/** @file | |
MP initialize support functions for PEI phase. | |
Copyright (c) 2016 - 2020, Intel Corporation. All rights reserved.<BR> | |
SPDX-License-Identifier: BSD-2-Clause-Patent | |
**/ | |
#include "MpLib.h" | |
#include <Library/PeiServicesLib.h> | |
#include <Guid/S3SmmInitDone.h> | |
#include <Ppi/ShadowMicrocode.h> | |
STATIC UINT64 mSevEsPeiWakeupBuffer = BASE_1MB; | |
/** | |
S3 SMM Init Done notification function. | |
@param PeiServices Indirect reference to the PEI Services Table. | |
@param NotifyDesc Address of the notification descriptor data structure. | |
@param InvokePpi Address of the PPI that was invoked. | |
@retval EFI_SUCCESS The function completes successfully. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
NotifyOnS3SmmInitDonePpi ( | |
IN EFI_PEI_SERVICES **PeiServices, | |
IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDesc, | |
IN VOID *InvokePpi | |
); | |
// | |
// Global function | |
// | |
EFI_PEI_NOTIFY_DESCRIPTOR mS3SmmInitDoneNotifyDesc = { | |
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST, | |
&gEdkiiS3SmmInitDoneGuid, | |
NotifyOnS3SmmInitDonePpi | |
}; | |
/** | |
S3 SMM Init Done notification function. | |
@param PeiServices Indirect reference to the PEI Services Table. | |
@param NotifyDesc Address of the notification descriptor data structure. | |
@param InvokePpi Address of the PPI that was invoked. | |
@retval EFI_SUCCESS The function completes successfully. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
NotifyOnS3SmmInitDonePpi ( | |
IN EFI_PEI_SERVICES **PeiServices, | |
IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDesc, | |
IN VOID *InvokePpi | |
) | |
{ | |
CPU_MP_DATA *CpuMpData; | |
CpuMpData = GetCpuMpData (); | |
// | |
// PiSmmCpuDxeSmm driver hardcode change the loop mode to HLT mode. | |
// So in this notify function, code need to check the current loop | |
// mode, if it is not HLT mode, code need to change loop mode back | |
// to the original mode. | |
// | |
if (CpuMpData->ApLoopMode != ApInHltLoop) { | |
CpuMpData->WakeUpByInitSipiSipi = TRUE; | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
Enable Debug Agent to support source debugging on AP function. | |
**/ | |
VOID | |
EnableDebugAgent ( | |
VOID | |
) | |
{ | |
} | |
/** | |
Get pointer to CPU MP Data structure. | |
For BSP, the pointer is retrieved from HOB. | |
For AP, the structure is stored in the top of each AP's stack. | |
@return The pointer to CPU MP Data structure. | |
**/ | |
CPU_MP_DATA * | |
GetCpuMpData ( | |
VOID | |
) | |
{ | |
CPU_MP_DATA *CpuMpData; | |
MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr; | |
UINTN ApTopOfStack; | |
AP_STACK_DATA *ApStackData; | |
ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE); | |
if (ApicBaseMsr.Bits.BSP == 1) { | |
CpuMpData = GetCpuMpDataFromGuidedHob (); | |
ASSERT (CpuMpData != NULL); | |
} else { | |
ApTopOfStack = ALIGN_VALUE ((UINTN)&ApTopOfStack, (UINTN)PcdGet32 (PcdCpuApStackSize)); | |
ApStackData = (AP_STACK_DATA *)((UINTN)ApTopOfStack- sizeof (AP_STACK_DATA)); | |
CpuMpData = (CPU_MP_DATA *)ApStackData->MpData; | |
} | |
return CpuMpData; | |
} | |
/** | |
Save the pointer to CPU MP Data structure. | |
@param[in] CpuMpData The pointer to CPU MP Data structure will be saved. | |
**/ | |
VOID | |
SaveCpuMpData ( | |
IN CPU_MP_DATA *CpuMpData | |
) | |
{ | |
UINT64 Data64; | |
UINTN Index; | |
CPU_INFO_IN_HOB *CpuInfoInHob; | |
MP_HAND_OFF *MpHandOff; | |
UINTN MpHandOffSize; | |
// | |
