ASSERT_EFI_ERROR (Status); | |
| Status = MemEncryptSevSetPageEncMask ( | |
| 0, // Cr3BaseAddress -- use current CR3 | |
| MapPagesBase, // BaseAddress | |
| MapPagesCount // NumPages | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| DEBUG (( | |
| DEBUG_ERROR, | |
| "%a: MemEncryptSevSetPageEncMask(): %r\n", | |
| __FUNCTION__, | |
| Status | |
| )); | |
| ASSERT (FALSE); | |
| CpuDeadLoop (); | |
| } | |
| ZeroMem ((VOID *)MapPagesBase, EFI_PAGES_TO_SIZE (MapPagesCount)); | |
| if (PcdGetBool (PcdQ35SmramAtDefaultSmbase)) { | |
| // | |
| // The initial SMRAM Save State Map has been covered as part of a larger | |
| // reserved memory allocation in PlatformPei's InitializeRamRegions(). That | |
| // allocation is supposed to survive into OS runtime; we must not release | |
| // any part of it. Only re-assert the containment here. | |
| // | |
| ASSERT (SMM_DEFAULT_SMBASE <= MapPagesBase); | |
| ASSERT ( | |
| (MapPagesBase + EFI_PAGES_TO_SIZE (MapPagesCount) <= | |
| SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE) | |
| ); | |
| } else { | |
| Status = gBS->FreePages (MapPagesBase, MapPagesCount); | |
| ASSERT_EFI_ERROR (Status); | |
| } | |
| } | |
| /** | |
| Return the size, in bytes, of a custom SMI Handler in bytes. If 0 is | |
| returned, then a custom SMI handler is not provided by this library, | |
| and the default SMI handler must be used. | |
| @retval 0 Use the default SMI handler. | |
| @retval > 0 Use the SMI handler installed by | |
| SmmCpuFeaturesInstallSmiHandler(). The caller is required to | |
| allocate enough SMRAM for each CPU to support the size of the | |
| custom SMI handler. | |
| **/ | |
| UINTN | |
| EFIAPI | |
| SmmCpuFeaturesGetSmiHandlerSize ( | |
| VOID | |
| ) | |
| { | |
| return 0; | |
| } | |
| /** | |
| Install a custom SMI handler for the CPU specified by CpuIndex. This | |
| function is only called if SmmCpuFeaturesGetSmiHandlerSize() returns a size | |
| is greater than zero and is called by the CPU that was elected as monarch | |
| during System Management Mode initialization. | |
| @param[in] CpuIndex The index of the CPU to install the custom SMI handler. | |
| The value must be between 0 and the NumberOfCpus field | |
| in the System Management System Table (SMST). | |
| @param[in] SmBase The SMBASE address for the CPU specified by CpuIndex. | |
| @param[in] SmiStack The stack to use when an SMI is processed by the | |
| the CPU specified by CpuIndex. | |
| @param[in] StackSize The size, in bytes, if the stack used when an SMI is | |
| processed by the CPU specified by CpuIndex. | |
| @param[in] GdtBase The base address of the GDT to use when an SMI is | |
| processed by the CPU specified by CpuIndex. | |
| @param[in] GdtSize The size, in bytes, of the GDT used when an SMI is | |
| processed by the CPU specified by CpuIndex. | |
| @param[in] IdtBase The base address of the IDT to use when an SMI is | |
| processed by the CPU specified by CpuIndex. | |
| @param[in] IdtSize The size, in bytes, of the IDT used when an SMI is | |
| processed by the CPU specified by CpuIndex. | |
| @param[in] Cr3 The base address of the page tables to use when an SMI | |
| is processed by the CPU specified by CpuIndex. | |
| **/ | |
| VOID | |
| EFIAPI | |
| SmmCpuFeaturesInstallSmiHandler ( | |
| IN UINTN CpuIndex, | |
| IN UINT32 SmBase, | |
| IN VOID *SmiStack, | |
| IN UINTN StackSize, | |
| IN UINTN GdtBase, | |
| IN UINTN GdtSize, | |
| IN UINTN IdtBase, | |
| IN UINTN IdtSize, | |
| IN UINT32 Cr3 | |
| ) | |
| { | |
| } | |
| /** | |
| Determines if MTRR registers must be configured to set SMRAM cache-ability | |
| when executing in System Management Mode. | |
| @retval TRUE MTRR registers must be configured to set SMRAM cache-ability. | |
