blob: 22639a748c04e74ead969b45a82905401789ce20 [file] [log] [blame]
/** @file
Generic driver using Hardware Sequencing registers.
Copyright (c) 2017-2021, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "SpiCommon.h"
SPI_INSTANCE *mSpiInstance = NULL;
/**
Get SPI Instance from library global data..
@retval SpiInstance Return SPI instance
**/
SPI_INSTANCE *
GetSpiInstance (
VOID
)
{
if (mSpiInstance == NULL) {
mSpiInstance = AllocatePool (sizeof (SPI_INSTANCE));
if (mSpiInstance == NULL) {
return NULL;
}
ZeroMem (mSpiInstance, sizeof (SPI_INSTANCE));
}
return mSpiInstance;
}
/**
Initialize an SPI library.
@retval EFI_SUCCESS The protocol instance was properly initialized
@retval EFI_NOT_FOUND The expected SPI info could not be found
**/
EFI_STATUS
EFIAPI
SpiConstructor (
VOID
)
{
UINT32 ScSpiBar0;
UINT8 Comp0Density;
SPI_INSTANCE *SpiInstance;
EFI_HOB_GUID_TYPE *GuidHob;
SPI_FLASH_INFO *SpiFlashInfo;
//
// Find SPI flash hob
//
GuidHob = GetFirstGuidHob (&gSpiFlashInfoGuid);
if (GuidHob == NULL) {
ASSERT (FALSE);
return EFI_NOT_FOUND;
}
SpiFlashInfo = (SPI_FLASH_INFO *)GET_GUID_HOB_DATA (GuidHob);
//
// Initialize the SPI instance
//
SpiInstance = GetSpiInstance ();
if (SpiInstance == NULL) {
return EFI_NOT_FOUND;
}
DEBUG ((DEBUG_INFO, "SpiInstance = %08X\n", SpiInstance));
SpiInstance->Signature = SC_SPI_PRIVATE_DATA_SIGNATURE;
SpiInstance->Handle = NULL;
//
// Check the SPI address
//
if ((SpiFlashInfo->SpiAddress.AddressSpaceId != EFI_ACPI_3_0_PCI_CONFIGURATION_SPACE) ||
(SpiFlashInfo->SpiAddress.RegisterBitWidth != 32) ||
(SpiFlashInfo->SpiAddress.RegisterBitOffset != 0) ||
(SpiFlashInfo->SpiAddress.AccessSize != EFI_ACPI_3_0_DWORD))
{
DEBUG ((DEBUG_ERROR, "SPI FLASH HOB is not expected. need check the hob or enhance SPI flash driver.\n"));
}
SpiInstance->PchSpiBase = (UINT32)(UINTN)SpiFlashInfo->SpiAddress.Address;
SpiInstance->Flags = SpiFlashInfo->Flags;
DEBUG ((DEBUG_INFO, "PchSpiBase at 0x%x\n", SpiInstance->PchSpiBase));
ScSpiBar0 = AcquireSpiBar0 (SpiInstance->PchSpiBase);
DEBUG ((DEBUG_INFO, "ScSpiBar0 at 0x%08X\n", ScSpiBar0));
if (ScSpiBar0 == 0) {
ASSERT (FALSE);
}
if ((MmioRead32 (ScSpiBar0 + R_SPI_HSFS) & B_SPI_HSFS_FDV) == 0) {
DEBUG ((DEBUG_ERROR, "SPI Flash descriptor invalid, cannot use Hardware Sequencing registers!\n"));
ASSERT (FALSE);
}
MmioOr32 (SpiInstance->PchSpiBase + PCI_COMMAND_OFFSET, EFI_PCI_COMMAND_MEMORY_SPACE);
SpiInstance->RegionPermission = MmioRead16 (ScSpiBar0 + R_SPI_FRAP);
SpiInstance->SfdpVscc0Value = MmioRead32 (ScSpiBar0 + R_SPI_LVSCC);
SpiInstance->SfdpVscc1Value = MmioRead32 (ScSpiBar0 + R_SPI_UVSCC);
//
// Select to Flash Map 0 Register to get the number of flash Component
//