// When APs are in a state that can be waken up by a store operation to a memory address, | |
// report the MP_HAND_OFF data for DXE to use. | |
// | |
CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob; | |
MpHandOffSize = sizeof (MP_HAND_OFF) + sizeof (PROCESSOR_HAND_OFF) * CpuMpData->CpuCount; | |
MpHandOff = (MP_HAND_OFF *)BuildGuidHob (&mMpHandOffGuid, MpHandOffSize); | |
ASSERT (MpHandOff != NULL); | |
ZeroMem (MpHandOff, MpHandOffSize); | |
MpHandOff->ProcessorIndex = 0; | |
MpHandOff->CpuCount = CpuMpData->CpuCount; | |
if (CpuMpData->ApLoopMode != ApInHltLoop) { | |
MpHandOff->StartupSignalValue = MP_HAND_OFF_SIGNAL; | |
MpHandOff->WaitLoopExecutionMode = sizeof (VOID *); | |
} | |
for (Index = 0; Index < MpHandOff->CpuCount; Index++) { | |
MpHandOff->Info[Index].ApicId = CpuInfoInHob[Index].ApicId; | |
MpHandOff->Info[Index].Health = CpuInfoInHob[Index].Health; | |
if (CpuMpData->ApLoopMode != ApInHltLoop) { | |
MpHandOff->Info[Index].StartupSignalAddress = (UINT64)(UINTN)CpuMpData->CpuData[Index].StartupApSignal; | |
MpHandOff->Info[Index].StartupProcedureAddress = (UINT64)(UINTN)&CpuMpData->CpuData[Index].ApFunction; | |
} | |
} | |
// | |
// Build location of CPU MP DATA buffer in HOB | |
// | |
Data64 = (UINT64)(UINTN)CpuMpData; | |
BuildGuidDataHob ( | |
&mCpuInitMpLibHobGuid, | |
(VOID *)&Data64, | |
sizeof (UINT64) | |
); | |
} | |
/** | |
Check if AP wakeup buffer is overlapped with existing allocated buffer. | |
@param[in] WakeupBufferStart AP wakeup buffer start address. | |
@param[in] WakeupBufferEnd AP wakeup buffer end address. | |
@retval TRUE There is overlap. | |
@retval FALSE There is no overlap. | |
**/ | |
BOOLEAN | |
CheckOverlapWithAllocatedBuffer ( | |
IN UINT64 WakeupBufferStart, | |
IN UINT64 WakeupBufferEnd | |
) | |
{ | |
EFI_PEI_HOB_POINTERS Hob; | |
EFI_HOB_MEMORY_ALLOCATION *MemoryHob; | |
BOOLEAN Overlapped; | |
UINT64 MemoryStart; | |
UINT64 MemoryEnd; | |
Overlapped = FALSE; | |
// | |
// Get the HOB list for processing | |
// | |
Hob.Raw = GetHobList (); | |
// | |
// Collect memory ranges | |
// | |
while (!END_OF_HOB_LIST (Hob)) { | |
if (Hob.Header->HobType == EFI_HOB_TYPE_MEMORY_ALLOCATION) { | |
MemoryHob = Hob.MemoryAllocation; | |
MemoryStart = MemoryHob->AllocDescriptor.MemoryBaseAddress; | |
MemoryEnd = MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength; | |
if (!((WakeupBufferStart >= MemoryEnd) || (WakeupBufferEnd <= MemoryStart))) { | |
Overlapped = TRUE; | |
break; | |
} | |
} | |
Hob.Raw = GET_NEXT_HOB (Hob); | |
} | |
return Overlapped; | |
} | |
/** | |
Get available system memory below 1MB by specified size. | |
@param[in] WakeupBufferSize Wakeup buffer size required | |
@retval other Return wakeup buffer address below 1MB. | |
@retval -1 Cannot find free memory below 1MB. | |
**/ | |
UINTN | |
GetWakeupBuffer ( | |
IN UINTN WakeupBufferSize | |
) | |
{ | |
EFI_PEI_HOB_POINTERS Hob; | |
UINT64 WakeupBufferStart; | |
UINT64 WakeupBufferEnd; | |
WakeupBufferSize = (WakeupBufferSize + SIZE_4KB - 1) & ~(SIZE_4KB - 1); | |
// | |
// Get the HOB list for processing | |
// | |
Hob.Raw = GetHobList (); | |
// | |
// Collect memory ranges | |
// | |
while (!END_OF_HOB_LIST (Hob)) { | |
if (Hob.Header->HobType == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) { | |
if ((Hob.ResourceDescriptor->PhysicalStart < BASE_1MB) && | |
(Hob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) && | |
((Hob.ResourceDescriptor->ResourceAttribute & | |
