blob: 93587d53aa75a918bf39e908353fe0172ab56c4b [file] [log] [blame]
/** @file
Implementation of Managed Network Protocol private services.
Copyright (c) 2005 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "MnpImpl.h"
#include "MnpVlan.h"
EFI_SERVICE_BINDING_PROTOCOL mMnpServiceBindingProtocol = {
MnpServiceBindingCreateChild,
MnpServiceBindingDestroyChild
};
EFI_MANAGED_NETWORK_PROTOCOL mMnpProtocolTemplate = {
MnpGetModeData,
MnpConfigure,
MnpMcastIpToMac,
MnpGroups,
MnpTransmit,
MnpReceive,
MnpCancel,
MnpPoll
};
EFI_MANAGED_NETWORK_CONFIG_DATA mMnpDefaultConfigData = {
10000000,
10000000,
0,
FALSE,
FALSE,
FALSE,
FALSE,
FALSE,
FALSE,
FALSE
};
/**
Add Count of net buffers to MnpDeviceData->FreeNbufQue. The length of the net
buffer is specified by MnpDeviceData->BufferLength.
@param[in, out] MnpDeviceData Pointer to the MNP_DEVICE_DATA.
@param[in] Count Number of NET_BUFFERs to add.
@retval EFI_SUCCESS The specified amount of NET_BUFs are allocated
and added to MnpDeviceData->FreeNbufQue.
@retval EFI_OUT_OF_RESOURCES Failed to allocate a NET_BUF structure.
**/
EFI_STATUS
MnpAddFreeNbuf (
IN OUT MNP_DEVICE_DATA *MnpDeviceData,
IN UINTN Count
)
{
EFI_STATUS Status;
UINTN Index;
NET_BUF *Nbuf;
NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE);
ASSERT ((Count > 0) && (MnpDeviceData->BufferLength > 0));
Status = EFI_SUCCESS;
for (Index = 0; Index < Count; Index++) {
Nbuf = NetbufAlloc (MnpDeviceData->BufferLength + MnpDeviceData->PaddingSize);
if (Nbuf == NULL) {
DEBUG ((DEBUG_ERROR, "MnpAddFreeNbuf: NetBufAlloc failed.\n"));
Status = EFI_OUT_OF_RESOURCES;
break;
}
if (MnpDeviceData->PaddingSize > 0) {
//
// Pad padding bytes before the media header
//
NetbufAllocSpace (Nbuf, MnpDeviceData->PaddingSize, NET_BUF_TAIL);
NetbufTrim (Nbuf, MnpDeviceData->PaddingSize, NET_BUF_HEAD);
}
NetbufQueAppend (&MnpDeviceData->FreeNbufQue, Nbuf);
}
MnpDeviceData->NbufCnt += Index;
return Status;
}
/**
Allocate a free NET_BUF from MnpDeviceData->FreeNbufQue. If there is none
in the queue, first try to allocate some and add them into the queue, then
fetch the NET_BUF from the updated FreeNbufQue.
@param[in, out] MnpDeviceData Pointer to the MNP_DEVICE_DATA.
@return Pointer to the allocated free NET_BUF structure, if NULL the
operation is failed.
**/
NET_BUF *
MnpAllocNbuf (
IN OUT MNP_DEVICE_DATA *MnpDeviceData
)
{
EFI_STATUS Status;
NET_BUF_QUEUE *FreeNbufQue;
NET_BUF *Nbuf;
EFI_TPL OldTpl;
NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE);
FreeNbufQue = &MnpDeviceData->FreeNbufQue;
OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
//
// Check whether there are available buffers, or else try to add some.
//
if (FreeNbufQue->BufNum == 0) {
if ((MnpDeviceData->NbufCnt + MNP_NET_BUFFER_INCREASEMENT) > MNP_MAX_NET_BUFFER_NUM) {
DEBUG (
(DEBUG_ERROR,
"MnpAllocNbuf: The maximum NET_BUF size is reached for MNP driver instance %p.\n",
MnpDeviceData)
);
Nbuf = NULL;
goto ON_EXIT;
}
Status = MnpAddFreeNbuf (MnpDeviceData, MNP_NET_BUFFER_INCREASEMENT);
if (EFI_ERROR (Status)) {
DEBUG (
(DEBUG_ERROR,
"MnpAllocNbuf: Failed to add NET_BUFs into the FreeNbufQue, %r.\n",
Status)
);
//
// Don't return NULL, perhaps MnpAddFreeNbuf does add some NET_BUFs but
// the amount is less than MNP_NET_BUFFER_INCREASEMENT.
//
}
}
Nbuf = NetbufQueRemove (FreeNbufQue);
//
// Increase the RefCnt.
//
if (Nbuf != NULL) {
NET_GET_REF (Nbuf);
}
ON_EXIT:
gBS->RestoreTPL (OldTpl);
return Nbuf;
}
/**
Try to reclaim the Nbuf into the buffer pool.
@param[in, out] MnpDeviceData Pointer to the mnp device context data.
@param[in, out] Nbuf Pointer to the NET_BUF to free.
**/
VOID
MnpFreeNbuf (
IN OUT MNP_DEVICE_DATA *MnpDeviceData,
IN OUT NET_BUF *Nbuf
)
{
EFI_TPL OldTpl;
NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE);
ASSERT (Nbuf->RefCnt > 1);
OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
NET_PUT_REF (Nbuf);
if (Nbuf->RefCnt == 1) {
//
// Trim all buffer contained in the Nbuf, then append it to the NbufQue.
//
NetbufTrim (Nbuf, Nbuf->TotalSize, NET_BUF_TAIL);
if (NetbufAllocSpace (Nbuf, NET_VLAN_TAG_LEN, NET_BUF_HEAD) != NULL) {
//
// There is space reserved for vlan tag in the head, reclaim it
//
NetbufTrim (Nbuf, NET_VLAN_TAG_LEN, NET_BUF_TAIL);
}
NetbufQueAppend (&MnpDeviceData->FreeNbufQue, Nbuf);
}
gBS->RestoreTPL (OldTpl);
}
/**
Add Count of TX buffers to MnpDeviceData->AllTxBufList and MnpDeviceData->FreeTxBufList.
The length of the buffer is specified by MnpDeviceData->BufferLength.
@param[in, out] MnpDeviceData Pointer to the MNP_DEVICE_DATA.
@param[in] Count Number of TX buffers to add.
@retval EFI_SUCCESS The specified amount of TX buffers are allocated.
@retval EFI_OUT_OF_RESOURCES Failed to allocate a TX buffer.
