/** @file | |
Virtual Memory Management Services to set or clear the memory encryption. | |
Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR> | |
Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR> | |
SPDX-License-Identifier: BSD-2-Clause-Patent | |
Code is derived from MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c | |
Note: | |
There a lot of duplicated codes for Page Table operations. These | |
codes should be moved to a common library (PageTablesLib) so that it is | |
more friendly for review and maintain. There is a new feature requirement | |
https://bugzilla.tianocore.org/show_bug.cgi?id=847 which is to implement | |
the library. After the lib is introduced, this file will be refactored. | |
**/ | |
#include <Uefi.h> | |
#include <Uefi/UefiBaseType.h> | |
#include <Library/CpuLib.h> | |
#include <Library/BaseLib.h> | |
#include <Library/DebugLib.h> | |
#include <Library/MemEncryptTdxLib.h> | |
#include "VirtualMemory.h" | |
#include <IndustryStandard/Tdx.h> | |
#include <Library/TdxLib.h> | |
#include <Library/UefiBootServicesTableLib.h> | |
#include <Protocol/MemoryAccept.h> | |
#include <ConfidentialComputingGuestAttr.h> | |
typedef enum { | |
SetSharedBit, | |
ClearSharedBit | |
} TDX_PAGETABLE_MODE; | |
STATIC PAGE_TABLE_POOL *mPageTablePool = NULL; | |
/** | |
Returns boolean to indicate whether to indicate which, if any, memory encryption is enabled | |
@param[in] Type Bitmask of encryption technologies to check is enabled | |
@retval TRUE The encryption type(s) are enabled | |
@retval FALSE The encryption type(s) are not enabled | |
**/ | |
BOOLEAN | |
EFIAPI | |
MemEncryptTdxIsEnabled ( | |
VOID | |
) | |
{ | |
return CC_GUEST_IS_TDX (PcdGet64 (PcdConfidentialComputingGuestAttr)); | |
} | |
/** | |
Get the memory encryption mask | |
@param[out] EncryptionMask contains the pte mask. | |
**/ | |
STATIC | |
UINT64 | |
GetMemEncryptionAddressMask ( | |
VOID | |
) | |
{ | |
return TdSharedPageMask (); | |
} | |
/** | |
Initialize a buffer pool for page table use only. | |
To reduce the potential split operation on page table, the pages reserved for | |
page table should be allocated in the times of PAGE_TABLE_POOL_UNIT_PAGES and | |
at the boundary of PAGE_TABLE_POOL_ALIGNMENT. So the page pool is always | |
initialized with number of pages greater than or equal to the given | |
PoolPages. | |
Once the pages in the pool are used up, this method should be called again to | |
reserve at least another PAGE_TABLE_POOL_UNIT_PAGES. Usually this won't | |
happen often in practice. | |
@param[in] PoolPages The least page number of the pool to be created. | |
@retval TRUE The pool is initialized successfully. | |
@retval FALSE The memory is out of resource. | |
**/ | |
STATIC | |
BOOLEAN | |
InitializePageTablePool ( | |
IN UINTN PoolPages | |
) | |
{ | |
VOID *Buffer; | |
// | |
// Always reserve at least PAGE_TABLE_POOL_UNIT_PAGES, including one page for | |
// header. | |
// | |
PoolPages += 1; // Add one page for header. | |
PoolPages = ((PoolPages - 1) / PAGE_TABLE_POOL_UNIT_PAGES + 1) * | |
PAGE_TABLE_POOL_UNIT_PAGES; | |
Buffer = AllocateAlignedPages (PoolPages, PAGE_TABLE_POOL_ALIGNMENT); | |
if (Buffer == NULL) { | |