MmioAndThenOr32 (
ScSpiBar0 + R_SPI_FDOC,
(UINT32)(~(B_SPI_FDOC_FDSS_MASK | B_SPI_FDOC_FDSI_MASK)),
(UINT32)(V_SPI_FDOC_FDSS_FSDM | R_SPI_FDBAR_FLASH_MAP0)
);
//
// Copy Zero based Number Of Components
//
SpiInstance->NumberOfComponents = (UINT8)((MmioRead16 (ScSpiBar0 + R_SPI_FDOD) & B_SPI_FDBAR_NC) >> N_SPI_FDBAR_NC);
MmioAndThenOr32 (
ScSpiBar0 + R_SPI_FDOC,
(UINT32)(~(B_SPI_FDOC_FDSS_MASK | B_SPI_FDOC_FDSI_MASK)),
(UINT32)(V_SPI_FDOC_FDSS_COMP | R_SPI_FCBA_FLCOMP)
);
//
// Copy Component 0 Density
//
Comp0Density = (UINT8)MmioRead32 (ScSpiBar0 + R_SPI_FDOD) & B_SPI_FLCOMP_COMP1_MASK;
SpiInstance->Component1StartAddr = (UINT32)(SIZE_512KB << Comp0Density);
//
// Select FLASH_MAP1 to get Flash SC Strap Base Address
//
MmioAndThenOr32 (
(ScSpiBar0 + R_SPI_FDOC),
(UINT32)(~(B_SPI_FDOC_FDSS_MASK | B_SPI_FDOC_FDSI_MASK)),
(UINT32)(V_SPI_FDOC_FDSS_FSDM | R_SPI_FDBAR_FLASH_MAP1)
);
SpiInstance->StrapBaseAddress = MmioRead32 (ScSpiBar0 + R_SPI_FDOD) & B_SPI_FDBAR_FPSBA;
//
// Align FPSBA with address bits for the SC Strap portion of flash descriptor
//
SpiInstance->StrapBaseAddress &= B_SPI_FDBAR_FPSBA;
return EFI_SUCCESS;
}
/**
Read data from the flash part.
@param[in] FlashRegionType The Flash Region type for flash cycle which is listed in the Descriptor.
@param[in] Address The Flash Linear Address must fall within a region for which BIOS has access permissions.
@param[in] ByteCount Number of bytes in the data portion of the SPI cycle.
@param[out] Buffer The Pointer to caller-allocated buffer containing the data received.
It is the caller's responsibility to make sure Buffer is large enough for the total number of bytes read.
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiFlashRead (
IN FLASH_REGION_TYPE FlashRegionType,
IN UINT32 Address,
IN UINT32 ByteCount,
OUT UINT8 *Buffer
)
{
EFI_STATUS Status;
Status = SendSpiCmd (FlashRegionType, FlashCycleRead, Address, ByteCount, Buffer);
return Status;
}
/**
Write data to the flash part.
@param[in] FlashRegionType The Flash Region type for flash cycle which is listed in the Descriptor.
@param[in] Address The Flash Linear Address must fall within a region for which BIOS has access permissions.
@param[in] ByteCount Number of bytes in the data portion of the SPI cycle.
@param[in] Buffer Pointer to caller-allocated buffer containing the data sent during the SPI cycle.
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiFlashWrite (
IN FLASH_REGION_TYPE FlashRegionType,
IN UINT32 Address,
IN UINT32 ByteCount,
IN UINT8 *Buffer
)
{
EFI_STATUS Status;
Status = SendSpiCmd (FlashRegionType, FlashCycleWrite, Address, ByteCount, Buffer);
return Status;
}
/**
Erase some area on the flash part.