**/
EFI_STATUS
MnpAddFreeTxBuf (
IN OUT MNP_DEVICE_DATA *MnpDeviceData,
IN UINTN Count
)
{
EFI_STATUS Status;
UINT32 Index;
MNP_TX_BUF_WRAP *TxBufWrap;
NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE);
ASSERT ((Count > 0) && (MnpDeviceData->BufferLength > 0));
Status = EFI_SUCCESS;
for (Index = 0; Index < Count; Index++) {
TxBufWrap = (MNP_TX_BUF_WRAP *)AllocatePool (OFFSET_OF (MNP_TX_BUF_WRAP, TxBuf) + MnpDeviceData->BufferLength);
if (TxBufWrap == NULL) {
DEBUG ((DEBUG_ERROR, "MnpAddFreeTxBuf: TxBuf Alloc failed.\n"));
Status = EFI_OUT_OF_RESOURCES;
break;
}
DEBUG ((DEBUG_INFO, "MnpAddFreeTxBuf: Add TxBufWrap %p, TxBuf %p\n", TxBufWrap, TxBufWrap->TxBuf));
TxBufWrap->Signature = MNP_TX_BUF_WRAP_SIGNATURE;
TxBufWrap->InUse = FALSE;
InsertTailList (&MnpDeviceData->FreeTxBufList, &TxBufWrap->WrapEntry);
InsertTailList (&MnpDeviceData->AllTxBufList, &TxBufWrap->AllEntry);
}
MnpDeviceData->TxBufCount += Index;
return Status;
}
/**
Allocate a free TX buffer from MnpDeviceData->FreeTxBufList. If there is none
in the queue, first try to recycle some from SNP, then try to allocate some and add
them into the queue, then fetch the NET_BUF from the updated FreeTxBufList.
@param[in, out] MnpDeviceData Pointer to the MNP_DEVICE_DATA.
@return Pointer to the allocated free NET_BUF structure, if NULL the
operation is failed.
**/
UINT8 *
MnpAllocTxBuf (
IN OUT MNP_DEVICE_DATA *MnpDeviceData
)
{
EFI_TPL OldTpl;
UINT8 *TxBuf;
EFI_STATUS Status;
LIST_ENTRY *Entry;
MNP_TX_BUF_WRAP *TxBufWrap;
NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE);
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
if (IsListEmpty (&MnpDeviceData->FreeTxBufList)) {
//
// First try to recycle some TX buffer from SNP
//
Status = MnpRecycleTxBuf (MnpDeviceData);
if (EFI_ERROR (Status)) {
TxBuf = NULL;
goto ON_EXIT;
}
//
// If still no free TX buffer, allocate more.
//
if (IsListEmpty (&MnpDeviceData->FreeTxBufList)) {
if ((MnpDeviceData->TxBufCount + MNP_TX_BUFFER_INCREASEMENT) > MNP_MAX_TX_BUFFER_NUM) {
DEBUG (
(DEBUG_ERROR,
"MnpAllocTxBuf: The maximum TxBuf size is reached for MNP driver instance %p.\n",
MnpDeviceData)
);
TxBuf = NULL;
goto ON_EXIT;
}
Status = MnpAddFreeTxBuf (MnpDeviceData, MNP_TX_BUFFER_INCREASEMENT);
if (IsListEmpty (&MnpDeviceData->FreeTxBufList)) {
DEBUG (
(DEBUG_ERROR,
"MnpAllocNbuf: Failed to add TxBuf into the FreeTxBufList, %r.\n",
Status)
);
TxBuf = NULL;
goto ON_EXIT;
}
}
}
ASSERT (!IsListEmpty (&MnpDeviceData->FreeTxBufList));
Entry = MnpDeviceData->FreeTxBufList.ForwardLink;
RemoveEntryList (MnpDeviceData->FreeTxBufList.ForwardLink);
TxBufWrap = NET_LIST_USER_STRUCT_S (Entry, MNP_TX_BUF_WRAP, WrapEntry, MNP_TX_BUF_WRAP_SIGNATURE);
TxBufWrap->InUse = TRUE;
TxBuf = TxBufWrap->TxBuf;
ON_EXIT:
gBS->RestoreTPL (OldTpl);
return TxBuf;
}
/**
Try to reclaim the TX buffer into the buffer pool.
@param[in, out] MnpDeviceData Pointer to the mnp device context data.
@param[in, out] TxBuf Pointer to the TX buffer to free.
**/
VOID
MnpFreeTxBuf (
IN OUT MNP_DEVICE_DATA *MnpDeviceData,
IN OUT UINT8 *TxBuf
)
{
MNP_TX_BUF_WRAP *TxBufWrap;
EFI_TPL OldTpl;
NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE);
if (TxBuf == NULL) {
return;
}
TxBufWrap = NET_LIST_USER_STRUCT (TxBuf, MNP_TX_BUF_WRAP, TxBuf);
if (TxBufWrap->Signature != MNP_TX_BUF_WRAP_SIGNATURE) {
DEBUG (
(DEBUG_ERROR,
"MnpFreeTxBuf: Signature check failed in MnpFreeTxBuf.\n")
);
return;
}
if (!TxBufWrap->InUse) {
DEBUG (
(DEBUG_WARN,
"MnpFreeTxBuf: Duplicated recycle report from SNP.\n")
);
return;
}
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
InsertTailList (&MnpDeviceData->FreeTxBufList, &TxBufWrap->WrapEntry);
TxBufWrap->InUse = FALSE;
gBS->RestoreTPL (OldTpl);
}
/**
Try to recycle all the transmitted buffer address from SNP.
@param[in, out] MnpDeviceData Pointer to the mnp device context data.
@retval EFI_SUCCESS Successed to recyclethe transmitted buffer address.
@retval Others Failed to recyclethe transmitted buffer address.
**/
EFI_STATUS
MnpRecycleTxBuf (
IN OUT MNP_DEVICE_DATA *MnpDeviceData
)
{
UINT8 *TxBuf;
EFI_SIMPLE_NETWORK_PROTOCOL *Snp;
EFI_STATUS Status;
Snp = MnpDeviceData->Snp;
ASSERT (Snp != NULL);
do {
TxBuf = NULL;
Status = Snp->GetStatus (Snp, NULL, (VOID **)&TxBuf);
if (EFI_ERROR (Status)) {
return Status;
}
if (TxBuf != NULL) {
MnpFreeTxBuf (MnpDeviceData, TxBuf);
}
} while (TxBuf != NULL);
return EFI_SUCCESS;
}
/**
Initialize the mnp device context data.
@param[in, out] MnpDeviceData Pointer to the mnp device context data.
@param[in] ImageHandle The driver image handle.
@param[in] ControllerHandle Handle of device to bind driver to.
@retval EFI_SUCCESS The mnp service context is initialized.
@retval EFI_UNSUPPORTED ControllerHandle does not support Simple Network Protocol.
@retval Others Other errors as indicated.
**/
EFI_STATUS
MnpInitializeDeviceData (
IN OUT MNP_DEVICE_DATA *MnpDeviceData,
IN EFI_HANDLE ImageHandle,
IN EFI_HANDLE ControllerHandle
)
{
EFI_STATUS Status;
EFI_SIMPLE_NETWORK_PROTOCOL *Snp;
EFI_SIMPLE_NETWORK_MODE *SnpMode;
MnpDeviceData->Signature = MNP_DEVICE_DATA_SIGNATURE;
MnpDeviceData->ImageHandle = ImageHandle;
MnpDeviceData->ControllerHandle = ControllerHandle;
//
// Copy the MNP Protocol interfaces from the template.