(EFI_RESOURCE_ATTRIBUTE_READ_PROTECTED | | |
EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTED | | |
EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED | |
)) == 0) | |
) | |
{ | |
// | |
// Need memory under 1MB to be collected here | |
// | |
WakeupBufferEnd = Hob.ResourceDescriptor->PhysicalStart + Hob.ResourceDescriptor->ResourceLength; | |
if (ConfidentialComputingGuestHas (CCAttrAmdSevEs) && | |
(WakeupBufferEnd > mSevEsPeiWakeupBuffer)) | |
{ | |
// | |
// SEV-ES Wakeup buffer should be under 1MB and under any previous one | |
// | |
WakeupBufferEnd = mSevEsPeiWakeupBuffer; | |
} else if (WakeupBufferEnd > BASE_1MB) { | |
// | |
// Wakeup buffer should be under 1MB | |
// | |
WakeupBufferEnd = BASE_1MB; | |
} | |
while (WakeupBufferEnd > WakeupBufferSize) { | |
// | |
// Wakeup buffer should be aligned on 4KB | |
// | |
WakeupBufferStart = (WakeupBufferEnd - WakeupBufferSize) & ~(SIZE_4KB - 1); | |
if (WakeupBufferStart < Hob.ResourceDescriptor->PhysicalStart) { | |
break; | |
} | |
if (CheckOverlapWithAllocatedBuffer (WakeupBufferStart, WakeupBufferEnd)) { | |
// | |
// If this range is overlapped with existing allocated buffer, skip it | |
// and find the next range | |
// | |
WakeupBufferEnd -= WakeupBufferSize; | |
continue; | |
} | |
DEBUG (( | |
DEBUG_INFO, | |
"WakeupBufferStart = %x, WakeupBufferSize = %x\n", | |
WakeupBufferStart, | |
WakeupBufferSize | |
)); | |
if (ConfidentialComputingGuestHas (CCAttrAmdSevEs)) { | |
// | |
// Next SEV-ES wakeup buffer allocation must be below this | |
// allocation | |
// | |
mSevEsPeiWakeupBuffer = WakeupBufferStart; | |
} | |
return (UINTN)WakeupBufferStart; | |
} | |
} | |
} | |
// | |
// Find the next HOB | |
// | |
Hob.Raw = GET_NEXT_HOB (Hob); | |
} | |
return (UINTN)-1; | |
} | |
/** | |
Get available EfiBootServicesCode memory below 4GB by specified size. | |
This buffer is required to safely transfer AP from real address mode to | |
protected mode or long mode, due to the fact that the buffer returned by | |
GetWakeupBuffer() may be marked as non-executable. | |
@param[in] BufferSize Wakeup transition buffer size. | |
@retval other Return wakeup transition buffer address below 4GB. | |
@retval 0 Cannot find free memory below 4GB. | |
**/ | |
UINTN | |
AllocateCodeBuffer ( | |
IN UINTN BufferSize | |
) | |
{ | |
EFI_STATUS Status; | |
EFI_PHYSICAL_ADDRESS Address; | |
Status = PeiServicesAllocatePages (EfiBootServicesCode, EFI_SIZE_TO_PAGES (BufferSize), &Address); | |
if (EFI_ERROR (Status)) { | |
Address = 0; | |
} | |
return (UINTN)Address; | |
} | |
/** | |
Return the address of the SEV-ES AP jump table. | |
This buffer is required in order for an SEV-ES guest to transition from | |
UEFI into an OS. | |
@return Return SEV-ES AP jump table buffer | |
**/ | |
UINTN | |
GetSevEsAPMemory ( | |
VOID | |
) | |
{ | |
// | |
// PEI phase doesn't need to do such transition. So simply return 0. | |
// | |
return 0; | |
} | |
/** | |
Checks APs status and updates APs status if needed. | |
**/ | |
VOID | |
CheckAndUpdateApsStatus ( | |
VOID | |
) | |
{ | |
} | |
/** | |
Build the microcode patch HOB that contains the base address and size of the | |
microcode patch stored in the memory. | |
@param[in] CpuMpData Pointer to the CPU_MP_DATA structure. | |
**/ | |
VOID | |
BuildMicrocodeCacheHob ( | |
IN CPU_MP_DATA *CpuMpData | |
) | |
{ | |
EDKII_MICROCODE_PATCH_HOB *MicrocodeHob; | |
UINTN HobDataLength; | |
UINT32 Index; | |
HobDataLength = sizeof (EDKII_MICROCODE_PATCH_HOB) + | |