DEBUG ((DEBUG_ERROR, "ERROR: Out of aligned pages\r\n")); | |
return FALSE; | |
} | |
// | |
// Link all pools into a list for easier track later. | |
// | |
if (mPageTablePool == NULL) { | |
mPageTablePool = Buffer; | |
mPageTablePool->NextPool = mPageTablePool; | |
} else { | |
((PAGE_TABLE_POOL *)Buffer)->NextPool = mPageTablePool->NextPool; | |
mPageTablePool->NextPool = Buffer; | |
mPageTablePool = Buffer; | |
} | |
// | |
// Reserve one page for pool header. | |
// | |
mPageTablePool->FreePages = PoolPages - 1; | |
mPageTablePool->Offset = EFI_PAGES_TO_SIZE (1); | |
return TRUE; | |
} | |
/** | |
This API provides a way to allocate memory for page table. | |
This API can be called more than once to allocate memory for page tables. | |
Allocates the number of 4KB pages and returns a pointer to the allocated | |
buffer. The buffer returned is aligned on a 4KB boundary. | |
If Pages is 0, then NULL is returned. | |
If there is not enough memory remaining to satisfy the request, then NULL is | |
returned. | |
@param Pages The number of 4 KB pages to allocate. | |
@return A pointer to the allocated buffer or NULL if allocation fails. | |
**/ | |
STATIC | |
VOID * | |
EFIAPI | |
AllocatePageTableMemory ( | |
IN UINTN Pages | |
) | |
{ | |
VOID *Buffer; | |
if (Pages == 0) { | |
return NULL; | |
} | |
// | |
// Renew the pool if necessary. | |
// | |
if ((mPageTablePool == NULL) || | |
(Pages > mPageTablePool->FreePages)) | |
{ | |
if (!InitializePageTablePool (Pages)) { | |
return NULL; | |
} | |
} | |
Buffer = (UINT8 *)mPageTablePool + mPageTablePool->Offset; | |
mPageTablePool->Offset += EFI_PAGES_TO_SIZE (Pages); | |
mPageTablePool->FreePages -= Pages; | |
DEBUG (( | |
DEBUG_VERBOSE, | |
"%a:%a: Buffer=0x%Lx Pages=%ld\n", | |
gEfiCallerBaseName, | |
__func__, | |
Buffer, | |
Pages | |
)); | |
return Buffer; | |
} | |
/** | |
Split 2M page to 4K. | |
@param[in] PhysicalAddress Start physical address the 2M page | |
covered. | |
@param[in, out] PageEntry2M Pointer to 2M page entry. | |
@param[in] StackBase Stack base address. | |
@param[in] StackSize Stack size. | |
**/ | |
STATIC | |
VOID | |
Split2MPageTo4K ( | |
IN PHYSICAL_ADDRESS PhysicalAddress, | |
IN OUT UINT64 *PageEntry2M, | |
IN PHYSICAL_ADDRESS StackBase, | |
IN UINTN StackSize, | |
IN UINT64 AddressEncMask | |
) | |
{ | |
PHYSICAL_ADDRESS PhysicalAddress4K; | |
UINTN IndexOfPageTableEntries; | |
PAGE_TABLE_4K_ENTRY *PageTableEntry, *PageTableEntry1; | |
PageTableEntry = AllocatePageTableMemory (1); | |
PageTableEntry1 = PageTableEntry; | |
if (PageTableEntry == NULL) { | |
ASSERT (FALSE); | |
return; | |
} | |
PhysicalAddress4K = PhysicalAddress; | |
for (IndexOfPageTableEntries = 0; | |
IndexOfPageTableEntries < 512; | |
(IndexOfPageTableEntries++, | |
PageTableEntry++, | |
PhysicalAddress4K += SIZE_4KB)) | |
{ | |
// | |
// Fill in the Page Table entries | |
// | |
PageTableEntry->Uint64 = (UINT64)PhysicalAddress4K | AddressEncMask; | |
PageTableEntry->Bits.ReadWrite = 1; | |
PageTableEntry->Bits.Present = 1; | |
if ((PhysicalAddress4K >= StackBase) && | |
(PhysicalAddress4K < StackBase + StackSize)) | |
{ | |
// | |
// Set Nx bit for stack. | |
// | |
PageTableEntry->Bits.Nx = 1; | |
} | |
} | |
// | |
// Fill in 2M page entry. | |