//
CopyMem (&MnpDeviceData->VlanConfig, &mVlanConfigProtocolTemplate, sizeof (EFI_VLAN_CONFIG_PROTOCOL));
//
// Open the Simple Network protocol.
//
Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiSimpleNetworkProtocolGuid,
(VOID **)&Snp,
ImageHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
return EFI_UNSUPPORTED;
}
//
// Get MTU from Snp.
//
SnpMode = Snp->Mode;
MnpDeviceData->Snp = Snp;
//
// Initialize the lists.
//
InitializeListHead (&MnpDeviceData->ServiceList);
InitializeListHead (&MnpDeviceData->GroupAddressList);
//
// Get the buffer length used to allocate NET_BUF to hold data received
// from SNP. Do this before fill the FreeNetBufQue.
//
//
MnpDeviceData->BufferLength = SnpMode->MediaHeaderSize + NET_VLAN_TAG_LEN + SnpMode->MaxPacketSize + NET_ETHER_FCS_SIZE;
//
// Make sure the protocol headers immediately following the media header
// 4-byte aligned, and also preserve additional space for VLAN tag
//
MnpDeviceData->PaddingSize = ((4 - SnpMode->MediaHeaderSize) & 0x3) + NET_VLAN_TAG_LEN;
//
// Initialize MAC string which will be used as VLAN configuration variable name
//
Status = NetLibGetMacString (ControllerHandle, ImageHandle, &MnpDeviceData->MacString);
if (EFI_ERROR (Status)) {
goto ERROR;
}
//
// Initialize the FreeNetBufQue and pre-allocate some NET_BUFs.
//
NetbufQueInit (&MnpDeviceData->FreeNbufQue);
Status = MnpAddFreeNbuf (MnpDeviceData, MNP_INIT_NET_BUFFER_NUM);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "MnpInitializeDeviceData: MnpAddFreeNbuf failed, %r.\n", Status));
goto ERROR;
}
//
// Get one NET_BUF from the FreeNbufQue for rx cache.
//
MnpDeviceData->RxNbufCache = MnpAllocNbuf (MnpDeviceData);
NetbufAllocSpace (
MnpDeviceData->RxNbufCache,
MnpDeviceData->BufferLength,
NET_BUF_TAIL
);
//
// Allocate buffer pool for tx.
//
InitializeListHead (&MnpDeviceData->FreeTxBufList);
InitializeListHead (&MnpDeviceData->AllTxBufList);
MnpDeviceData->TxBufCount = 0;
//
// Create the system poll timer.
//
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL | EVT_TIMER,
TPL_CALLBACK,
MnpSystemPoll,
MnpDeviceData,
&MnpDeviceData->PollTimer
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "MnpInitializeDeviceData: CreateEvent for poll timer failed.\n"));
goto ERROR;
}
//
// Create the timer for packet timeout check.
//
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL | EVT_TIMER,
TPL_CALLBACK,
MnpCheckPacketTimeout,
MnpDeviceData,
&MnpDeviceData->TimeoutCheckTimer
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "MnpInitializeDeviceData: CreateEvent for packet timeout check failed.\n"));
goto ERROR;
}
//
// Create the timer for media detection.
//
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL | EVT_TIMER,
TPL_CALLBACK,
MnpCheckMediaStatus,
MnpDeviceData,
&MnpDeviceData->MediaDetectTimer
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "MnpInitializeDeviceData: CreateEvent for media detection failed.\n"));
goto ERROR;
}
ERROR:
if (EFI_ERROR (Status)) {
//
// Free the dynamic allocated resources if necessary.
//
if (MnpDeviceData->MacString != NULL) {
FreePool (MnpDeviceData->MacString);
}
if (MnpDeviceData->TimeoutCheckTimer != NULL) {
gBS->CloseEvent (MnpDeviceData->TimeoutCheckTimer);
}
if (MnpDeviceData->MediaDetectTimer != NULL) {
gBS->CloseEvent (MnpDeviceData->MediaDetectTimer);
}
if (MnpDeviceData->PollTimer != NULL) {
gBS->CloseEvent (MnpDeviceData->PollTimer);
}
if (MnpDeviceData->RxNbufCache != NULL) {
MnpFreeNbuf (MnpDeviceData, MnpDeviceData->RxNbufCache);
}
if (MnpDeviceData->FreeNbufQue.BufNum != 0) {
NetbufQueFlush (&MnpDeviceData->FreeNbufQue);
}
//
// Close the Simple Network Protocol.
//
gBS->CloseProtocol (
ControllerHandle,
&gEfiSimpleNetworkProtocolGuid,
ImageHandle,
ControllerHandle
);
}
return Status;
}
/**
Destroy the MNP device context data.
@param[in, out] MnpDeviceData Pointer to the mnp device context data.
@param[in] ImageHandle The driver image handle.
**/
VOID
MnpDestroyDeviceData (
IN OUT MNP_DEVICE_DATA *MnpDeviceData,
IN EFI_HANDLE ImageHandle
)
{
LIST_ENTRY *Entry;
LIST_ENTRY *NextEntry;
MNP_TX_BUF_WRAP *TxBufWrap;
NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE);
//
// Free Vlan Config variable name string
//
if (MnpDeviceData->MacString != NULL) {
FreePool (MnpDeviceData->MacString);
}
//
// The GroupAddressList must be empty.
//
ASSERT (IsListEmpty (&MnpDeviceData->GroupAddressList));
//
// Close the event.
//
gBS->CloseEvent (MnpDeviceData->TimeoutCheckTimer);
gBS->CloseEvent (MnpDeviceData->MediaDetectTimer);
gBS->CloseEvent (MnpDeviceData->PollTimer);
//
// Free the Tx buffer pool.
//
NET_LIST_FOR_EACH_SAFE (Entry, NextEntry, &MnpDeviceData->AllTxBufList) {
TxBufWrap = NET_LIST_USER_STRUCT (Entry, MNP_TX_BUF_WRAP, AllEntry);
RemoveEntryList (Entry);
FreePool (TxBufWrap);
MnpDeviceData->TxBufCount--;
}
ASSERT (IsListEmpty (&MnpDeviceData->AllTxBufList));
ASSERT (MnpDeviceData->TxBufCount == 0);
//
// Free the RxNbufCache.
//
MnpFreeNbuf (MnpDeviceData, MnpDeviceData->RxNbufCache);
//
// Flush the FreeNbufQue.
//
MnpDeviceData->NbufCnt -= MnpDeviceData->FreeNbufQue.BufNum;
NetbufQueFlush (&MnpDeviceData->FreeNbufQue);
//
// Close the Simple Network Protocol.
//
gBS->CloseProtocol (
MnpDeviceData->ControllerHandle,
&gEfiSimpleNetworkProtocolGuid,
ImageHandle,
MnpDeviceData->ControllerHandle
);
}
/**
Create mnp service context data.
@param[in] MnpDeviceData Pointer to the mnp device context data.
@param[in] VlanId The VLAN ID.
@param[in] Priority The VLAN priority. If VlanId is 0,
Priority is ignored.
