blob: e193352fbe4142a53436310e18283102ae24765e [file] [log] [blame]
/** @file
Generic non-coherent implementation of DmaLib.h
Copyright (c) 2008 - 2010, Apple Inc. All rights reserved.<BR>
Copyright (c) 2015 - 2017, Linaro, Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <PiDxe.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/DmaLib.h>
#include <Library/DxeServicesTableLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/IoLib.h>
#include <Library/BaseMemoryLib.h>
#include <Protocol/Cpu.h>
typedef struct {
EFI_PHYSICAL_ADDRESS HostAddress;
VOID *BufferAddress;
UINTN NumberOfBytes;
DMA_MAP_OPERATION Operation;
BOOLEAN DoubleBuffer;
} MAP_INFO_INSTANCE;
typedef struct {
LIST_ENTRY Link;
VOID *HostAddress;
UINTN NumPages;
UINT64 Attributes;
} UNCACHED_ALLOCATION;
STATIC EFI_CPU_ARCH_PROTOCOL *mCpu;
STATIC LIST_ENTRY UncachedAllocationList;
STATIC PHYSICAL_ADDRESS mDmaHostAddressLimit;
STATIC
PHYSICAL_ADDRESS
HostToDeviceAddress (
IN VOID *Address
)
{
return (PHYSICAL_ADDRESS)(UINTN)Address + PcdGet64 (PcdDmaDeviceOffset);
}
/**
Allocates one or more 4KB pages of a certain memory type at a specified
alignment.
Allocates the number of 4KB pages specified by Pages of a certain memory type
with an alignment specified by Alignment. The allocated buffer is returned.
If Pages is 0, then NULL is returned. If there is not enough memory at the
specified alignment remaining to satisfy the request, then NULL is returned.
If Alignment is not a power of two and Alignment is not zero, then ASSERT().
If Pages plus EFI_SIZE_TO_PAGES (Alignment) overflows, then ASSERT().
@param MemoryType The type of memory to allocate.
@param Pages The number of 4 KB pages to allocate.
@param Alignment The requested alignment of the allocation.
Must be a power of two.
If Alignment is zero, then byte alignment is
used.
@return A pointer to the allocated buffer or NULL if allocation fails.
**/
STATIC
VOID *
InternalAllocateAlignedPages (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN UINTN Alignment
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS Memory;
UINTN AlignedMemory;
UINTN AlignmentMask;
UINTN UnalignedPages;
UINTN RealPages;
//
// Alignment must be a power of two or zero.
//
ASSERT ((Alignment & (Alignment - 1)) == 0);
if (Pages == 0) {
return NULL;
}
if (Alignment > EFI_PAGE_SIZE) {
//
// Calculate the total number of pages since alignment is larger than page
// size.
//
AlignmentMask = Alignment - 1;
RealPages = Pages + EFI_SIZE_TO_PAGES (Alignment);
//
// Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not
// overflow.
//
ASSERT (RealPages > Pages);
Memory = mDmaHostAddressLimit;
Status = gBS->AllocatePages (
AllocateMaxAddress,
MemoryType,
RealPages,
&Memory
);
if (EFI_ERROR (Status)) {
return NULL;
}
AlignedMemory = ((UINTN)Memory + AlignmentMask) & ~AlignmentMask;
UnalignedPages = EFI_SIZE_TO_PAGES (AlignedMemory - (UINTN)Memory);
if (UnalignedPages > 0) {
//
// Free first unaligned page(s).
//
Status = gBS->FreePages (Memory, UnalignedPages);
ASSERT_EFI_ERROR (Status);
}
Memory = AlignedMemory + EFI_PAGES_TO_SIZE (Pages);
UnalignedPages = RealPages - Pages - UnalignedPages;
if (UnalignedPages > 0) {
//
// Free last unaligned page(s).
//
Status = gBS->FreePages (Memory, UnalignedPages);
ASSERT_EFI_ERROR (Status);
}
} else {
//
// Do not over-allocate pages in this case.