// | |
*PageEntry2M = ((UINT64)(UINTN)PageTableEntry1 | | |
IA32_PG_P | IA32_PG_RW | AddressEncMask); | |
} | |
/** | |
Set one page of page table pool memory to be read-only. | |
@param[in] PageTableBase Base address of page table (CR3). | |
@param[in] Address Start address of a page to be set as read-only. | |
@param[in] Level4Paging Level 4 paging flag. | |
**/ | |
STATIC | |
VOID | |
SetPageTablePoolReadOnly ( | |
IN UINTN PageTableBase, | |
IN EFI_PHYSICAL_ADDRESS Address, | |
IN BOOLEAN Level4Paging | |
) | |
{ | |
UINTN Index; | |
UINTN EntryIndex; | |
UINT64 AddressEncMask; | |
UINT64 ActiveAddressEncMask; | |
EFI_PHYSICAL_ADDRESS PhysicalAddress; | |
UINT64 *PageTable; | |
UINT64 *NewPageTable; | |
UINT64 PageAttr; | |
UINT64 LevelSize[5]; | |
UINT64 LevelMask[5]; | |
UINTN LevelShift[5]; | |
UINTN Level; | |
UINT64 PoolUnitSize; | |
if (PageTableBase == 0) { | |
ASSERT (FALSE); | |
return; | |
} | |
// | |
// Since the page table is always from page table pool, which is always | |
// located at the boundary of PcdPageTablePoolAlignment, we just need to | |
// set the whole pool unit to be read-only. | |
// | |
Address = Address & PAGE_TABLE_POOL_ALIGN_MASK; | |
LevelShift[1] = PAGING_L1_ADDRESS_SHIFT; | |
LevelShift[2] = PAGING_L2_ADDRESS_SHIFT; | |
LevelShift[3] = PAGING_L3_ADDRESS_SHIFT; | |
LevelShift[4] = PAGING_L4_ADDRESS_SHIFT; | |
LevelMask[1] = PAGING_4K_ADDRESS_MASK_64; | |
LevelMask[2] = PAGING_2M_ADDRESS_MASK_64; | |
LevelMask[3] = PAGING_1G_ADDRESS_MASK_64; | |
LevelMask[4] = PAGING_1G_ADDRESS_MASK_64; | |
LevelSize[1] = SIZE_4KB; | |
LevelSize[2] = SIZE_2MB; | |
LevelSize[3] = SIZE_1GB; | |
LevelSize[4] = SIZE_512GB; | |
AddressEncMask = GetMemEncryptionAddressMask () & | |
PAGING_1G_ADDRESS_MASK_64; | |
PageTable = (UINT64 *)(UINTN)PageTableBase; | |
PoolUnitSize = PAGE_TABLE_POOL_UNIT_SIZE; | |
for (Level = (Level4Paging) ? 4 : 3; Level > 0; --Level) { | |
Index = ((UINTN)RShiftU64 (Address, LevelShift[Level])); | |
Index &= PAGING_PAE_INDEX_MASK; | |
PageAttr = PageTable[Index]; | |
ActiveAddressEncMask = GetMemEncryptionAddressMask () & PageAttr; | |
if ((PageAttr & IA32_PG_PS) == 0) { | |
// | |
// Go to next level of table. | |
// | |
PageTable = (UINT64 *)(UINTN)(PageAttr & ~AddressEncMask & | |
PAGING_4K_ADDRESS_MASK_64); | |
continue; | |
} | |
if (PoolUnitSize >= LevelSize[Level]) { | |
// | |
// Clear R/W bit if current page granularity is not larger than pool unit | |
// size. | |
// | |
if ((PageAttr & IA32_PG_RW) != 0) { | |
while (PoolUnitSize > 0) { | |
// | |
// PAGE_TABLE_POOL_UNIT_SIZE and PAGE_TABLE_POOL_ALIGNMENT are fit in | |
// one page (2MB). Then we don't need to update attributes for pages | |
// crossing page directory. ASSERT below is for that purpose. | |
// | |
ASSERT (Index < EFI_PAGE_SIZE/sizeof (UINT64)); | |
PageTable[Index] &= ~(UINT64)IA32_PG_RW; | |
PoolUnitSize -= LevelSize[Level]; | |
++Index; | |
} | |
} | |
break; | |
} else { | |
// | |
// The smaller granularity of page must be needed. | |
// | |
ASSERT (Level > 1); | |
NewPageTable = AllocatePageTableMemory (1); | |
if (NewPageTable == NULL) { | |
ASSERT (FALSE); | |
return; | |
} | |
PhysicalAddress = PageAttr & LevelMask[Level]; | |
for (EntryIndex = 0; | |