@return A pointer to MNP_SERVICE_DATA or NULL if failed to create MNP service context.
**/
MNP_SERVICE_DATA *
MnpCreateServiceData (
IN MNP_DEVICE_DATA *MnpDeviceData,
IN UINT16 VlanId,
IN UINT8 Priority OPTIONAL
)
{
EFI_HANDLE MnpServiceHandle;
MNP_SERVICE_DATA *MnpServiceData;
EFI_STATUS Status;
EFI_SIMPLE_NETWORK_MODE *SnpMode;
EFI_VLAN_CONFIG_PROTOCOL *VlanConfig;
//
// Initialize the Mnp Service Data.
//
MnpServiceData = AllocateZeroPool (sizeof (MNP_SERVICE_DATA));
if (MnpServiceData == NULL) {
DEBUG ((DEBUG_ERROR, "MnpCreateServiceData: Failed to allocate memory for the new Mnp Service Data.\n"));
return NULL;
}
//
// Add to MNP service list
//
InsertTailList (&MnpDeviceData->ServiceList, &MnpServiceData->Link);
MnpServiceData->Signature = MNP_SERVICE_DATA_SIGNATURE;
MnpServiceData->MnpDeviceData = MnpDeviceData;
//
// Copy the ServiceBinding structure.
//
CopyMem (&MnpServiceData->ServiceBinding, &mMnpServiceBindingProtocol, sizeof (EFI_SERVICE_BINDING_PROTOCOL));
//
// Initialize the lists.
//
InitializeListHead (&MnpServiceData->ChildrenList);
SnpMode = MnpDeviceData->Snp->Mode;
if (VlanId != 0) {
//
// Create VLAN child handle
//
MnpServiceHandle = MnpCreateVlanChild (
MnpDeviceData->ImageHandle,
MnpDeviceData->ControllerHandle,
VlanId,
&MnpServiceData->DevicePath
);
if (MnpServiceHandle == NULL) {
DEBUG ((DEBUG_ERROR, "MnpCreateServiceData: Failed to create child handle.\n"));
return NULL;
}
//
// Open VLAN Config Protocol by child
//
Status = gBS->OpenProtocol (
MnpDeviceData->ControllerHandle,
&gEfiVlanConfigProtocolGuid,
(VOID **)&VlanConfig,
MnpDeviceData->ImageHandle,
MnpServiceHandle,
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
if (EFI_ERROR (Status)) {
goto Exit;
}
//
// Reduce MTU for VLAN device
//
MnpServiceData->Mtu = SnpMode->MaxPacketSize - NET_VLAN_TAG_LEN;
} else {
//
// VlanId set to 0 means rx/tx untagged frame
//
MnpServiceHandle = MnpDeviceData->ControllerHandle;
MnpServiceData->Mtu = SnpMode->MaxPacketSize;
}
MnpServiceData->ServiceHandle = MnpServiceHandle;
MnpServiceData->VlanId = VlanId;
MnpServiceData->Priority = Priority;
//
// Install the MNP Service Binding Protocol
//
Status = gBS->InstallMultipleProtocolInterfaces (
&MnpServiceHandle,
&gEfiManagedNetworkServiceBindingProtocolGuid,
&MnpServiceData->ServiceBinding,
NULL
);
Exit:
if (EFI_ERROR (Status)) {
MnpDestroyServiceData (MnpServiceData);
MnpServiceData = NULL;
}
return MnpServiceData;
}
/**
Destroy the MNP service context data.
@param[in, out] MnpServiceData Pointer to the mnp service context data.
@retval EFI_SUCCESS The mnp service context is destroyed.
@retval Others Errors as indicated.
**/
EFI_STATUS
MnpDestroyServiceData (
IN OUT MNP_SERVICE_DATA *MnpServiceData
)
{
EFI_STATUS Status;
//
// Uninstall the MNP Service Binding Protocol
//
Status = gBS->UninstallMultipleProtocolInterfaces (
MnpServiceData->ServiceHandle,
&gEfiManagedNetworkServiceBindingProtocolGuid,
&MnpServiceData->ServiceBinding,
NULL
);
if (EFI_ERROR (Status)) {
return Status;
}
if (MnpServiceData->VlanId != 0) {
//
// Close VlanConfig Protocol opened by VLAN child handle
//
Status = gBS->CloseProtocol (
MnpServiceData->MnpDeviceData->ControllerHandle,
&gEfiVlanConfigProtocolGuid,
MnpServiceData->MnpDeviceData->ImageHandle,
MnpServiceData->ServiceHandle
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Uninstall Device Path Protocol to destroy the VLAN child handle
//
Status = gBS->UninstallMultipleProtocolInterfaces (
MnpServiceData->ServiceHandle,
&gEfiDevicePathProtocolGuid,
MnpServiceData->DevicePath,
NULL
);
if (EFI_ERROR (Status)) {
return Status;
}
if (MnpServiceData->DevicePath != NULL) {
FreePool (MnpServiceData->DevicePath);
}
}
//
// Remove from MnpDeviceData service list
//
RemoveEntryList (&MnpServiceData->Link);
FreePool (MnpServiceData);
return Status;
}
/**
Callback function which provided by user to remove one node in NetDestroyLinkList process.
@param[in] Entry The entry to be removed.
@param[in] Context Pointer to the callback context corresponds to the Context in NetDestroyLinkList.
@retval EFI_SUCCESS The entry has been removed successfully.
@retval Others Fail to remove the entry.
**/
EFI_STATUS
EFIAPI
MnpDestoryChildEntry (
IN LIST_ENTRY *Entry,
IN VOID *Context
)
{
MNP_INSTANCE_DATA *Instance;
EFI_SERVICE_BINDING_PROTOCOL *ServiceBinding;
ServiceBinding = (EFI_SERVICE_BINDING_PROTOCOL *)Context;
Instance = CR (Entry, MNP_INSTANCE_DATA, InstEntry, MNP_INSTANCE_DATA_SIGNATURE);
return ServiceBinding->DestroyChild (ServiceBinding, Instance->Handle);
}
/**
Destroy all child of the MNP service data.
@param[in, out] MnpServiceData Pointer to the mnp service context data.
@retval EFI_SUCCESS All child are destroyed.
@retval Others Failed to destroy all child.
**/
EFI_STATUS
MnpDestroyServiceChild (
IN OUT MNP_SERVICE_DATA *MnpServiceData
)
{
LIST_ENTRY *List;
EFI_STATUS Status;
UINTN ListLength;
List = &MnpServiceData->ChildrenList;
Status = NetDestroyLinkList (
List,
MnpDestoryChildEntry,
&MnpServiceData->ServiceBinding,
&ListLength
);
if (EFI_ERROR (Status) || (ListLength != 0)) {
return EFI_DEVICE_ERROR;
}
return EFI_SUCCESS;
}
/**
Find the MNP Service Data for given VLAN ID.
@param[in] MnpDeviceData Pointer to the mnp device context data.
@param[in] VlanId The VLAN ID.
@return A pointer to MNP_SERVICE_DATA or NULL if not found.