| @retval FALSE MTRR registers do not need to be configured to set SMRAM | |
| cache-ability. | |
| **/ | |
| BOOLEAN | |
| EFIAPI | |
| SmmCpuFeaturesNeedConfigureMtrrs ( | |
| VOID | |
| ) | |
| { | |
| return FALSE; | |
| } | |
| /** | |
| Disable SMRR register if SMRR is supported and | |
| SmmCpuFeaturesNeedConfigureMtrrs() returns TRUE. | |
| **/ | |
| VOID | |
| EFIAPI | |
| SmmCpuFeaturesDisableSmrr ( | |
| VOID | |
| ) | |
| { | |
| // | |
| // No SMRR support, nothing to do | |
| // | |
| } | |
| /** | |
| Enable SMRR register if SMRR is supported and | |
| SmmCpuFeaturesNeedConfigureMtrrs() returns TRUE. | |
| **/ | |
| VOID | |
| EFIAPI | |
| SmmCpuFeaturesReenableSmrr ( | |
| VOID | |
| ) | |
| { | |
| // | |
| // No SMRR support, nothing to do | |
| // | |
| } | |
| /** | |
| Processor specific hook point each time a CPU enters System Management Mode. | |
| @param[in] CpuIndex The index of the CPU that has entered SMM. The value | |
| must be between 0 and the NumberOfCpus field in the | |
| System Management System Table (SMST). | |
| **/ | |
| VOID | |
| EFIAPI | |
| SmmCpuFeaturesRendezvousEntry ( | |
| IN UINTN CpuIndex | |
| ) | |
| { | |
| // | |
| // No SMRR support, nothing to do | |
| // | |
| } | |
| /** | |
| Processor specific hook point each time a CPU exits System Management Mode. | |
| @param[in] CpuIndex The index of the CPU that is exiting SMM. The value | |
| must be between 0 and the NumberOfCpus field in the | |
| System Management System Table (SMST). | |
| **/ | |
| VOID | |
| EFIAPI | |
| SmmCpuFeaturesRendezvousExit ( | |
| IN UINTN CpuIndex | |
| ) | |
| { | |
| // | |
| // We only call the Handler if CPU hot-eject is enabled | |
| // (PcdCpuMaxLogicalProcessorNumber > 1), and hot-eject is needed | |
| // in this SMI exit (otherwise mCpuHotEjectData->Handler is not armed.) | |
| // | |
| if (mCpuHotEjectData != NULL) { | |
| CPU_HOT_EJECT_HANDLER Handler; | |
| // | |
| // As the comment above mentions, mCpuHotEjectData->Handler might be | |
| // written to on the BSP as part of handling of the CPU-ejection. | |
| // | |
| // We know that any initial assignment to mCpuHotEjectData->Handler | |
| // (on the BSP, in the CpuHotplugMmi() context) is ordered-before the | |
| // load below, since it is guaranteed to happen before the | |
| // control-dependency of the BSP's SMI exit signal -- by way of a store | |
| // to AllCpusInSync (on the BSP, in BspHandler()) and the corresponding | |
| // AllCpusInSync loop (on the APs, in SmiRendezvous()) which depends on | |
| // that store. | |
| // | |
| // This guarantees that these pieces of code can never execute | |
| // simultaneously. In addition, we ensure that the following load is | |
| // ordered-after the AllCpusInSync loop by using a MemoryFence() with | |
| // acquire semantics. | |
| // | |
| MemoryFence (); | |
| Handler = mCpuHotEjectData->Handler; | |
| if (Handler != NULL) { | |
| Handler (CpuIndex); | |
| } | |
| } | |
| } | |
| /** | |
| Check to see if an SMM register is supported by a specified CPU. | |
| @param[in] CpuIndex The index of the CPU to check for SMM register support. | |
| The value must be between 0 and the NumberOfCpus field | |
| in the System Management System Table (SMST). | |
| @param[in] RegName Identifies the SMM register to check for support. | |
| @retval TRUE The SMM register specified by RegName is supported by the CPU | |
| specified by CpuIndex. | |
| @retval FALSE The SMM register specified by RegName is not supported by the | |
| CPU specified by CpuIndex. | |
| **/ | |
| BOOLEAN | |
| EFIAPI | |
| SmmCpuFeaturesIsSmmRegisterSupported ( | |
| IN UINTN CpuIndex, | |
| IN SMM_REG_NAME RegName | |
| ) | |
| { | |
| ASSERT (RegName == SmmRegFeatureControl); | |
| return FALSE; | |
| } | |
| /** | |