EntryIndex < EFI_PAGE_SIZE/sizeof (UINT64); | |
++EntryIndex) | |
{ | |
NewPageTable[EntryIndex] = PhysicalAddress | ActiveAddressEncMask | | |
IA32_PG_P | IA32_PG_RW; | |
if (Level > 2) { | |
NewPageTable[EntryIndex] |= IA32_PG_PS; | |
} | |
PhysicalAddress += LevelSize[Level - 1]; | |
} | |
PageTable[Index] = (UINT64)(UINTN)NewPageTable | ActiveAddressEncMask | | |
IA32_PG_P | IA32_PG_RW; | |
PageTable = NewPageTable; | |
} | |
} | |
} | |
/** | |
Prevent the memory pages used for page table from been overwritten. | |
@param[in] PageTableBase Base address of page table (CR3). | |
@param[in] Level4Paging Level 4 paging flag. | |
**/ | |
STATIC | |
VOID | |
EnablePageTableProtection ( | |
IN UINTN PageTableBase, | |
IN BOOLEAN Level4Paging | |
) | |
{ | |
PAGE_TABLE_POOL *HeadPool; | |
PAGE_TABLE_POOL *Pool; | |
UINT64 PoolSize; | |
EFI_PHYSICAL_ADDRESS Address; | |
if (mPageTablePool == NULL) { | |
return; | |
} | |
// | |
// SetPageTablePoolReadOnly might update mPageTablePool. It's safer to | |
// remember original one in advance. | |
// | |
HeadPool = mPageTablePool; | |
Pool = HeadPool; | |
do { | |
Address = (EFI_PHYSICAL_ADDRESS)(UINTN)Pool; | |
PoolSize = Pool->Offset + EFI_PAGES_TO_SIZE (Pool->FreePages); | |
// | |
// The size of one pool must be multiple of PAGE_TABLE_POOL_UNIT_SIZE, | |
// which is one of page size of the processor (2MB by default). Let's apply | |
// the protection to them one by one. | |
// | |
while (PoolSize > 0) { | |
SetPageTablePoolReadOnly (PageTableBase, Address, Level4Paging); | |
Address += PAGE_TABLE_POOL_UNIT_SIZE; | |
PoolSize -= PAGE_TABLE_POOL_UNIT_SIZE; | |
} | |
Pool = Pool->NextPool; | |
} while (Pool != HeadPool); | |
} | |
/** | |
Split 1G page to 2M. | |
@param[in] PhysicalAddress Start physical address the 1G page | |
covered. | |
@param[in, out] PageEntry1G Pointer to 1G page entry. | |
@param[in] StackBase Stack base address. | |
@param[in] StackSize Stack size. | |
**/ | |
STATIC | |
VOID | |
Split1GPageTo2M ( | |
IN PHYSICAL_ADDRESS PhysicalAddress, | |
IN OUT UINT64 *PageEntry1G, | |
IN PHYSICAL_ADDRESS StackBase, | |
IN UINTN StackSize | |
) | |
{ | |
PHYSICAL_ADDRESS PhysicalAddress2M; | |
UINTN IndexOfPageDirectoryEntries; | |
PAGE_TABLE_ENTRY *PageDirectoryEntry; | |
UINT64 AddressEncMask; | |
UINT64 ActiveAddressEncMask; | |
PageDirectoryEntry = AllocatePageTableMemory (1); | |
if (PageDirectoryEntry == NULL) { | |
return; | |
} | |
AddressEncMask = GetMemEncryptionAddressMask (); | |
ASSERT (PageDirectoryEntry != NULL); | |
ActiveAddressEncMask = *PageEntry1G & AddressEncMask; | |
// | |
// Fill in 1G page entry. | |
// | |
*PageEntry1G = ((UINT64)(UINTN)PageDirectoryEntry | | |
IA32_PG_P | IA32_PG_RW | ActiveAddressEncMask); | |
PhysicalAddress2M = PhysicalAddress; | |
for (IndexOfPageDirectoryEntries = 0; | |
IndexOfPageDirectoryEntries < 512; | |
(IndexOfPageDirectoryEntries++, | |
PageDirectoryEntry++, | |
PhysicalAddress2M += SIZE_2MB)) | |
{ | |
if ((PhysicalAddress2M < StackBase + StackSize) && | |
((PhysicalAddress2M + SIZE_2MB) > StackBase)) | |
{ | |
// | |
// Need to split this 2M page that covers stack range. | |
// | |
Split2MPageTo4K ( | |
PhysicalAddress2M, | |
(UINT64 *)PageDirectoryEntry, | |