//
Memory = mDmaHostAddressLimit;
Status = gBS->AllocatePages (
AllocateMaxAddress,
MemoryType,
Pages,
&Memory
);
if (EFI_ERROR (Status)) {
return NULL;
}
AlignedMemory = (UINTN)Memory;
}
return (VOID *)AlignedMemory;
}
/**
Provides the DMA controller-specific addresses needed to access system memory.
Operation is relative to the DMA bus master.
@param Operation Indicates if the bus master is going to read or
write to system memory.
@param HostAddress The system memory address to map to the DMA
controller.
@param NumberOfBytes On input the number of bytes to map. On output
the number of bytes that were mapped.
@param DeviceAddress The resulting map address for the bus master
controller to use to access the host's
HostAddress.
@param Mapping A resulting value to pass to Unmap().
@retval EFI_SUCCESS The range was mapped for the returned
NumberOfBytes.
@retval EFI_UNSUPPORTED The HostAddress cannot be mapped as a common
buffer.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack
of resources.
@retval EFI_DEVICE_ERROR The system hardware could not map the requested
address.
**/
EFI_STATUS
EFIAPI
DmaMap (
IN DMA_MAP_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
)
{
EFI_STATUS Status;
MAP_INFO_INSTANCE *Map;
VOID *Buffer;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor;
UINTN AllocSize;
if ((HostAddress == NULL) ||
(NumberOfBytes == NULL) ||
(DeviceAddress == NULL) ||
(Mapping == NULL))
{
return EFI_INVALID_PARAMETER;
}
if (Operation >= MapOperationMaximum) {
return EFI_INVALID_PARAMETER;
}
*DeviceAddress = HostToDeviceAddress (HostAddress);
// Remember range so we can flush on the other side
Map = AllocatePool (sizeof (MAP_INFO_INSTANCE));
if (Map == NULL) {
return EFI_OUT_OF_RESOURCES;
}
if (((UINTN)HostAddress + *NumberOfBytes) > mDmaHostAddressLimit) {
if (Operation == MapOperationBusMasterCommonBuffer) {
goto CommonBufferError;
}
AllocSize = ALIGN_VALUE (*NumberOfBytes, mCpu->DmaBufferAlignment);
Map->BufferAddress = InternalAllocateAlignedPages (
EfiBootServicesData,
EFI_SIZE_TO_PAGES (AllocSize),
mCpu->DmaBufferAlignment
);
if (Map->BufferAddress == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto FreeMapInfo;
}
if (Operation == MapOperationBusMasterRead) {
CopyMem (Map->BufferAddress, (VOID *)(UINTN)HostAddress, *NumberOfBytes);
}
mCpu->FlushDataCache (
mCpu,
(UINTN)Map->BufferAddress,
AllocSize,
EfiCpuFlushTypeWriteBack
);
*DeviceAddress = HostToDeviceAddress (Map->BufferAddress);
} else if ((Operation != MapOperationBusMasterRead) &&
((((UINTN)HostAddress & (mCpu->DmaBufferAlignment - 1)) != 0) ||
((*NumberOfBytes & (mCpu->DmaBufferAlignment - 1)) != 0)))
{
// Get the cacheability of the region
Status = gDS->GetMemorySpaceDescriptor ((UINTN)HostAddress, &GcdDescriptor);
if (EFI_ERROR (Status)) {
goto FreeMapInfo;
}
// If the mapped buffer is not an uncached buffer
if ((GcdDescriptor.Attributes & (EFI_MEMORY_WB | EFI_MEMORY_WT)) != 0) {
//
// Operations of type MapOperationBusMasterCommonBuffer are only allowed
// on uncached buffers.
//
if (Operation == MapOperationBusMasterCommonBuffer) {
goto CommonBufferError;
}
//
// If the buffer does not fill entire cache lines we must double buffer
// into a suitably aligned allocation that allows us to invalidate the
// cache without running the risk of corrupting adjacent unrelated data.