**/
MNP_SERVICE_DATA *
MnpFindServiceData (
IN MNP_DEVICE_DATA *MnpDeviceData,
IN UINT16 VlanId
)
{
LIST_ENTRY *Entry;
MNP_SERVICE_DATA *MnpServiceData;
NET_LIST_FOR_EACH (Entry, &MnpDeviceData->ServiceList) {
//
// Check VLAN ID of each Mnp Service Data
//
MnpServiceData = MNP_SERVICE_DATA_FROM_LINK (Entry);
if (MnpServiceData->VlanId == VlanId) {
return MnpServiceData;
}
}
return NULL;
}
/**
Initialize the mnp instance context data.
@param[in] MnpServiceData Pointer to the mnp service context data.
@param[in, out] Instance Pointer to the mnp instance context data
to initialize.
**/
VOID
MnpInitializeInstanceData (
IN MNP_SERVICE_DATA *MnpServiceData,
IN OUT MNP_INSTANCE_DATA *Instance
)
{
NET_CHECK_SIGNATURE (MnpServiceData, MNP_SERVICE_DATA_SIGNATURE);
ASSERT (Instance != NULL);
//
// Set the signature.
//
Instance->Signature = MNP_INSTANCE_DATA_SIGNATURE;
//
// Copy the MNP Protocol interfaces from the template.
//
CopyMem (&Instance->ManagedNetwork, &mMnpProtocolTemplate, sizeof (Instance->ManagedNetwork));
//
// Copy the default config data.
//
CopyMem (&Instance->ConfigData, &mMnpDefaultConfigData, sizeof (Instance->ConfigData));
//
// Initialize the lists.
//
InitializeListHead (&Instance->GroupCtrlBlkList);
InitializeListHead (&Instance->RcvdPacketQueue);
InitializeListHead (&Instance->RxDeliveredPacketQueue);
//
// Initialize the RxToken Map.
//
NetMapInit (&Instance->RxTokenMap);
//
// Save the MnpServiceData info.
//
Instance->MnpServiceData = MnpServiceData;
}
/**
Check whether the token specified by Arg matches the token in Item.
@param[in] Map Pointer to the NET_MAP.
@param[in] Item Pointer to the NET_MAP_ITEM.
@param[in] Arg Pointer to the Arg, it's a pointer to the token to
check.
@retval EFI_SUCCESS The token specified by Arg is different from the
token in Item.
@retval EFI_ACCESS_DENIED The token specified by Arg is the same as that in
Item.
**/
EFI_STATUS
EFIAPI
MnpTokenExist (
IN NET_MAP *Map,
IN NET_MAP_ITEM *Item,
IN VOID *Arg
)
{
EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token;
EFI_MANAGED_NETWORK_COMPLETION_TOKEN *TokenInItem;
Token = (EFI_MANAGED_NETWORK_COMPLETION_TOKEN *)Arg;
TokenInItem = (EFI_MANAGED_NETWORK_COMPLETION_TOKEN *)Item->Key;
if ((Token == TokenInItem) || (Token->Event == TokenInItem->Event)) {
//
// The token is the same either the two tokens equals or the Events in
// the two tokens are the same.
//
return EFI_ACCESS_DENIED;
}
return EFI_SUCCESS;
}
/**
Cancel the token specified by Arg if it matches the token in Item.
@param[in, out] Map Pointer to the NET_MAP.
@param[in, out] Item Pointer to the NET_MAP_ITEM.
@param[in] Arg Pointer to the Arg, it's a pointer to the
token to cancel.
@retval EFI_SUCCESS The Arg is NULL, and the token in Item is cancelled,
or the Arg isn't NULL, and the token in Item is
different from the Arg.
@retval EFI_ABORTED The Arg isn't NULL, the token in Item mathces the
Arg, and the token is cancelled.
**/
EFI_STATUS
EFIAPI
MnpCancelTokens (
IN OUT NET_MAP *Map,
IN OUT NET_MAP_ITEM *Item,
IN VOID *Arg
)
{
EFI_MANAGED_NETWORK_COMPLETION_TOKEN *TokenToCancel;
if ((Arg != NULL) && (Item->Key != Arg)) {
//
// The token in Item is not the token specified by Arg.
//
return EFI_SUCCESS;
}
TokenToCancel = (EFI_MANAGED_NETWORK_COMPLETION_TOKEN *)Item->Key;
//
// Remove the item from the map.
//
NetMapRemoveItem (Map, Item, NULL);
//
// Cancel this token with status set to EFI_ABORTED.
//
TokenToCancel->Status = EFI_ABORTED;
gBS->SignalEvent (TokenToCancel->Event);
if (Arg != NULL) {
//
// Only abort the token specified by Arg if Arg isn't NULL.
//
return EFI_ABORTED;
}
return EFI_SUCCESS;
}
/**
Start and initialize the simple network.
@param[in] Snp Pointer to the simple network protocol.
@retval EFI_SUCCESS The simple network protocol is started.
@retval Others Other errors as indicated.
**/
EFI_STATUS
MnpStartSnp (
IN EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
EFI_STATUS Status;
ASSERT (Snp != NULL);
//
// Start the simple network.
//
Status = Snp->Start (Snp);
if (!EFI_ERROR (Status)) {
//
// Initialize the simple network.
//
Status = Snp->Initialize (Snp, 0, 0);
}
return Status;
}
/**
Stop the simple network.
@param[in] MnpDeviceData Pointer to the MNP_DEVICE_DATA.
@retval EFI_SUCCESS The simple network is stopped.
@retval Others Other errors as indicated.
**/
EFI_STATUS
MnpStopSnp (
IN MNP_DEVICE_DATA *MnpDeviceData
)
{
EFI_STATUS Status;
EFI_SIMPLE_NETWORK_PROTOCOL *Snp;
Snp = MnpDeviceData->Snp;
ASSERT (Snp != NULL);
//
// Recycle all the transmit buffer from SNP.
//
Status = MnpRecycleTxBuf (MnpDeviceData);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Shut down the simple network.
//
Status = Snp->Shutdown (Snp);
if (!EFI_ERROR (Status)) {
//
// Stop the simple network.
//
Status = Snp->Stop (Snp);
}
return Status;
}
/**
Start the managed network, this function is called when one instance is configured
or reconfigured.
@param[in, out] MnpServiceData Pointer to the mnp service context data.
@param[in] IsConfigUpdate The instance is reconfigured or it's the first
time the instanced is configured.
@param[in] EnableSystemPoll Enable the system polling or not.
@retval EFI_SUCCESS The managed network is started and some
configuration is updated.
@retval Others Other errors as indicated.
**/
EFI_STATUS
MnpStart (
IN OUT MNP_SERVICE_DATA *MnpServiceData,
IN BOOLEAN IsConfigUpdate,
IN BOOLEAN EnableSystemPoll
)
{
EFI_STATUS Status;
EFI_TIMER_DELAY TimerOpType;
MNP_DEVICE_DATA *MnpDeviceData;
NET_CHECK_SIGNATURE (MnpServiceData, MNP_SERVICE_DATA_SIGNATURE);
Status = EFI_SUCCESS;
MnpDeviceData = MnpServiceData->MnpDeviceData;
if (!IsConfigUpdate) {
//
// If it's not a configuration update, increase the configured children number.