| Returns the current value of the SMM register for the specified CPU. | |
| If the SMM register is not supported, then 0 is returned. | |
| @param[in] CpuIndex The index of the CPU to read the SMM register. The | |
| value must be between 0 and the NumberOfCpus field in | |
| the System Management System Table (SMST). | |
| @param[in] RegName Identifies the SMM register to read. | |
| @return The value of the SMM register specified by RegName from the CPU | |
| specified by CpuIndex. | |
| **/ | |
| UINT64 | |
| EFIAPI | |
| SmmCpuFeaturesGetSmmRegister ( | |
| IN UINTN CpuIndex, | |
| IN SMM_REG_NAME RegName | |
| ) | |
| { | |
| // | |
| // This is called for SmmRegSmmDelayed, SmmRegSmmBlocked, SmmRegSmmEnable. | |
| // The last of these should actually be SmmRegSmmDisable, so we can just | |
| // return FALSE. | |
| // | |
| return 0; | |
| } | |
| /** | |
| Sets the value of an SMM register on a specified CPU. | |
| If the SMM register is not supported, then no action is performed. | |
| @param[in] CpuIndex The index of the CPU to write the SMM register. The | |
| value must be between 0 and the NumberOfCpus field in | |
| the System Management System Table (SMST). | |
| @param[in] RegName Identifies the SMM register to write. | |
| registers are read-only. | |
| @param[in] Value The value to write to the SMM register. | |
| **/ | |
| VOID | |
| EFIAPI | |
| SmmCpuFeaturesSetSmmRegister ( | |
| IN UINTN CpuIndex, | |
| IN SMM_REG_NAME RegName, | |
| IN UINT64 Value | |
| ) | |
| { | |
| ASSERT (FALSE); | |
| } | |
| /// | |
| /// Macro used to simplify the lookup table entries of type | |
| /// CPU_SMM_SAVE_STATE_LOOKUP_ENTRY | |
| /// | |
| #define SMM_CPU_OFFSET(Field) OFFSET_OF (QEMU_SMRAM_SAVE_STATE_MAP, Field) | |
| /// | |
| /// Macro used to simplify the lookup table entries of type | |
| /// CPU_SMM_SAVE_STATE_REGISTER_RANGE | |
| /// | |
| #define SMM_REGISTER_RANGE(Start, End) { Start, End, End - Start + 1 } | |
| /// | |
| /// Structure used to describe a range of registers | |
| /// | |
| typedef struct { | |
| EFI_SMM_SAVE_STATE_REGISTER Start; | |
| EFI_SMM_SAVE_STATE_REGISTER End; | |
| UINTN Length; | |
| } CPU_SMM_SAVE_STATE_REGISTER_RANGE; | |
| /// | |
| /// Structure used to build a lookup table to retrieve the widths and offsets | |
| /// associated with each supported EFI_SMM_SAVE_STATE_REGISTER value | |
| /// | |
| #define SMM_SAVE_STATE_REGISTER_FIRST_INDEX 1 | |
| typedef struct { | |
| UINT8 Width32; | |
| UINT8 Width64; | |
| UINT16 Offset32; | |
| UINT16 Offset64Lo; | |
| UINT16 Offset64Hi; | |
| BOOLEAN Writeable; | |
| } CPU_SMM_SAVE_STATE_LOOKUP_ENTRY; | |
| /// | |
| /// Table used by GetRegisterIndex() to convert an EFI_SMM_SAVE_STATE_REGISTER | |
| /// value to an index into a table of type CPU_SMM_SAVE_STATE_LOOKUP_ENTRY | |
| /// | |
| STATIC CONST CPU_SMM_SAVE_STATE_REGISTER_RANGE mSmmCpuRegisterRanges[] = { | |
| SMM_REGISTER_RANGE ( | |
| EFI_SMM_SAVE_STATE_REGISTER_GDTBASE, | |
| EFI_SMM_SAVE_STATE_REGISTER_LDTINFO | |
| ), | |
| SMM_REGISTER_RANGE ( | |
| EFI_SMM_SAVE_STATE_REGISTER_ES, | |
| EFI_SMM_SAVE_STATE_REGISTER_RIP | |
| ), | |
| SMM_REGISTER_RANGE ( | |
| EFI_SMM_SAVE_STATE_REGISTER_RFLAGS, | |
| EFI_SMM_SAVE_STATE_REGISTER_CR4 | |
| ), | |
| { (EFI_SMM_SAVE_STATE_REGISTER)0, (EFI_SMM_SAVE_STATE_REGISTER)0,0 } | |
| }; | |
| /// | |
| /// Lookup table used to retrieve the widths and offsets associated with each | |
| /// supported EFI_SMM_SAVE_STATE_REGISTER value | |
| /// | |
| STATIC CONST CPU_SMM_SAVE_STATE_LOOKUP_ENTRY mSmmCpuWidthOffset[] = { | |
| { | |
| 0, // Width32 | |
| 0, // Width64 | |
| 0, // Offset32 | |
| 0, // Offset64Lo | |
| 0, // Offset64Hi | |
| FALSE // Writeable | |
| }, // Reserved | |
| // | |
| // CPU Save State registers defined in PI SMM CPU Protocol. | |
| // | |