// Note that pool allocations are guaranteed to be 8 byte aligned, so
// we only have to add (alignment - 8) worth of padding.
//
Map->DoubleBuffer = TRUE;
AllocSize = ALIGN_VALUE (*NumberOfBytes, mCpu->DmaBufferAlignment) +
(mCpu->DmaBufferAlignment - 8);
Map->BufferAddress = AllocatePool (AllocSize);
if (Map->BufferAddress == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto FreeMapInfo;
}
Buffer = ALIGN_POINTER (Map->BufferAddress, mCpu->DmaBufferAlignment);
*DeviceAddress = HostToDeviceAddress (Buffer);
//
// Get rid of any dirty cachelines covering the double buffer. This
// prevents them from being written back unexpectedly, potentially
// overwriting the data we receive from the device.
//
mCpu->FlushDataCache (
mCpu,
(UINTN)Buffer,
*NumberOfBytes,
EfiCpuFlushTypeWriteBack
);
} else {
Map->DoubleBuffer = FALSE;
}
} else {
Map->DoubleBuffer = FALSE;
DEBUG_CODE_BEGIN ();
//
// The operation type check above only executes if the buffer happens to be
// misaligned with respect to CWG, but even if it is aligned, we should not
// allow arbitrary buffers to be used for creating consistent mappings.
// So duplicate the check here when running in DEBUG mode, just to assert
// that we are not trying to create a consistent mapping for cached memory.
//
Status = gDS->GetMemorySpaceDescriptor ((UINTN)HostAddress, &GcdDescriptor);
ASSERT_EFI_ERROR (Status);
ASSERT (
Operation != MapOperationBusMasterCommonBuffer ||
(GcdDescriptor.Attributes & (EFI_MEMORY_WB | EFI_MEMORY_WT)) == 0
);
DEBUG_CODE_END ();
// Flush the Data Cache (should not have any effect if the memory region is
// uncached)
mCpu->FlushDataCache (
mCpu,
(UINTN)HostAddress,
*NumberOfBytes,
EfiCpuFlushTypeWriteBackInvalidate
);
}
Map->HostAddress = (UINTN)HostAddress;
Map->NumberOfBytes = *NumberOfBytes;
Map->Operation = Operation;
*Mapping = Map;
return EFI_SUCCESS;
CommonBufferError:
DEBUG ((
DEBUG_ERROR,
"%a: Operation type 'MapOperationBusMasterCommonBuffer' is only "
"supported\non memory regions that were allocated using "
"DmaAllocateBuffer ()\n",
__func__
));
Status = EFI_UNSUPPORTED;
FreeMapInfo:
FreePool (Map);
return Status;
}
/**
Completes the DmaMapBusMasterRead(), DmaMapBusMasterWrite(), or
DmaMapBusMasterCommonBuffer() operation and releases any corresponding
resources.
@param Mapping The mapping value returned from DmaMap*().
@retval EFI_SUCCESS The range was unmapped.
@retval EFI_DEVICE_ERROR The data was not committed to the target system
memory.