//
MnpDeviceData->ConfiguredChildrenNumber++;
if (MnpDeviceData->ConfiguredChildrenNumber == 1) {
//
// It's the first configured child, start the simple network.
//
Status = MnpStartSnp (MnpDeviceData->Snp);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "MnpStart: MnpStartSnp failed, %r.\n", Status));
goto ErrorExit;
}
//
// Start the timeout timer.
//
Status = gBS->SetTimer (
MnpDeviceData->TimeoutCheckTimer,
TimerPeriodic,
MNP_TIMEOUT_CHECK_INTERVAL
);
if (EFI_ERROR (Status)) {
DEBUG (
(DEBUG_ERROR,
"MnpStart, gBS->SetTimer for TimeoutCheckTimer %r.\n",
Status)
);
goto ErrorExit;
}
//
// Start the media detection timer.
//
Status = gBS->SetTimer (
MnpDeviceData->MediaDetectTimer,
TimerPeriodic,
MNP_MEDIA_DETECT_INTERVAL
);
if (EFI_ERROR (Status)) {
DEBUG (
(DEBUG_ERROR,
"MnpStart, gBS->SetTimer for MediaDetectTimer %r.\n",
Status)
);
goto ErrorExit;
}
}
}
if (MnpDeviceData->EnableSystemPoll ^ EnableSystemPoll) {
//
// The EnableSystemPoll differs with the current state, disable or enable
// the system poll.
//
TimerOpType = EnableSystemPoll ? TimerPeriodic : TimerCancel;
Status = gBS->SetTimer (MnpDeviceData->PollTimer, TimerOpType, MNP_SYS_POLL_INTERVAL);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "MnpStart: gBS->SetTimer for PollTimer failed, %r.\n", Status));
goto ErrorExit;
}
MnpDeviceData->EnableSystemPoll = EnableSystemPoll;
}
//
// Change the receive filters if need.
//
Status = MnpConfigReceiveFilters (MnpDeviceData);
ErrorExit:
return Status;
}
/**
Stop the managed network.
@param[in, out] MnpServiceData Pointer to the mnp service context data.
@retval EFI_SUCCESS The managed network is stopped.
@retval Others Other errors as indicated.
**/
EFI_STATUS
MnpStop (
IN OUT MNP_SERVICE_DATA *MnpServiceData
)
{
EFI_STATUS Status;
MNP_DEVICE_DATA *MnpDeviceData;
NET_CHECK_SIGNATURE (MnpServiceData, MNP_SERVICE_DATA_SIGNATURE);
MnpDeviceData = MnpServiceData->MnpDeviceData;
ASSERT (MnpDeviceData->ConfiguredChildrenNumber > 0);
//
// Configure the receive filters.
//
MnpConfigReceiveFilters (MnpDeviceData);
//
// Decrease the children number.
//
MnpDeviceData->ConfiguredChildrenNumber--;
if (MnpDeviceData->ConfiguredChildrenNumber > 0) {
//
// If there are other configured children, return and keep the timers and
// simple network unchanged.
//
return EFI_SUCCESS;
}
//
// No configured children now.
//
if (MnpDeviceData->EnableSystemPoll) {
//
// The system poll in on, cancel the poll timer.
//
Status = gBS->SetTimer (MnpDeviceData->PollTimer, TimerCancel, 0);
MnpDeviceData->EnableSystemPoll = FALSE;
}
//
// Cancel the timeout timer.
//
Status = gBS->SetTimer (MnpDeviceData->TimeoutCheckTimer, TimerCancel, 0);
//
// Cancel the media detect timer.
//
Status = gBS->SetTimer (MnpDeviceData->MediaDetectTimer, TimerCancel, 0);
//
// Stop the simple network.
//
Status = MnpStopSnp (MnpDeviceData);
return Status;
}
/**
Flush the instance's received data.
@param[in, out] Instance Pointer to the mnp instance context data.
**/
VOID
MnpFlushRcvdDataQueue (
IN OUT MNP_INSTANCE_DATA *Instance
)
{
EFI_TPL OldTpl;
MNP_RXDATA_WRAP *RxDataWrap;
NET_CHECK_SIGNATURE (Instance, MNP_INSTANCE_DATA_SIGNATURE);
OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
while (!IsListEmpty (&Instance->RcvdPacketQueue)) {
//
// Remove all the Wraps.
//
RxDataWrap = NET_LIST_HEAD (&Instance->RcvdPacketQueue, MNP_RXDATA_WRAP, WrapEntry);
//
// Recycle the RxDataWrap.
//
MnpRecycleRxData (NULL, (VOID *)RxDataWrap);
Instance->RcvdPacketQueueSize--;
}
ASSERT (Instance->RcvdPacketQueueSize == 0);
gBS->RestoreTPL (OldTpl);
}
/**
Configure the Instance using ConfigData.
@param[in, out] Instance Pointer to the mnp instance context data.
@param[in] ConfigData Pointer to the configuration data used to configure
the instance.
@retval EFI_SUCCESS The Instance is configured.
@retval EFI_UNSUPPORTED EnableReceiveTimestamps is on and the
implementation doesn't support it.
@retval Others Other errors as indicated.
**/
EFI_STATUS
MnpConfigureInstance (
IN OUT MNP_INSTANCE_DATA *Instance,
IN EFI_MANAGED_NETWORK_CONFIG_DATA *ConfigData OPTIONAL
)
{
EFI_STATUS Status;
MNP_SERVICE_DATA *MnpServiceData;
MNP_DEVICE_DATA *MnpDeviceData;
EFI_MANAGED_NETWORK_CONFIG_DATA *OldConfigData;
EFI_MANAGED_NETWORK_CONFIG_DATA *NewConfigData;
BOOLEAN IsConfigUpdate;
NET_CHECK_SIGNATURE (Instance, MNP_INSTANCE_DATA_SIGNATURE);
if ((ConfigData != NULL) && ConfigData->EnableReceiveTimestamps) {
//
// Don't support timestamp.
//
return EFI_UNSUPPORTED;
}
Status = EFI_SUCCESS;
MnpServiceData = Instance->MnpServiceData;
MnpDeviceData = MnpServiceData->MnpDeviceData;
NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE);
IsConfigUpdate = (BOOLEAN)((Instance->Configured) && (ConfigData != NULL));
OldConfigData = &Instance->ConfigData;
NewConfigData = ConfigData;
if (NewConfigData == NULL) {
//
// Restore back the default config data if a reset of this instance
// is required.
//
NewConfigData = &mMnpDefaultConfigData;
}
//
// Reset the instance's receive filter.
//
Instance->ReceiveFilter = 0;
//
// Clear the receive counters according to the old ConfigData.