@param[in] FlashRegionType The Flash Region type for flash cycle which is listed in the Descriptor.
@param[in] Address The Flash Linear Address must fall within a region for which BIOS has access permissions.
@param[in] ByteCount Number of bytes in the data portion of the SPI cycle.
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiFlashErase (
IN FLASH_REGION_TYPE FlashRegionType,
IN UINT32 Address,
IN UINT32 ByteCount
)
{
EFI_STATUS Status;
Status = SendSpiCmd (FlashRegionType, FlashCycleErase, Address, ByteCount, NULL);
return Status;
}
/**
Read SFDP data from the flash part.
@param[in] ComponentNumber The Component Number for chip select
@param[in] ByteCount Number of bytes in SFDP data portion of the SPI cycle, the max number is 64
@param[out] SfdpData The Pointer to caller-allocated buffer containing the SFDP data received
It is the caller's responsibility to make sure Buffer is large enough for the total number of bytes read.
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiFlashReadSfdp (
IN UINT8 ComponentNumber,
IN UINT32 ByteCount,
OUT UINT8 *SfdpData
)
{
EFI_STATUS Status;
UINT32 Address;
SPI_INSTANCE *SpiInstance;
SpiInstance = GetSpiInstance ();
if (SpiInstance == NULL) {
return EFI_DEVICE_ERROR;
}
if ((ByteCount > 64) || (ComponentNumber > SpiInstance->NumberOfComponents)) {
ASSERT (FALSE);
return EFI_INVALID_PARAMETER;
}
Address = 0;
if (ComponentNumber == FlashComponent1) {
Address = SpiInstance->Component1StartAddr;
}
Status = SendSpiCmd (0, FlashCycleReadSfdp, Address, ByteCount, SfdpData);
return Status;
}
/**
Read Jedec Id from the flash part.
@param[in] ComponentNumber The Component Number for chip select
@param[in] ByteCount Number of bytes in JedecId data portion of the SPI cycle, the data size is 3 typically
@param[out] JedecId The Pointer to caller-allocated buffer containing JEDEC ID received
It is the caller's responsibility to make sure Buffer is large enough for the total number of bytes read.
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiFlashReadJedecId (
IN UINT8 ComponentNumber,
IN UINT32 ByteCount,
OUT UINT8 *JedecId
)
{
EFI_STATUS Status;
UINT32 Address;
SPI_INSTANCE *SpiInstance;
SpiInstance = GetSpiInstance ();
if (SpiInstance == NULL) {
return EFI_DEVICE_ERROR;
}
if (ComponentNumber > SpiInstance->NumberOfComponents) {
ASSERT (FALSE);
return EFI_INVALID_PARAMETER;
}
Address = 0;
if (ComponentNumber == FlashComponent1) {
Address = SpiInstance->Component1StartAddr;
}
Status = SendSpiCmd (0, FlashCycleReadJedecId, Address, ByteCount, JedecId);
return Status;
}
/**
Write the status register in the flash part.
@param[in] ByteCount Number of bytes in Status data portion of the SPI cycle, the data size is 1 typically
@param[in] StatusValue The Pointer to caller-allocated buffer containing the value of Status register writing
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiFlashWriteStatus (
IN UINT32 ByteCount,
IN UINT8 *StatusValue
)
{
EFI_STATUS Status;
Status = SendSpiCmd (0, FlashCycleWriteStatus, 0, ByteCount, StatusValue);
return Status;
}
/**
Read status register in the flash part.
@param[in] ByteCount Number of bytes in Status data portion of the SPI cycle, the data size is 1 typically
@param[out] StatusValue The Pointer to caller-allocated buffer containing the value of Status register received.
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiFlashReadStatus (
IN UINT32 ByteCount,
OUT UINT8 *StatusValue
)
{
EFI_STATUS Status;
Status = SendSpiCmd (0, FlashCycleReadStatus, 0, ByteCount, StatusValue);
return Status;
}
/**
Read SC Soft Strap Values
@param[in] SoftStrapAddr SC Soft Strap address offset from FPSBA.