@retval EFI_INVALID_PARAMETER An inconsistency was detected between the
mapping type and the DoubleBuffer field
**/
EFI_STATUS
EFIAPI
DmaUnmap (
IN VOID *Mapping
)
{
MAP_INFO_INSTANCE *Map;
EFI_STATUS Status;
VOID *Buffer;
UINTN AllocSize;
if (Mapping == NULL) {
ASSERT (FALSE);
return EFI_INVALID_PARAMETER;
}
Map = (MAP_INFO_INSTANCE *)Mapping;
Status = EFI_SUCCESS;
if (((UINTN)Map->HostAddress + Map->NumberOfBytes) > mDmaHostAddressLimit) {
AllocSize = ALIGN_VALUE (Map->NumberOfBytes, mCpu->DmaBufferAlignment);
if (Map->Operation == MapOperationBusMasterWrite) {
mCpu->FlushDataCache (
mCpu,
(UINTN)Map->BufferAddress,
AllocSize,
EfiCpuFlushTypeInvalidate
);
CopyMem (
(VOID *)(UINTN)Map->HostAddress,
Map->BufferAddress,
Map->NumberOfBytes
);
}
FreePages (Map->BufferAddress, EFI_SIZE_TO_PAGES (AllocSize));
} else if (Map->DoubleBuffer) {
ASSERT (Map->Operation == MapOperationBusMasterWrite);
if (Map->Operation != MapOperationBusMasterWrite) {
Status = EFI_INVALID_PARAMETER;
} else {
Buffer = ALIGN_POINTER (Map->BufferAddress, mCpu->DmaBufferAlignment);
mCpu->FlushDataCache (
mCpu,
(UINTN)Buffer,
Map->NumberOfBytes,
EfiCpuFlushTypeInvalidate
);
CopyMem ((VOID *)(UINTN)Map->HostAddress, Buffer, Map->NumberOfBytes);
FreePool (Map->BufferAddress);
}
} else {
if (Map->Operation == MapOperationBusMasterWrite) {
//
// Make sure we read buffer from uncached memory and not the cache
//
mCpu->FlushDataCache (
mCpu,
Map->HostAddress,
Map->NumberOfBytes,
EfiCpuFlushTypeInvalidate
);
}
}
FreePool (Map);
return Status;
}
/**
Allocates pages that are suitable for an DmaMap() of type
MapOperationBusMasterCommonBuffer mapping.
@param MemoryType The type of memory to allocate,
EfiBootServicesData or EfiRuntimeServicesData.
@param Pages The number of pages to allocate.
@param HostAddress A pointer to store the base system memory
address of the allocated range.
@retval EFI_SUCCESS The requested memory pages were allocated.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
@retval EFI_OUT_OF_RESOURCES The memory pages could not be allocated.
**/
EFI_STATUS
EFIAPI
DmaAllocateBuffer (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
OUT VOID **HostAddress
)
{
return DmaAllocateAlignedBuffer (MemoryType, Pages, 0, HostAddress);
}
/**
Allocates pages that are suitable for an DmaMap() of type
MapOperationBusMasterCommonBuffer mapping, at the requested alignment.
@param MemoryType The type of memory to allocate,
EfiBootServicesData or EfiRuntimeServicesData.
@param Pages The number of pages to allocate.
@param Alignment Alignment in bytes of the base of the returned
buffer (must be a power of 2)
@param HostAddress A pointer to store the base system memory
address of the allocated range.
@retval EFI_SUCCESS The requested memory pages were allocated.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
@retval EFI_OUT_OF_RESOURCES The memory pages could not be allocated.
**/
EFI_STATUS
EFIAPI
DmaAllocateAlignedBuffer (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN UINTN Alignment,
OUT VOID **HostAddress
)
{
EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor;
VOID *Allocation;
UINT64 MemType;
UNCACHED_ALLOCATION *Alloc;
EFI_STATUS Status;
if (Alignment == 0) {
Alignment = EFI_PAGE_SIZE;
}
if ((HostAddress == NULL) ||
((Alignment & (Alignment - 1)) != 0))
{
return EFI_INVALID_PARAMETER;
}