| { | |
| 0, // Width32 | |
| 8, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._GDTRBase), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._GDTRBase) + 4, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_GDTBASE = 4 | |
| { | |
| 0, // Width32 | |
| 8, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._IDTRBase), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._IDTRBase) + 4, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_IDTBASE = 5 | |
| { | |
| 0, // Width32 | |
| 8, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._LDTRBase), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._LDTRBase) + 4, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_LDTBASE = 6 | |
| { | |
| 0, // Width32 | |
| 0, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._GDTRLimit), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._GDTRLimit) + 4, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_GDTLIMIT = 7 | |
| { | |
| 0, // Width32 | |
| 0, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._IDTRLimit), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._IDTRLimit) + 4, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_IDTLIMIT = 8 | |
| { | |
| 0, // Width32 | |
| 0, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._LDTRLimit), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._LDTRLimit) + 4, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_LDTLIMIT = 9 | |
| { | |
| 0, // Width32 | |
| 0, // Width64 | |
| 0, // Offset32 | |
| 0, // Offset64Lo | |
| 0 + 4, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_LDTINFO = 10 | |
| { | |
| 4, // Width32 | |
| 4, // Width64 | |
| SMM_CPU_OFFSET (x86._ES), // Offset32 | |
| SMM_CPU_OFFSET (x64._ES), // Offset64Lo | |
| 0, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_ES = 20 | |
| { | |
| 4, // Width32 | |
| 4, // Width64 | |
| SMM_CPU_OFFSET (x86._CS), // Offset32 | |
| SMM_CPU_OFFSET (x64._CS), // Offset64Lo | |
| 0, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_CS = 21 | |
| { | |
| 4, // Width32 | |
| 4, // Width64 | |
| SMM_CPU_OFFSET (x86._SS), // Offset32 | |
| SMM_CPU_OFFSET (x64._SS), // Offset64Lo | |
| 0, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_SS = 22 | |
| { | |
| 4, // Width32 | |
| 4, // Width64 | |
| SMM_CPU_OFFSET (x86._DS), // Offset32 | |
| SMM_CPU_OFFSET (x64._DS), // Offset64Lo | |
| 0, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_DS = 23 | |
| { | |
| 4, // Width32 | |
| 4, // Width64 | |
| SMM_CPU_OFFSET (x86._FS), // Offset32 | |
| SMM_CPU_OFFSET (x64._FS), // Offset64Lo | |
| 0, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_FS = 24 | |
| { | |
| 4, // Width32 | |
| 4, // Width64 | |
| SMM_CPU_OFFSET (x86._GS), // Offset32 | |
| SMM_CPU_OFFSET (x64._GS), // Offset64Lo | |
| 0, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_GS = 25 | |
| { | |
| 0, // Width32 | |
| 4, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._LDTR), // Offset64Lo | |
| 0, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_LDTR_SEL = 26 | |
| { | |
| 4, // Width32 | |
| 4, // Width64 | |
| SMM_CPU_OFFSET (x86._TR), // Offset32 | |
| SMM_CPU_OFFSET (x64._TR), // Offset64Lo | |
| 0, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_TR_SEL = 27 | |
| { | |
| 4, // Width32 | |
| 8, // Width64 | |
| SMM_CPU_OFFSET (x86._DR7), // Offset32 | |
| SMM_CPU_OFFSET (x64._DR7), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._DR7) + 4, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_DR7 = 28 | |
| { | |
| 4, // Width32 | |
| 8, // Width64 | |
| SMM_CPU_OFFSET (x86._DR6), // Offset32 | |
| SMM_CPU_OFFSET (x64._DR6), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._DR6) + 4, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_DR6 = 29 | |
| { | |
| 0, // Width32 | |