sizeof (UINT64) * CpuMpData->CpuCount; | |
MicrocodeHob = AllocatePool (HobDataLength); | |
if (MicrocodeHob == NULL) { | |
ASSERT (FALSE); | |
return; | |
} | |
// | |
// Store the information of the memory region that holds the microcode patches. | |
// | |
MicrocodeHob->MicrocodePatchAddress = CpuMpData->MicrocodePatchAddress; | |
MicrocodeHob->MicrocodePatchRegionSize = CpuMpData->MicrocodePatchRegionSize; | |
// | |
// Store the detected microcode patch for each processor as well. | |
// | |
MicrocodeHob->ProcessorCount = CpuMpData->CpuCount; | |
for (Index = 0; Index < CpuMpData->CpuCount; Index++) { | |
if (CpuMpData->CpuData[Index].MicrocodeEntryAddr != 0) { | |
MicrocodeHob->ProcessorSpecificPatchOffset[Index] = | |
CpuMpData->CpuData[Index].MicrocodeEntryAddr - CpuMpData->MicrocodePatchAddress; | |
} else { | |
MicrocodeHob->ProcessorSpecificPatchOffset[Index] = MAX_UINT64; | |
} | |
} | |
BuildGuidDataHob ( | |
&gEdkiiMicrocodePatchHobGuid, | |
MicrocodeHob, | |
HobDataLength | |
); | |
return; | |
} | |
/** | |
Initialize global data for MP support. | |
@param[in] CpuMpData The pointer to CPU MP Data structure. | |
**/ | |
VOID | |
InitMpGlobalData ( | |
IN CPU_MP_DATA *CpuMpData | |
) | |
{ | |
EFI_STATUS Status; | |
BuildMicrocodeCacheHob (CpuMpData); | |
SaveCpuMpData (CpuMpData); | |
/// | |
/// Install Notify | |
/// | |
Status = PeiServicesNotifyPpi (&mS3SmmInitDoneNotifyDesc); | |
ASSERT_EFI_ERROR (Status); | |
} | |
/** | |
This service executes a caller provided function on all enabled APs. | |
@param[in] Procedure A pointer to the function to be run on | |
enabled APs of the system. See type | |
EFI_AP_PROCEDURE. | |
@param[in] SingleThread If TRUE, then all the enabled APs execute | |
the function specified by Procedure one by | |
one, in ascending order of processor handle | |
number. If FALSE, then all the enabled APs | |
execute the function specified by Procedure | |
simultaneously. | |
@param[in] WaitEvent The event created by the caller with CreateEvent() | |
service. If it is NULL, then execute in | |
blocking mode. BSP waits until all APs finish | |
or TimeoutInMicroSeconds expires. If it's | |
not NULL, then execute in non-blocking mode. | |
BSP requests the function specified by | |
Procedure to be started on all the enabled | |
APs, and go on executing immediately. If | |
all return from Procedure, or TimeoutInMicroSeconds | |
expires, this event is signaled. The BSP | |
can use the CheckEvent() or WaitForEvent() | |
services to check the state of event. Type | |
EFI_EVENT is defined in CreateEvent() in | |
the Unified Extensible Firmware Interface | |
Specification. | |
@param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for | |
APs to return from Procedure, either for | |
blocking or non-blocking mode. Zero means | |
infinity. If the timeout expires before | |
all APs return from Procedure, then Procedure | |
on the failed APs is terminated. All enabled | |
APs are available for next function assigned | |
by MpInitLibStartupAllAPs() or | |
MPInitLibStartupThisAP(). | |
If the timeout expires in blocking mode, | |
BSP returns EFI_TIMEOUT. If the timeout | |
expires in non-blocking mode, WaitEvent | |
is signaled with SignalEvent(). | |
@param[in] ProcedureArgument The parameter passed into Procedure for | |
all APs. | |
@param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise, | |
if all APs finish successfully, then its | |
content is set to NULL. If not all APs | |