if ((MemoryType == EfiBootServicesData) ||
(MemoryType == EfiRuntimeServicesData))
{
Allocation = InternalAllocateAlignedPages (MemoryType, Pages, Alignment);
} else {
return EFI_INVALID_PARAMETER;
}
if (Allocation == NULL) {
return EFI_OUT_OF_RESOURCES;
}
// Get the cacheability of the region
Status = gDS->GetMemorySpaceDescriptor ((UINTN)Allocation, &GcdDescriptor);
if (EFI_ERROR (Status)) {
goto FreeBuffer;
}
// Choose a suitable uncached memory type that is supported by the region
if (GcdDescriptor.Capabilities & EFI_MEMORY_WC) {
MemType = EFI_MEMORY_WC;
} else if (GcdDescriptor.Capabilities & EFI_MEMORY_UC) {
MemType = EFI_MEMORY_UC;
} else {
Status = EFI_UNSUPPORTED;
goto FreeBuffer;
}
Alloc = AllocatePool (sizeof *Alloc);
if (Alloc == NULL) {
goto FreeBuffer;
}
Alloc->HostAddress = Allocation;
Alloc->NumPages = Pages;
Alloc->Attributes = GcdDescriptor.Attributes;
InsertHeadList (&UncachedAllocationList, &Alloc->Link);
// Remap the region with the new attributes
Status = gDS->SetMemorySpaceAttributes (
(PHYSICAL_ADDRESS)(UINTN)Allocation,
EFI_PAGES_TO_SIZE (Pages),
MemType
);
if (EFI_ERROR (Status)) {
goto FreeAlloc;
}
Status = mCpu->FlushDataCache (
mCpu,
(PHYSICAL_ADDRESS)(UINTN)Allocation,
EFI_PAGES_TO_SIZE (Pages),
EfiCpuFlushTypeInvalidate
);
if (EFI_ERROR (Status)) {
goto FreeAlloc;
}
*HostAddress = Allocation;
return EFI_SUCCESS;
FreeAlloc:
RemoveEntryList (&Alloc->Link);
FreePool (Alloc);
FreeBuffer:
FreePages (Allocation, Pages);
return Status;
}
/**
Frees memory that was allocated with DmaAllocateBuffer().
@param Pages The number of pages to free.
@param HostAddress The base system memory address of the allocated
range.
@retval EFI_SUCCESS The requested memory pages were freed.
@retval EFI_INVALID_PARAMETER The memory range specified by HostAddress and
Pages was not allocated with
DmaAllocateBuffer().
**/
EFI_STATUS
EFIAPI
DmaFreeBuffer (
IN UINTN Pages,
IN VOID *HostAddress
)
{
LIST_ENTRY *Link;
UNCACHED_ALLOCATION *Alloc;
BOOLEAN Found;
EFI_STATUS Status;
if (HostAddress == NULL) {
return EFI_INVALID_PARAMETER;
}
for (Link = GetFirstNode (&UncachedAllocationList), Found = FALSE;
!IsNull (&UncachedAllocationList, Link);
Link = GetNextNode (&UncachedAllocationList, Link))
{
Alloc = BASE_CR (Link, UNCACHED_ALLOCATION, Link);
if ((Alloc->HostAddress == HostAddress) && (Alloc->NumPages == Pages)) {
Found = TRUE;
break;
}
}
if (!Found) {
ASSERT (FALSE);
return EFI_INVALID_PARAMETER;
}
RemoveEntryList (&Alloc->Link);
Status = gDS->SetMemorySpaceAttributes (
(PHYSICAL_ADDRESS)(UINTN)HostAddress,
EFI_PAGES_TO_SIZE (Pages),
Alloc->Attributes
);
if (EFI_ERROR (Status)) {
goto FreeAlloc;
}
//
// If we fail to restore the original attributes, it is better to leak the
// memory than to return it to the heap
//
FreePages (HostAddress, Pages);
FreeAlloc:
FreePool (Alloc);
return Status;
}
EFI_STATUS
EFIAPI
NonCoherentDmaLibConstructor (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
InitializeListHead (&UncachedAllocationList);
//
// Ensure that the combination of DMA addressing offset and limit produces
// a sane value.
//
ASSERT (PcdGet64 (PcdDmaDeviceLimit) > PcdGet64 (PcdDmaDeviceOffset));
mDmaHostAddressLimit = PcdGet64 (PcdDmaDeviceLimit) -
PcdGet64 (PcdDmaDeviceOffset);
// Get the Cpu protocol for later use
return gBS->LocateProtocol (&gEfiCpuArchProtocolGuid, NULL, (VOID **)&mCpu);
}