StackBase, | |
StackSize, | |
ActiveAddressEncMask | |
); | |
} else { | |
// | |
// Fill in the Page Directory entries | |
// | |
PageDirectoryEntry->Uint64 = (UINT64)PhysicalAddress2M | ActiveAddressEncMask; | |
PageDirectoryEntry->Bits.ReadWrite = 1; | |
PageDirectoryEntry->Bits.Present = 1; | |
PageDirectoryEntry->Bits.MustBe1 = 1; | |
} | |
} | |
} | |
/** | |
Set or Clear the memory shared bit | |
@param[in] PagetablePoint Page table entry pointer (PTE). | |
@param[in] Mode Set or Clear shared bit | |
@retval EFI_SUCCESS Successfully set or clear the memory shared bit | |
@retval Others Other error as indicated | |
**/ | |
STATIC | |
EFI_STATUS | |
SetOrClearSharedBit ( | |
IN OUT UINT64 *PageTablePointer, | |
IN TDX_PAGETABLE_MODE Mode, | |
IN PHYSICAL_ADDRESS PhysicalAddress, | |
IN UINT64 Length | |
) | |
{ | |
UINT64 AddressEncMask; | |
UINT64 TdStatus; | |
EFI_STATUS Status; | |
EDKII_MEMORY_ACCEPT_PROTOCOL *MemoryAcceptProtocol; | |
AddressEncMask = GetMemEncryptionAddressMask (); | |
// | |
// Set or clear page table entry. Also, set shared bit in physical address, before calling MapGPA | |
// | |
if (Mode == SetSharedBit) { | |
*PageTablePointer |= AddressEncMask; | |
PhysicalAddress |= AddressEncMask; | |
} else { | |
*PageTablePointer &= ~AddressEncMask; | |
PhysicalAddress &= ~AddressEncMask; | |
} | |
TdStatus = TdVmCall (TDVMCALL_MAPGPA, PhysicalAddress, Length, 0, 0, NULL); | |
if (TdStatus != 0) { | |
DEBUG ((DEBUG_ERROR, "%a: TdVmcall(MAPGPA) failed with %llx\n", __func__, TdStatus)); | |
ASSERT (FALSE); | |
return EFI_DEVICE_ERROR; | |
} | |
// | |
// If changing shared to private, must accept-page again | |
// | |
if (Mode == ClearSharedBit) { | |
Status = gBS->LocateProtocol (&gEdkiiMemoryAcceptProtocolGuid, NULL, (VOID **)&MemoryAcceptProtocol); | |
if (EFI_ERROR (Status)) { | |
DEBUG ((DEBUG_ERROR, "%a: Failed to locate MemoryAcceptProtocol with %r\n", __func__, Status)); | |
ASSERT (FALSE); | |
return Status; | |
} | |
Status = MemoryAcceptProtocol->AcceptMemory (MemoryAcceptProtocol, PhysicalAddress, Length); | |
if (EFI_ERROR (Status)) { | |
DEBUG ((DEBUG_ERROR, "%a: Failed to AcceptMemory with %r\n", __func__, Status)); | |
ASSERT (FALSE); | |
return Status; | |
} | |
} | |
DEBUG (( | |
DEBUG_VERBOSE, | |
"%a:%a: pte=0x%Lx AddressEncMask=0x%Lx Mode=0x%x MapGPA Status=0x%x\n", | |
gEfiCallerBaseName, | |
__func__, | |
*PageTablePointer, | |
AddressEncMask, | |
Mode, | |
Status | |
)); | |
return EFI_SUCCESS; | |
} | |
/** | |
Check the WP status in CR0 register. This bit is used to lock or unlock write | |
access to pages marked as read-only. | |
@retval TRUE Write protection is enabled. | |
@retval FALSE Write protection is disabled. | |
**/ | |
STATIC | |
BOOLEAN | |
IsReadOnlyPageWriteProtected ( | |
VOID | |
) | |
{ | |
return ((AsmReadCr0 () & BIT16) != 0); | |
} | |
/** | |
Disable Write Protect on pages marked as read-only. | |
**/ | |
STATIC | |
VOID | |
DisableReadOnlyPageWriteProtect ( | |
VOID | |
) | |
{ | |
AsmWriteCr0 (AsmReadCr0 () & ~BIT16); | |
} | |
/** | |
Enable Write Protect on pages marked as read-only. | |
**/ | |
VOID | |
EnableReadOnlyPageWriteProtect ( | |
VOID | |
) | |
{ | |
AsmWriteCr0 (AsmReadCr0 () | BIT16); | |
} | |