//
if (OldConfigData->EnableUnicastReceive) {
MnpDeviceData->UnicastCount--;
}
if (OldConfigData->EnableMulticastReceive) {
MnpDeviceData->MulticastCount--;
}
if (OldConfigData->EnableBroadcastReceive) {
MnpDeviceData->BroadcastCount--;
}
if (OldConfigData->EnablePromiscuousReceive) {
MnpDeviceData->PromiscuousCount--;
}
//
// Set the receive filter counters and the receive filter of the
// instance according to the new ConfigData.
//
if (NewConfigData->EnableUnicastReceive) {
MnpDeviceData->UnicastCount++;
Instance->ReceiveFilter |= MNP_RECEIVE_UNICAST;
}
if (NewConfigData->EnableMulticastReceive) {
MnpDeviceData->MulticastCount++;
}
if (NewConfigData->EnableBroadcastReceive) {
MnpDeviceData->BroadcastCount++;
Instance->ReceiveFilter |= MNP_RECEIVE_BROADCAST;
}
if (NewConfigData->EnablePromiscuousReceive) {
MnpDeviceData->PromiscuousCount++;
}
if (OldConfigData->FlushQueuesOnReset) {
MnpFlushRcvdDataQueue (Instance);
}
if (ConfigData == NULL) {
Instance->ManagedNetwork.Cancel (&Instance->ManagedNetwork, NULL);
}
if (!NewConfigData->EnableMulticastReceive) {
MnpGroupOp (Instance, FALSE, NULL, NULL);
}
//
// Save the new configuration data.
//
CopyMem (OldConfigData, NewConfigData, sizeof (*OldConfigData));
Instance->Configured = (BOOLEAN)(ConfigData != NULL);
if (Instance->Configured) {
//
// The instance is configured, start the Mnp.
//
Status = MnpStart (
MnpServiceData,
IsConfigUpdate,
(BOOLEAN) !NewConfigData->DisableBackgroundPolling
);
} else {
//
// The instance is changed to the unconfigured state, stop the Mnp.
//
Status = MnpStop (MnpServiceData);
}
return Status;
}
/**
Configure the Snp receive filters according to the instances' receive filter
settings.
@param[in] MnpDeviceData Pointer to the mnp device context data.
@retval EFI_SUCCESS The receive filters is configured.
@retval EFI_OUT_OF_RESOURCES The receive filters can't be configured due
to lack of memory resource.
**/
EFI_STATUS
MnpConfigReceiveFilters (
IN MNP_DEVICE_DATA *MnpDeviceData
)
{
EFI_STATUS Status;
EFI_SIMPLE_NETWORK_PROTOCOL *Snp;
EFI_MAC_ADDRESS *MCastFilter;
UINT32 MCastFilterCnt;
UINT32 EnableFilterBits;
UINT32 DisableFilterBits;
BOOLEAN ResetMCastFilters;
LIST_ENTRY *Entry;
UINT32 Index;
MNP_GROUP_ADDRESS *GroupAddress;
NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE);
Snp = MnpDeviceData->Snp;
//
// Initialize the enable filter and disable filter.
//
EnableFilterBits = 0;
DisableFilterBits = Snp->Mode->ReceiveFilterMask;
if (MnpDeviceData->UnicastCount != 0) {
//
// Enable unicast if any instance wants to receive unicast.
//
EnableFilterBits |= EFI_SIMPLE_NETWORK_RECEIVE_UNICAST;
}
if (MnpDeviceData->BroadcastCount != 0) {
//
// Enable broadcast if any instance wants to receive broadcast.
//
EnableFilterBits |= EFI_SIMPLE_NETWORK_RECEIVE_BROADCAST;
}
MCastFilter = NULL;
MCastFilterCnt = 0;
ResetMCastFilters = TRUE;
if ((MnpDeviceData->MulticastCount != 0) && (MnpDeviceData->GroupAddressCount != 0)) {
//
// There are instances configured to receive multicast and already some group
// addresses are joined.
//
ResetMCastFilters = FALSE;
if (MnpDeviceData->GroupAddressCount <= Snp->Mode->MaxMCastFilterCount) {
//
// The joind group address is less than simple network's maximum count.
// Just configure the snp to do the multicast filtering.
//
EnableFilterBits |= EFI_SIMPLE_NETWORK_RECEIVE_MULTICAST;
//
// Allocate pool for the multicast addresses.
//
MCastFilterCnt = MnpDeviceData->GroupAddressCount;
MCastFilter = AllocatePool (sizeof (EFI_MAC_ADDRESS) * MCastFilterCnt);
if (MCastFilter == NULL) {
DEBUG ((DEBUG_ERROR, "MnpConfigReceiveFilters: Failed to allocate memory resource for MCastFilter.\n"));
return EFI_OUT_OF_RESOURCES;
}
//
// Fill the multicast HW address buffer.
//
Index = 0;
NET_LIST_FOR_EACH (Entry, &MnpDeviceData->GroupAddressList) {
GroupAddress = NET_LIST_USER_STRUCT (Entry, MNP_GROUP_ADDRESS, AddrEntry);
CopyMem (MCastFilter + Index, &GroupAddress->Address, sizeof (*(MCastFilter + Index)));
Index++;
ASSERT (Index <= MCastFilterCnt);
}
} else {
//
// The maximum multicast is reached, set the filter to be promiscuous
// multicast.
//
if ((Snp->Mode->ReceiveFilterMask & EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS_MULTICAST) != 0) {
EnableFilterBits |= EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS_MULTICAST;
} else {
//
// Either MULTICAST or PROMISCUOUS_MULTICAST is not supported by Snp,
// set the NIC to be promiscuous although this will tremendously degrade
// the performance.
//
EnableFilterBits |= EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS;
}
}
}
if (MnpDeviceData->PromiscuousCount != 0) {
//
// Enable promiscuous if any instance wants to receive promiscuous.
//
EnableFilterBits |= EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS;
}
//
// Set the disable filter.
//
DisableFilterBits ^= EnableFilterBits;
//
// Configure the receive filters of SNP.
//
Status = Snp->ReceiveFilters (
Snp,
EnableFilterBits,
DisableFilterBits,
ResetMCastFilters,
MCastFilterCnt,
MCastFilter
);
DEBUG_CODE_BEGIN ();
if (EFI_ERROR (Status)) {
DEBUG (
(DEBUG_ERROR,
"MnpConfigReceiveFilters: Snp->ReceiveFilters failed, %r.\n",
Status)
);
}
DEBUG_CODE_END ();
if (MCastFilter != NULL) {
//
// Free the buffer used to hold the group addresses.
//
FreePool (MCastFilter);
}
return Status;
}
/**
Add a group address control block which controls the MacAddress for
this instance.
@param[in, out] Instance Pointer to the mnp instance context data.
@param[in, out] CtrlBlk Pointer to the group address control block.
@param[in, out] GroupAddress Pointer to the group address.
@param[in] MacAddress Pointer to the mac address.
@param[in] HwAddressSize The hardware address size.
@retval EFI_SUCCESS The group address control block is added.
@retval EFI_OUT_OF_RESOURCES Failed due to lack of memory resources.