| 8, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._R8), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._R8) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_R8 = 30 | |
| { | |
| 0, // Width32 | |
| 8, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._R9), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._R9) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_R9 = 31 | |
| { | |
| 0, // Width32 | |
| 8, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._R10), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._R10) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_R10 = 32 | |
| { | |
| 0, // Width32 | |
| 8, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._R11), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._R11) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_R11 = 33 | |
| { | |
| 0, // Width32 | |
| 8, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._R12), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._R12) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_R12 = 34 | |
| { | |
| 0, // Width32 | |
| 8, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._R13), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._R13) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_R13 = 35 | |
| { | |
| 0, // Width32 | |
| 8, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._R14), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._R14) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_R14 = 36 | |
| { | |
| 0, // Width32 | |
| 8, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._R15), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._R15) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_R15 = 37 | |
| { | |
| 4, // Width32 | |
| 8, // Width64 | |
| SMM_CPU_OFFSET (x86._EAX), // Offset32 | |
| SMM_CPU_OFFSET (x64._RAX), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._RAX) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_RAX = 38 | |
| { | |
| 4, // Width32 | |
| 8, // Width64 | |
| SMM_CPU_OFFSET (x86._EBX), // Offset32 | |
| SMM_CPU_OFFSET (x64._RBX), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._RBX) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_RBX = 39 | |
| { | |
| 4, // Width32 | |
| 8, // Width64 | |
| SMM_CPU_OFFSET (x86._ECX), // Offset32 | |
| SMM_CPU_OFFSET (x64._RCX), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._RCX) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_RCX = 40 | |
| { | |
| 4, // Width32 | |
| 8, // Width64 | |
| SMM_CPU_OFFSET (x86._EDX), // Offset32 | |
| SMM_CPU_OFFSET (x64._RDX), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._RDX) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_RDX = 41 | |
| { | |
| 4, // Width32 | |
| 8, // Width64 | |
| SMM_CPU_OFFSET (x86._ESP), // Offset32 | |
| SMM_CPU_OFFSET (x64._RSP), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._RSP) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_RSP = 42 | |
| { | |
| 4, // Width32 | |
| 8, // Width64 | |
| SMM_CPU_OFFSET (x86._EBP), // Offset32 | |
| SMM_CPU_OFFSET (x64._RBP), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._RBP) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_RBP = 43 | |
| { | |
| 4, // Width32 | |
| 8, // Width64 | |
| SMM_CPU_OFFSET (x86._ESI), // Offset32 | |
| SMM_CPU_OFFSET (x64._RSI), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._RSI) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_RSI = 44 | |
| { | |
| 4, // Width32 | |
| 8, // Width64 | |
| SMM_CPU_OFFSET (x86._EDI), // Offset32 | |
| SMM_CPU_OFFSET (x64._RDI), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._RDI) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_RDI = 45 | |
| { | |
| 4, // Width32 | |
| 8, // Width64 | |
| SMM_CPU_OFFSET (x86._EIP), // Offset32 | |