/** | |
This function either sets or clears memory encryption for the memory | |
region specified by PhysicalAddress and Length from the current page table | |
context. | |
The function iterates through the PhysicalAddress one page at a time, and set | |
or clears the memory encryption in the page table. If it encounters | |
that a given physical address range is part of large page then it attempts to | |
change the attribute at one go (based on size), otherwise it splits the | |
large pages into smaller (e.g 2M page into 4K pages) and then try to set or | |
clear the shared bit on the smallest page size. | |
@param[in] Cr3BaseAddress Cr3 Base Address (if zero then use | |
current CR3) | |
@param[in] PhysicalAddress The physical address that is the start | |
address of a memory region. | |
@param[in] Length The length of memory region | |
@param[in] Mode Set or Clear mode | |
@retval RETURN_SUCCESS The attributes were cleared for the | |
memory region. | |
@retval RETURN_INVALID_PARAMETER Number of pages is zero. | |
@retval RETURN_UNSUPPORTED Setting the memory encyrption attribute | |
is not supported | |
**/ | |
STATIC | |
RETURN_STATUS | |
EFIAPI | |
SetMemorySharedOrPrivate ( | |
IN PHYSICAL_ADDRESS Cr3BaseAddress, | |
IN PHYSICAL_ADDRESS PhysicalAddress, | |
IN UINTN Length, | |
IN TDX_PAGETABLE_MODE Mode | |
) | |
{ | |
PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel4Entry; | |
PAGE_MAP_AND_DIRECTORY_POINTER *PageUpperDirectoryPointerEntry; | |
PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry; | |
PAGE_TABLE_1G_ENTRY *PageDirectory1GEntry; | |
PAGE_TABLE_ENTRY *PageDirectory2MEntry; | |
PAGE_TABLE_4K_ENTRY *PageTableEntry; | |
UINT64 PgTableMask; | |
UINT64 AddressEncMask; | |
UINT64 ActiveEncMask; | |
BOOLEAN IsWpEnabled; | |
RETURN_STATUS Status; | |
IA32_CR4 Cr4; | |
BOOLEAN Page5LevelSupport; | |
// | |
// Set PageMapLevel4Entry to suppress incorrect compiler/analyzer warnings. | |
// | |
PageMapLevel4Entry = NULL; | |
DEBUG (( | |
DEBUG_VERBOSE, | |
"%a:%a: Cr3Base=0x%Lx Physical=0x%Lx Length=0x%Lx Mode=%a\n", | |
gEfiCallerBaseName, | |
__func__, | |
Cr3BaseAddress, | |
PhysicalAddress, | |
(UINT64)Length, | |
(Mode == SetSharedBit) ? "Shared" : "Private" | |
)); | |
// | |
// Check if we have a valid memory encryption mask | |
// | |
AddressEncMask = GetMemEncryptionAddressMask (); | |
PgTableMask = AddressEncMask | EFI_PAGE_MASK; | |
if (Length == 0) { | |
return RETURN_INVALID_PARAMETER; | |
} | |
// | |
// Make sure that the page table is changeable. | |
// | |
IsWpEnabled = IsReadOnlyPageWriteProtected (); | |
if (IsWpEnabled) { | |
DisableReadOnlyPageWriteProtect (); | |
} | |
// | |
// If Cr3BaseAddress is not specified then read the current CR3 | |
// | |
if (Cr3BaseAddress == 0) { | |
Cr3BaseAddress = AsmReadCr3 (); | |
} | |
// | |
// CPU will already have LA57 enabled so just check CR4 | |
// | |
Cr4.UintN = AsmReadCr4 (); | |
Page5LevelSupport = (Cr4.Bits.LA57 ? TRUE : FALSE); | |
// | |
// If 5-level pages, adjust Cr3BaseAddress to point to first 4-level page directory, | |
// we will only have 1 | |
// | |
if (Page5LevelSupport) { | |
Cr3BaseAddress = *(UINT64 *)Cr3BaseAddress & ~PgTableMask; | |
} | |
Status = EFI_SUCCESS; | |