finish before timeout expires, then its | |
content is set to address of the buffer | |
holding handle numbers of the failed APs. | |
The buffer is allocated by MP Initialization | |
library, and it's the caller's responsibility to | |
free the buffer with FreePool() service. | |
In blocking mode, it is ready for consumption | |
when the call returns. In non-blocking mode, | |
it is ready when WaitEvent is signaled. The | |
list of failed CPU is terminated by | |
END_OF_CPU_LIST. | |
@retval EFI_SUCCESS In blocking mode, all APs have finished before | |
the timeout expired. | |
@retval EFI_SUCCESS In non-blocking mode, function has been dispatched | |
to all enabled APs. | |
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the | |
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was | |
signaled. | |
@retval EFI_UNSUPPORTED WaitEvent is not NULL if non-blocking mode is not | |
supported. | |
@retval EFI_DEVICE_ERROR Caller processor is AP. | |
@retval EFI_NOT_STARTED No enabled APs exist in the system. | |
@retval EFI_NOT_READY Any enabled APs are busy. | |
@retval EFI_NOT_READY MP Initialize Library is not initialized. | |
@retval EFI_TIMEOUT In blocking mode, the timeout expired before | |
all enabled APs have finished. | |
@retval EFI_INVALID_PARAMETER Procedure is NULL. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
MpInitLibStartupAllAPs ( | |
IN EFI_AP_PROCEDURE Procedure, | |
IN BOOLEAN SingleThread, | |
IN EFI_EVENT WaitEvent OPTIONAL, | |
IN UINTN TimeoutInMicroseconds, | |
IN VOID *ProcedureArgument OPTIONAL, | |
OUT UINTN **FailedCpuList OPTIONAL | |
) | |
{ | |
if (WaitEvent != NULL) { | |
return EFI_UNSUPPORTED; | |
} | |
return StartupAllCPUsWorker ( | |
Procedure, | |
SingleThread, | |
TRUE, | |
NULL, | |
TimeoutInMicroseconds, | |
ProcedureArgument, | |
FailedCpuList | |
); | |
} | |
/** | |
This service lets the caller get one enabled AP to execute a caller-provided | |
function. | |
@param[in] Procedure A pointer to the function to be run on the | |
designated AP of the system. See type | |
EFI_AP_PROCEDURE. | |
@param[in] ProcessorNumber The handle number of the AP. The range is | |
from 0 to the total number of logical | |
processors minus 1. The total number of | |
logical processors can be retrieved by | |
MpInitLibGetNumberOfProcessors(). | |
@param[in] WaitEvent The event created by the caller with CreateEvent() | |
service. If it is NULL, then execute in | |
blocking mode. BSP waits until this AP finish | |
or TimeoutInMicroSeconds expires. If it's | |
not NULL, then execute in non-blocking mode. | |
BSP requests the function specified by | |
Procedure to be started on this AP, | |
and go on executing immediately. If this AP | |
return from Procedure or TimeoutInMicroSeconds | |
expires, this event is signaled. The BSP | |
can use the CheckEvent() or WaitForEvent() | |
services to check the state of event. Type | |
EFI_EVENT is defined in CreateEvent() in | |
the Unified Extensible Firmware Interface | |
Specification. | |
@param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for | |
this AP to finish this Procedure, either for | |
blocking or non-blocking mode. Zero means | |
infinity. If the timeout expires before | |
this AP returns from Procedure, then Procedure | |
on the AP is terminated. The | |
AP is available for next function assigned | |
by MpInitLibStartupAllAPs() or | |
MpInitLibStartupThisAP(). | |
If the timeout expires in blocking mode, | |