| SMM_CPU_OFFSET (x64._RIP), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._RIP) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_RIP = 46 | |
| { | |
| 4, // Width32 | |
| 8, // Width64 | |
| SMM_CPU_OFFSET (x86._EFLAGS), // Offset32 | |
| SMM_CPU_OFFSET (x64._RFLAGS), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._RFLAGS) + 4, // Offset64Hi | |
| TRUE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_RFLAGS = 51 | |
| { | |
| 4, // Width32 | |
| 8, // Width64 | |
| SMM_CPU_OFFSET (x86._CR0), // Offset32 | |
| SMM_CPU_OFFSET (x64._CR0), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._CR0) + 4, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_CR0 = 52 | |
| { | |
| 4, // Width32 | |
| 8, // Width64 | |
| SMM_CPU_OFFSET (x86._CR3), // Offset32 | |
| SMM_CPU_OFFSET (x64._CR3), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._CR3) + 4, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_CR3 = 53 | |
| { | |
| 0, // Width32 | |
| 4, // Width64 | |
| 0, // Offset32 | |
| SMM_CPU_OFFSET (x64._CR4), // Offset64Lo | |
| SMM_CPU_OFFSET (x64._CR4) + 4, // Offset64Hi | |
| FALSE // Writeable | |
| }, // EFI_SMM_SAVE_STATE_REGISTER_CR4 = 54 | |
| }; | |
| // | |
| // No support for I/O restart | |
| // | |
| /** | |
| Read information from the CPU save state. | |
| @param Register Specifies the CPU register to read form the save state. | |
| @retval 0 Register is not valid | |
| @retval >0 Index into mSmmCpuWidthOffset[] associated with Register | |
| **/ | |
| STATIC | |
| UINTN | |
| GetRegisterIndex ( | |
| IN EFI_SMM_SAVE_STATE_REGISTER Register | |
| ) | |
| { | |
| UINTN Index; | |
| UINTN Offset; | |
| for (Index = 0, Offset = SMM_SAVE_STATE_REGISTER_FIRST_INDEX; | |
| mSmmCpuRegisterRanges[Index].Length != 0; | |
| Index++) | |
| { | |
| if ((Register >= mSmmCpuRegisterRanges[Index].Start) && | |
| (Register <= mSmmCpuRegisterRanges[Index].End)) | |
| { | |
| return Register - mSmmCpuRegisterRanges[Index].Start + Offset; | |
| } | |
| Offset += mSmmCpuRegisterRanges[Index].Length; | |
| } | |
| return 0; | |
| } | |
| /** | |
| Read a CPU Save State register on the target processor. | |
| This function abstracts the differences that whether the CPU Save State | |
| register is in the IA32 CPU Save State Map or X64 CPU Save State Map. | |
| This function supports reading a CPU Save State register in SMBase relocation | |
| handler. | |
| @param[in] CpuIndex Specifies the zero-based index of the CPU save | |
| state. | |
| @param[in] RegisterIndex Index into mSmmCpuWidthOffset[] look up table. | |
| @param[in] Width The number of bytes to read from the CPU save | |
| state. | |
| @param[out] Buffer Upon return, this holds the CPU register value | |
| read from the save state. | |
| @retval EFI_SUCCESS The register was read from Save State. | |
| @retval EFI_NOT_FOUND The register is not defined for the Save State | |
| of Processor. | |
| @retval EFI_INVALID_PARAMTER This or Buffer is NULL. | |
| **/ | |
| STATIC | |
| EFI_STATUS | |
| ReadSaveStateRegisterByIndex ( | |
| IN UINTN CpuIndex, | |
| IN UINTN RegisterIndex, | |
| IN UINTN Width, | |
| OUT VOID *Buffer | |
| ) | |
| { | |
| QEMU_SMRAM_SAVE_STATE_MAP *CpuSaveState; | |
| CpuSaveState = (QEMU_SMRAM_SAVE_STATE_MAP *)gSmst->CpuSaveState[CpuIndex]; | |
| if ((CpuSaveState->x86.SMMRevId & 0xFFFF) == 0) { | |
| // | |
| // If 32-bit mode width is zero, then the specified register can not be | |
| // accessed | |
| // | |
| if (mSmmCpuWidthOffset[RegisterIndex].Width32 == 0) { | |
| return EFI_NOT_FOUND; | |
| } | |
| // | |
| // If Width is bigger than the 32-bit mode width, then the specified | |
| // register can not be accessed | |
| // | |
| if (Width > mSmmCpuWidthOffset[RegisterIndex].Width32) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Write return buffer | |