while (Length) { | |
PageMapLevel4Entry = (VOID *)(Cr3BaseAddress & ~PgTableMask); | |
PageMapLevel4Entry += PML4_OFFSET (PhysicalAddress); | |
if (!PageMapLevel4Entry->Bits.Present) { | |
DEBUG (( | |
DEBUG_ERROR, | |
"%a:%a: bad PML4 for Physical=0x%Lx\n", | |
gEfiCallerBaseName, | |
__func__, | |
PhysicalAddress | |
)); | |
Status = RETURN_NO_MAPPING; | |
goto Done; | |
} | |
PageDirectory1GEntry = (VOID *)( | |
(PageMapLevel4Entry->Bits.PageTableBaseAddress << | |
12) & ~PgTableMask | |
); | |
PageDirectory1GEntry += PDP_OFFSET (PhysicalAddress); | |
if (!PageDirectory1GEntry->Bits.Present) { | |
DEBUG (( | |
DEBUG_ERROR, | |
"%a:%a: bad PDPE for Physical=0x%Lx\n", | |
gEfiCallerBaseName, | |
__func__, | |
PhysicalAddress | |
)); | |
Status = RETURN_NO_MAPPING; | |
goto Done; | |
} | |
// | |
// If the MustBe1 bit is not 1, it's not actually a 1GB entry | |
// | |
if (PageDirectory1GEntry->Bits.MustBe1) { | |
// | |
// Valid 1GB page | |
// If we have at least 1GB to go, we can just update this entry | |
// | |
if (!(PhysicalAddress & (BIT30 - 1)) && (Length >= BIT30)) { | |
Status = SetOrClearSharedBit (&PageDirectory1GEntry->Uint64, Mode, PhysicalAddress, BIT30); | |
if (EFI_ERROR (Status)) { | |
goto Done; | |
} | |
DEBUG (( | |
DEBUG_VERBOSE, | |
"%a:%a: updated 1GB entry for Physical=0x%Lx\n", | |
gEfiCallerBaseName, | |
__func__, | |
PhysicalAddress | |
)); | |
PhysicalAddress += BIT30; | |
Length -= BIT30; | |
} else { | |
// | |
// We must split the page | |
// | |
DEBUG (( | |
DEBUG_VERBOSE, | |
"%a:%a: splitting 1GB page for Physical=0x%Lx\n", | |
gEfiCallerBaseName, | |
__func__, | |
PhysicalAddress | |
)); | |
Split1GPageTo2M ( | |
(UINT64)PageDirectory1GEntry->Bits.PageTableBaseAddress << 30, | |
(UINT64 *)PageDirectory1GEntry, | |
0, | |
0 | |
); | |
continue; | |
} | |
} else { | |
// | |
// Actually a PDP | |
// | |
PageUpperDirectoryPointerEntry = | |
(PAGE_MAP_AND_DIRECTORY_POINTER *)PageDirectory1GEntry; | |
PageDirectory2MEntry = | |
(VOID *)( | |
(PageUpperDirectoryPointerEntry->Bits.PageTableBaseAddress << | |
12) & ~PgTableMask | |
); | |
PageDirectory2MEntry += PDE_OFFSET (PhysicalAddress); | |
if (!PageDirectory2MEntry->Bits.Present) { | |
DEBUG (( | |
DEBUG_ERROR, | |
"%a:%a: bad PDE for Physical=0x%Lx\n", | |
gEfiCallerBaseName, | |
__func__, | |
PhysicalAddress | |
)); | |
Status = RETURN_NO_MAPPING; | |
goto Done; | |
} | |
// | |
// If the MustBe1 bit is not a 1, it's not a 2MB entry | |
// | |
if (PageDirectory2MEntry->Bits.MustBe1) { | |
// | |
// Valid 2MB page | |
// If we have at least 2MB left to go, we can just update this entry | |
// | |
if (!(PhysicalAddress & (BIT21-1)) && (Length >= BIT21)) { | |
Status = SetOrClearSharedBit (&PageDirectory2MEntry->Uint64, Mode, PhysicalAddress, BIT21); | |
if (EFI_ERROR (Status)) { | |
goto Done; | |
} | |
PhysicalAddress += BIT21; | |
Length -= BIT21; | |
} else { | |
// | |
// We must split up this page into 4K pages | |
// | |
DEBUG (( | |
DEBUG_VERBOSE, | |
"%a:%a: splitting 2MB page for Physical=0x%Lx\n", | |
gEfiCallerBaseName, | |
__func__, | |
PhysicalAddress | |
)); | |
ActiveEncMask = PageDirectory2MEntry->Uint64 & AddressEncMask; | |
Split2MPageTo4K ( | |