**/
EFI_STATUS
MnpGroupOpAddCtrlBlk (
IN OUT MNP_INSTANCE_DATA *Instance,
IN OUT MNP_GROUP_CONTROL_BLOCK *CtrlBlk,
IN OUT MNP_GROUP_ADDRESS *GroupAddress OPTIONAL,
IN EFI_MAC_ADDRESS *MacAddress,
IN UINT32 HwAddressSize
)
{
MNP_DEVICE_DATA *MnpDeviceData;
NET_CHECK_SIGNATURE (Instance, MNP_INSTANCE_DATA_SIGNATURE);
MnpDeviceData = Instance->MnpServiceData->MnpDeviceData;
NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE);
if (GroupAddress == NULL) {
ASSERT (MacAddress != NULL);
//
// Allocate a new GroupAddress to be added into MNP's GroupAddressList.
//
GroupAddress = AllocatePool (sizeof (MNP_GROUP_ADDRESS));
if (GroupAddress == NULL) {
DEBUG ((DEBUG_ERROR, "MnpGroupOpFormCtrlBlk: Failed to allocate memory resource.\n"));
return EFI_OUT_OF_RESOURCES;
}
CopyMem (&GroupAddress->Address, MacAddress, sizeof (GroupAddress->Address));
GroupAddress->RefCnt = 0;
InsertTailList (
&MnpDeviceData->GroupAddressList,
&GroupAddress->AddrEntry
);
MnpDeviceData->GroupAddressCount++;
}
//
// Increase the RefCnt.
//
GroupAddress->RefCnt++;
//
// Add the CtrlBlk into the instance's GroupCtrlBlkList.
//
CtrlBlk->GroupAddress = GroupAddress;
InsertTailList (&Instance->GroupCtrlBlkList, &CtrlBlk->CtrlBlkEntry);
return EFI_SUCCESS;
}
/**
Delete a group control block from the instance. If the controlled group address's
reference count reaches zero, the group address is removed too.
@param[in] Instance Pointer to the instance context data.
@param[in] CtrlBlk Pointer to the group control block to delete.
@return The group address controlled by the control block is no longer used or not.
**/
BOOLEAN
MnpGroupOpDelCtrlBlk (
IN MNP_INSTANCE_DATA *Instance,
IN MNP_GROUP_CONTROL_BLOCK *CtrlBlk
)
{
MNP_DEVICE_DATA *MnpDeviceData;
MNP_GROUP_ADDRESS *GroupAddress;
NET_CHECK_SIGNATURE (Instance, MNP_INSTANCE_DATA_SIGNATURE);
MnpDeviceData = Instance->MnpServiceData->MnpDeviceData;
NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE);
//
// Remove and free the CtrlBlk.
//
GroupAddress = CtrlBlk->GroupAddress;
RemoveEntryList (&CtrlBlk->CtrlBlkEntry);
FreePool (CtrlBlk);
ASSERT (GroupAddress->RefCnt > 0);
//
// Count down the RefCnt.
//
GroupAddress->RefCnt--;
if (GroupAddress->RefCnt == 0) {
//
// Free this GroupAddress entry if no instance uses it.
//
MnpDeviceData->GroupAddressCount--;
RemoveEntryList (&GroupAddress->AddrEntry);
FreePool (GroupAddress);
return TRUE;
}
return FALSE;
}
/**
Do the group operations for this instance.
@param[in, out] Instance Pointer to the instance context data.
@param[in] JoinFlag Set to TRUE to join a group. Set to TRUE to
leave a group/groups.
@param[in] MacAddress Pointer to the group address to join or leave.
@param[in] CtrlBlk Pointer to the group control block if JoinFlag
is FALSE.
@retval EFI_SUCCESS The group operation finished.
@retval EFI_OUT_OF_RESOURCES Failed due to lack of memory resources.
@retval Others Other errors as indicated.
**/
EFI_STATUS
MnpGroupOp (
IN OUT MNP_INSTANCE_DATA *Instance,
IN BOOLEAN JoinFlag,
IN EFI_MAC_ADDRESS *MacAddress OPTIONAL,
IN MNP_GROUP_CONTROL_BLOCK *CtrlBlk OPTIONAL
)
{
MNP_DEVICE_DATA *MnpDeviceData;
LIST_ENTRY *Entry;
LIST_ENTRY *NextEntry;
MNP_GROUP_ADDRESS *GroupAddress;
EFI_SIMPLE_NETWORK_MODE *SnpMode;
MNP_GROUP_CONTROL_BLOCK *NewCtrlBlk;
EFI_STATUS Status;
BOOLEAN AddressExist;
BOOLEAN NeedUpdate;
NET_CHECK_SIGNATURE (Instance, MNP_INSTANCE_DATA_SIGNATURE);
MnpDeviceData = Instance->MnpServiceData->MnpDeviceData;
SnpMode = MnpDeviceData->Snp->Mode;
if (JoinFlag) {
//
// A new group address is to be added.
//
GroupAddress = NULL;
AddressExist = FALSE;
//
// Allocate memory for the control block.
//
NewCtrlBlk = AllocatePool (sizeof (MNP_GROUP_CONTROL_BLOCK));
if (NewCtrlBlk == NULL) {
DEBUG ((DEBUG_ERROR, "MnpGroupOp: Failed to allocate memory resource.\n"));
return EFI_OUT_OF_RESOURCES;
}
NET_LIST_FOR_EACH (Entry, &MnpDeviceData->GroupAddressList) {
//
// Check whether the MacAddress is already joined by other instances.
//
GroupAddress = NET_LIST_USER_STRUCT (Entry, MNP_GROUP_ADDRESS, AddrEntry);
if (CompareMem (MacAddress, &GroupAddress->Address, SnpMode->HwAddressSize) == 0) {
AddressExist = TRUE;
break;
}
}
if (!AddressExist) {
GroupAddress = NULL;
}
//
// Add the GroupAddress for this instance.
//
Status = MnpGroupOpAddCtrlBlk (
Instance,
NewCtrlBlk,
GroupAddress,
MacAddress,
SnpMode->HwAddressSize
);
if (EFI_ERROR (Status)) {
return Status;
}
NeedUpdate = TRUE;
} else {
if (MacAddress != NULL) {
ASSERT (CtrlBlk != NULL);
//
// Leave the specific multicast mac address.
//
NeedUpdate = MnpGroupOpDelCtrlBlk (Instance, CtrlBlk);
} else {
//
// Leave all multicast mac addresses.
//
NeedUpdate = FALSE;
NET_LIST_FOR_EACH_SAFE (Entry, NextEntry, &Instance->GroupCtrlBlkList) {
NewCtrlBlk = NET_LIST_USER_STRUCT (
Entry,
MNP_GROUP_CONTROL_BLOCK,
CtrlBlkEntry
);
//
// Update is required if the group address left is no longer used
// by other instances.
//
NeedUpdate = MnpGroupOpDelCtrlBlk (Instance, NewCtrlBlk);
}
}
}
Status = EFI_SUCCESS;
if (NeedUpdate) {
//
// Reconfigure the receive filters if necessary.
//
Status = MnpConfigReceiveFilters (MnpDeviceData);
}
return Status;
}