| // | |
| ASSERT (CpuSaveState != NULL); | |
| CopyMem ( | |
| Buffer, | |
| (UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset32, | |
| Width | |
| ); | |
| } else { | |
| // | |
| // If 64-bit mode width is zero, then the specified register can not be | |
| // accessed | |
| // | |
| if (mSmmCpuWidthOffset[RegisterIndex].Width64 == 0) { | |
| return EFI_NOT_FOUND; | |
| } | |
| // | |
| // If Width is bigger than the 64-bit mode width, then the specified | |
| // register can not be accessed | |
| // | |
| if (Width > mSmmCpuWidthOffset[RegisterIndex].Width64) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Write lower 32-bits of return buffer | |
| // | |
| CopyMem ( | |
| Buffer, | |
| (UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset64Lo, | |
| MIN (4, Width) | |
| ); | |
| if (Width >= 4) { | |
| // | |
| // Write upper 32-bits of return buffer | |
| // | |
| CopyMem ( | |
| (UINT8 *)Buffer + 4, | |
| (UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset64Hi, | |
| Width - 4 | |
| ); | |
| } | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Read an SMM Save State register on the target processor. If this function | |
| returns EFI_UNSUPPORTED, then the caller is responsible for reading the | |
| SMM Save Sate register. | |
| @param[in] CpuIndex The index of the CPU to read the SMM Save State. The | |
| value must be between 0 and the NumberOfCpus field in | |
| the System Management System Table (SMST). | |
| @param[in] Register The SMM Save State register to read. | |
| @param[in] Width The number of bytes to read from the CPU save state. | |
| @param[out] Buffer Upon return, this holds the CPU register value read | |
| from the save state. | |
| @retval EFI_SUCCESS The register was read from Save State. | |
| @retval EFI_INVALID_PARAMTER Buffer is NULL. | |
| @retval EFI_UNSUPPORTED This function does not support reading | |
| Register. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| SmmCpuFeaturesReadSaveStateRegister ( | |
| IN UINTN CpuIndex, | |
| IN EFI_SMM_SAVE_STATE_REGISTER Register, | |
| IN UINTN Width, | |
| OUT VOID *Buffer | |
| ) | |
| { | |
| UINTN RegisterIndex; | |
| QEMU_SMRAM_SAVE_STATE_MAP *CpuSaveState; | |
| // | |
| // Check for special EFI_SMM_SAVE_STATE_REGISTER_LMA | |
| // | |
| if (Register == EFI_SMM_SAVE_STATE_REGISTER_LMA) { | |
| // | |
| // Only byte access is supported for this register | |
| // | |
| if (Width != 1) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| CpuSaveState = (QEMU_SMRAM_SAVE_STATE_MAP *)gSmst->CpuSaveState[CpuIndex]; | |
| // | |
| // Check CPU mode | |
| // | |
| if ((CpuSaveState->x86.SMMRevId & 0xFFFF) == 0) { | |
| *(UINT8 *)Buffer = 32; | |
| } else { | |
| *(UINT8 *)Buffer = 64; | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| // | |
| // Check for special EFI_SMM_SAVE_STATE_REGISTER_IO | |
| // | |
| if (Register == EFI_SMM_SAVE_STATE_REGISTER_IO) { | |
| return EFI_NOT_FOUND; | |
| } | |
| // | |
| // Convert Register to a register lookup table index. Let | |
| // PiSmmCpuDxeSmm implement other special registers (currently | |
| // there is only EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID). | |
| // | |
| RegisterIndex = GetRegisterIndex (Register); | |
| if (RegisterIndex == 0) { | |
| return (Register < EFI_SMM_SAVE_STATE_REGISTER_IO ? | |
| EFI_NOT_FOUND : | |
| EFI_UNSUPPORTED); | |
| } | |
| return ReadSaveStateRegisterByIndex (CpuIndex, RegisterIndex, Width, Buffer); | |
| } | |
| /** | |
| Writes an SMM Save State register on the target processor. If this function | |
| returns EFI_UNSUPPORTED, then the caller is responsible for writing the | |
| SMM Save Sate register. | |
| @param[in] CpuIndex The index of the CPU to write the SMM Save State. The | |