BSP returns EFI_TIMEOUT. If the timeout | |
expires in non-blocking mode, WaitEvent | |
is signaled with SignalEvent(). | |
@param[in] ProcedureArgument The parameter passed into Procedure on the | |
specified AP. | |
@param[out] Finished If NULL, this parameter is ignored. In | |
blocking mode, this parameter is ignored. | |
In non-blocking mode, if AP returns from | |
Procedure before the timeout expires, its | |
content is set to TRUE. Otherwise, the | |
value is set to FALSE. The caller can | |
determine if the AP returned from Procedure | |
by evaluating this value. | |
@retval EFI_SUCCESS In blocking mode, specified AP finished before | |
the timeout expires. | |
@retval EFI_SUCCESS In non-blocking mode, the function has been | |
dispatched to specified AP. | |
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the | |
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was | |
signaled. | |
@retval EFI_UNSUPPORTED WaitEvent is not NULL if non-blocking mode is not | |
supported. | |
@retval EFI_DEVICE_ERROR The calling processor is an AP. | |
@retval EFI_TIMEOUT In blocking mode, the timeout expired before | |
the specified AP has finished. | |
@retval EFI_NOT_READY The specified AP is busy. | |
@retval EFI_NOT_READY MP Initialize Library is not initialized. | |
@retval EFI_NOT_FOUND The processor with the handle specified by | |
ProcessorNumber does not exist. | |
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP. | |
@retval EFI_INVALID_PARAMETER Procedure is NULL. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
MpInitLibStartupThisAP ( | |
IN EFI_AP_PROCEDURE Procedure, | |
IN UINTN ProcessorNumber, | |
IN EFI_EVENT WaitEvent OPTIONAL, | |
IN UINTN TimeoutInMicroseconds, | |
IN VOID *ProcedureArgument OPTIONAL, | |
OUT BOOLEAN *Finished OPTIONAL | |
) | |
{ | |
if (WaitEvent != NULL) { | |
return EFI_UNSUPPORTED; | |
} | |
return StartupThisAPWorker ( | |
Procedure, | |
ProcessorNumber, | |
NULL, | |
TimeoutInMicroseconds, | |
ProcedureArgument, | |
Finished | |
); | |
} | |
/** | |
This service switches the requested AP to be the BSP from that point onward. | |
This service changes the BSP for all purposes. This call can only be performed | |
by the current BSP. | |
@param[in] ProcessorNumber The handle number of AP that is to become the new | |
BSP. The range is from 0 to the total number of | |
logical processors minus 1. The total number of | |
logical processors can be retrieved by | |
MpInitLibGetNumberOfProcessors(). | |
@param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an | |
enabled AP. Otherwise, it will be disabled. | |
@retval EFI_SUCCESS BSP successfully switched. | |
@retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to | |
this service returning. | |
@retval EFI_UNSUPPORTED Switching the BSP is not supported. | |
@retval EFI_DEVICE_ERROR The calling processor is an AP. | |
@retval EFI_NOT_FOUND The processor with the handle specified by | |
ProcessorNumber does not exist. | |
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or | |
a disabled AP. | |
@retval EFI_NOT_READY The specified AP is busy. | |
@retval EFI_NOT_READY MP Initialize Library is not initialized. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
MpInitLibSwitchBSP ( | |
IN UINTN ProcessorNumber, | |
IN BOOLEAN EnableOldBSP | |
) | |
{ | |
return SwitchBSPWorker (ProcessorNumber, EnableOldBSP); | |
} | |
/** | |
This service lets the caller enable or disable an AP from this point onward. | |