(UINT64)PageDirectory2MEntry->Bits.PageTableBaseAddress << 21, | |
(UINT64 *)PageDirectory2MEntry, | |
0, | |
0, | |
ActiveEncMask | |
); | |
continue; | |
} | |
} else { | |
PageDirectoryPointerEntry = | |
(PAGE_MAP_AND_DIRECTORY_POINTER *)PageDirectory2MEntry; | |
PageTableEntry = | |
(VOID *)( | |
(PageDirectoryPointerEntry->Bits.PageTableBaseAddress << | |
12) & ~PgTableMask | |
); | |
PageTableEntry += PTE_OFFSET (PhysicalAddress); | |
if (!PageTableEntry->Bits.Present) { | |
DEBUG (( | |
DEBUG_ERROR, | |
"%a:%a: bad PTE for Physical=0x%Lx\n", | |
gEfiCallerBaseName, | |
__func__, | |
PhysicalAddress | |
)); | |
Status = RETURN_NO_MAPPING; | |
goto Done; | |
} | |
Status = SetOrClearSharedBit (&PageTableEntry->Uint64, Mode, PhysicalAddress, EFI_PAGE_SIZE); | |
if (EFI_ERROR (Status)) { | |
goto Done; | |
} | |
PhysicalAddress += EFI_PAGE_SIZE; | |
Length -= EFI_PAGE_SIZE; | |
} | |
} | |
} | |
// | |
// Protect the page table by marking the memory used for page table to be | |
// read-only. | |
// | |
if (IsWpEnabled) { | |
EnablePageTableProtection ((UINTN)PageMapLevel4Entry, TRUE); | |
} | |
// | |
// Flush TLB | |
// | |
CpuFlushTlb (); | |
Done: | |
// | |
// Restore page table write protection, if any. | |
// | |
if (IsWpEnabled) { | |
EnableReadOnlyPageWriteProtect (); | |
} | |
return Status; | |
} | |
/** | |
This function clears memory shared bit for the memory region specified by | |
BaseAddress and NumPages from the current page table context. | |
@param[in] Cr3BaseAddress Cr3 Base Address (if zero then use | |
current CR3) | |
@param[in] BaseAddress The physical address that is the start | |
address of a memory region. | |
@param[in] NumPages The number of pages from start memory | |
region. | |
@retval RETURN_SUCCESS The attributes were cleared for the | |
memory region. | |
@retval RETURN_INVALID_PARAMETER Number of pages is zero. | |
@retval RETURN_UNSUPPORTED Clearing the memory encryption attribute | |
is not supported | |
**/ | |
RETURN_STATUS | |
EFIAPI | |
MemEncryptTdxSetPageSharedBit ( | |
IN PHYSICAL_ADDRESS Cr3BaseAddress, | |
IN PHYSICAL_ADDRESS BaseAddress, | |
IN UINTN NumPages | |
) | |
{ | |
return SetMemorySharedOrPrivate ( | |
Cr3BaseAddress, | |
BaseAddress, | |
EFI_PAGES_TO_SIZE (NumPages), | |
SetSharedBit | |
); | |
} | |
/** | |
This function sets memory shared bit for the memory region specified by | |
BaseAddress and NumPages from the current page table context. | |
@param[in] Cr3BaseAddress Cr3 Base Address (if zero then use | |
current CR3) | |
@param[in] BaseAddress The physical address that is the start | |
address of a memory region. | |
@param[in] NumPages The number of pages from start memory | |
region. | |
@retval RETURN_SUCCESS The attributes were set for the memory | |
region. | |
@retval RETURN_INVALID_PARAMETER Number of pages is zero. | |
@retval RETURN_UNSUPPORTED Setting the memory encryption attribute | |
is not supported | |
**/ | |
RETURN_STATUS | |
EFIAPI | |
MemEncryptTdxClearPageSharedBit ( | |
IN PHYSICAL_ADDRESS Cr3BaseAddress, | |
IN PHYSICAL_ADDRESS BaseAddress, | |
IN UINTN NumPages | |
) | |
{ | |
return SetMemorySharedOrPrivate ( | |
Cr3BaseAddress, | |
BaseAddress, | |
EFI_PAGES_TO_SIZE (NumPages), | |
ClearSharedBit | |
); | |
} |