| value must be between 0 and the NumberOfCpus field in | |
| the System Management System Table (SMST). | |
| @param[in] Register The SMM Save State register to write. | |
| @param[in] Width The number of bytes to write to the CPU save state. | |
| @param[in] Buffer Upon entry, this holds the new CPU register value. | |
| @retval EFI_SUCCESS The register was written to Save State. | |
| @retval EFI_INVALID_PARAMTER Buffer is NULL. | |
| @retval EFI_UNSUPPORTED This function does not support writing | |
| Register. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| SmmCpuFeaturesWriteSaveStateRegister ( | |
| IN UINTN CpuIndex, | |
| IN EFI_SMM_SAVE_STATE_REGISTER Register, | |
| IN UINTN Width, | |
| IN CONST VOID *Buffer | |
| ) | |
| { | |
| UINTN RegisterIndex; | |
| QEMU_SMRAM_SAVE_STATE_MAP *CpuSaveState; | |
| // | |
| // Writes to EFI_SMM_SAVE_STATE_REGISTER_LMA are ignored | |
| // | |
| if (Register == EFI_SMM_SAVE_STATE_REGISTER_LMA) { | |
| return EFI_SUCCESS; | |
| } | |
| // | |
| // Writes to EFI_SMM_SAVE_STATE_REGISTER_IO are not supported | |
| // | |
| if (Register == EFI_SMM_SAVE_STATE_REGISTER_IO) { | |
| return EFI_NOT_FOUND; | |
| } | |
| // | |
| // Convert Register to a register lookup table index. Let | |
| // PiSmmCpuDxeSmm implement other special registers (currently | |
| // there is only EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID). | |
| // | |
| RegisterIndex = GetRegisterIndex (Register); | |
| if (RegisterIndex == 0) { | |
| return (Register < EFI_SMM_SAVE_STATE_REGISTER_IO ? | |
| EFI_NOT_FOUND : | |
| EFI_UNSUPPORTED); | |
| } | |
| CpuSaveState = (QEMU_SMRAM_SAVE_STATE_MAP *)gSmst->CpuSaveState[CpuIndex]; | |
| // | |
| // Do not write non-writable SaveState, because it will cause exception. | |
| // | |
| if (!mSmmCpuWidthOffset[RegisterIndex].Writeable) { | |
| return EFI_UNSUPPORTED; | |
| } | |
| // | |
| // Check CPU mode | |
| // | |
| if ((CpuSaveState->x86.SMMRevId & 0xFFFF) == 0) { | |
| // | |
| // If 32-bit mode width is zero, then the specified register can not be | |
| // accessed | |
| // | |
| if (mSmmCpuWidthOffset[RegisterIndex].Width32 == 0) { | |
| return EFI_NOT_FOUND; | |
| } | |
| // | |
| // If Width is bigger than the 32-bit mode width, then the specified | |
| // register can not be accessed | |
| // | |
| if (Width > mSmmCpuWidthOffset[RegisterIndex].Width32) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Write SMM State register | |
| // | |
| ASSERT (CpuSaveState != NULL); | |
| CopyMem ( | |
| (UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset32, | |
| Buffer, | |
| Width | |
| ); | |
| } else { | |
| // | |
| // If 64-bit mode width is zero, then the specified register can not be | |
| // accessed | |
| // | |
| if (mSmmCpuWidthOffset[RegisterIndex].Width64 == 0) { | |
| return EFI_NOT_FOUND; | |
| } | |
| // | |
| // If Width is bigger than the 64-bit mode width, then the specified | |
| // register can not be accessed | |
| // | |
| if (Width > mSmmCpuWidthOffset[RegisterIndex].Width64) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Write lower 32-bits of SMM State register | |
| // | |
| CopyMem ( | |
| (UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset64Lo, | |
| Buffer, | |
| MIN (4, Width) | |
| ); | |
| if (Width >= 4) { | |
| // | |
| // Write upper 32-bits of SMM State register | |
| // | |
| CopyMem ( | |
| (UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset64Hi, | |
| (UINT8 *)Buffer + 4, | |
| Width - 4 | |
| ); | |
| } | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| This function is hook point called after the gEfiSmmReadyToLockProtocolGuid | |
| notification is completely processed. | |
| **/ | |
| VOID | |
| EFIAPI | |
| SmmCpuFeaturesCompleteSmmReadyToLock ( | |
| VOID | |
| ) | |
| { | |
| } |