This service may only be called from the BSP. | |
@param[in] ProcessorNumber The handle number of AP. | |
The range is from 0 to the total number of | |
logical processors minus 1. The total number of | |
logical processors can be retrieved by | |
MpInitLibGetNumberOfProcessors(). | |
@param[in] EnableAP Specifies the new state for the processor for | |
enabled, FALSE for disabled. | |
@param[in] HealthFlag If not NULL, a pointer to a value that specifies | |
the new health status of the AP. This flag | |
corresponds to StatusFlag defined in | |
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only | |
the PROCESSOR_HEALTH_STATUS_BIT is used. All other | |
bits are ignored. If it is NULL, this parameter | |
is ignored. | |
@retval EFI_SUCCESS The specified AP was enabled or disabled successfully. | |
@retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed | |
prior to this service returning. | |
@retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported. | |
@retval EFI_DEVICE_ERROR The calling processor is an AP. | |
@retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber | |
does not exist. | |
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP. | |
@retval EFI_NOT_READY MP Initialize Library is not initialized. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
MpInitLibEnableDisableAP ( | |
IN UINTN ProcessorNumber, | |
IN BOOLEAN EnableAP, | |
IN UINT32 *HealthFlag OPTIONAL | |
) | |
{ | |
return EnableDisableApWorker (ProcessorNumber, EnableAP, HealthFlag); | |
} | |
/** | |
This funtion will try to invoke platform specific microcode shadow logic to | |
relocate microcode update patches into memory. | |
@param[in, out] CpuMpData The pointer to CPU MP Data structure. | |
@retval EFI_SUCCESS Shadow microcode success. | |
@retval EFI_OUT_OF_RESOURCES No enough resource to complete the operation. | |
@retval EFI_UNSUPPORTED Can't find platform specific microcode shadow | |
PPI/Protocol. | |
**/ | |
EFI_STATUS | |
PlatformShadowMicrocode ( | |
IN OUT CPU_MP_DATA *CpuMpData | |
) | |
{ | |
EFI_STATUS Status; | |
EDKII_PEI_SHADOW_MICROCODE_PPI *ShadowMicrocodePpi; | |
UINTN CpuCount; | |
EDKII_PEI_MICROCODE_CPU_ID *MicrocodeCpuId; | |
UINTN Index; | |
UINTN BufferSize; | |
VOID *Buffer; | |
Status = PeiServicesLocatePpi ( | |
&gEdkiiPeiShadowMicrocodePpiGuid, | |
0, | |
NULL, | |
(VOID **)&ShadowMicrocodePpi | |
); | |
if (EFI_ERROR (Status)) { | |
return EFI_UNSUPPORTED; | |
} | |
CpuCount = CpuMpData->CpuCount; | |
MicrocodeCpuId = (EDKII_PEI_MICROCODE_CPU_ID *)AllocateZeroPool (sizeof (EDKII_PEI_MICROCODE_CPU_ID) * CpuCount); | |
if (MicrocodeCpuId == NULL) { | |
return EFI_OUT_OF_RESOURCES; | |
} | |
for (Index = 0; Index < CpuMpData->CpuCount; Index++) { | |
MicrocodeCpuId[Index].ProcessorSignature = CpuMpData->CpuData[Index].ProcessorSignature; | |
MicrocodeCpuId[Index].PlatformId = CpuMpData->CpuData[Index].PlatformId; | |
} | |
Status = ShadowMicrocodePpi->ShadowMicrocode ( | |
ShadowMicrocodePpi, | |
CpuCount, | |
MicrocodeCpuId, | |
&BufferSize, | |
&Buffer | |
); | |
FreePool (MicrocodeCpuId); | |
if (EFI_ERROR (Status)) { | |
return EFI_NOT_FOUND; | |
} | |
CpuMpData->MicrocodePatchAddress = (UINTN)Buffer; | |
CpuMpData->MicrocodePatchRegionSize = BufferSize; | |
DEBUG (( | |
DEBUG_INFO, | |
"%a: Required microcode patches have been loaded at 0x%lx, with size 0x%lx.\n", | |
__func__, | |
CpuMpData->MicrocodePatchAddress, | |
CpuMpData->MicrocodePatchRegionSize | |
)); | |
return EFI_SUCCESS; | |
} |