@param[in] ByteCount Number of bytes in SoftStrap data portion of the SPI cycle
@param[out] SoftStrapValue The Pointer to caller-allocated buffer containing SC Soft Strap Value.
It is the caller's responsibility to make sure Buffer is large enough for the total number of bytes read.
@retval EFI_SUCCESS Command succeed.
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
@retval EFI_DEVICE_ERROR Device error, command aborts abnormally.
**/
EFI_STATUS
EFIAPI
SpiReadPchSoftStrap (
IN UINT32 SoftStrapAddr,
IN UINT32 ByteCount,
OUT UINT8 *SoftStrapValue
)
{
UINT32 StrapFlashAddr;
EFI_STATUS Status;
SPI_INSTANCE *SpiInstance;
SpiInstance = GetSpiInstance ();
if (SpiInstance == NULL) {
return EFI_DEVICE_ERROR;
}
ASSERT (SpiInstance->StrapBaseAddress != 0);
//
// SC Strap Flash Address = FPSBA + RamAddr
//
StrapFlashAddr = SpiInstance->StrapBaseAddress + SoftStrapAddr;
Status = SendSpiCmd (FlashRegionDescriptor, FlashCycleRead, StrapFlashAddr, ByteCount, SoftStrapValue);
return Status;
}
/**
This function sends the programmed SPI command to the slave device.
@param[in] FlashRegionType The SPI Region type for flash cycle which is listed in the Descriptor
@param[in] FlashCycleType The Flash SPI cycle type list in HSFC (Hardware Sequencing Flash Control Register) register
@param[in] Address The Flash Linear Address must fall within a region for which BIOS has access permissions.
@param[in] ByteCount Number of bytes in the data portion of the SPI cycle.
@param[in,out] Buffer Pointer to caller-allocated buffer containing the data received or sent during the SPI cycle.
@retval EFI_SUCCESS SPI command completes successfully.
@retval EFI_DEVICE_ERROR Device error, the command aborts abnormally.
@retval EFI_ACCESS_DENIED Some unrecognized command encountered in hardware sequencing mode
@retval EFI_INVALID_PARAMETER The parameters specified are not valid.
**/
EFI_STATUS
SendSpiCmd (
IN FLASH_REGION_TYPE FlashRegionType,
IN FLASH_CYCLE_TYPE FlashCycleType,
IN UINT32 Address,
IN UINT32 ByteCount,
IN OUT UINT8 *Buffer
)
{
EFI_STATUS Status;
UINT32 Index;
UINTN SpiBaseAddress;
UINT32 ScSpiBar0;
UINT32 LimitAddress;
UINT32 HardwareSpiAddr;
UINT16 PermissionBit;
UINT32 SpiDataCount;
UINT32 FlashCycle;
UINT8 BiosCtlSave;
SPI_INSTANCE *SpiInstance;
UINT32 Data32;
SpiInstance = GetSpiInstance ();
if (SpiInstance == NULL) {
return EFI_DEVICE_ERROR;
}
Status = EFI_SUCCESS;
SpiBaseAddress = SpiInstance->PchSpiBase;
ScSpiBar0 = AcquireSpiBar0 (SpiBaseAddress);
BiosCtlSave = 0;
SpiInstance->RegionPermission = MmioRead16 (ScSpiBar0 + R_SPI_FRAP);
//
// If it's write cycle, disable Prefetching, Caching and disable BIOS Write Protect
//
if ((FlashCycleType == FlashCycleWrite) || (FlashCycleType == FlashCycleErase)) {
Status = DisableBiosWriteProtect (SpiBaseAddress, mSpiInstance->Flags & FLAGS_SPI_DISABLE_SMM_WRITE_PROTECT);
if (EFI_ERROR (Status)) {
goto SendSpiCmdEnd;
}
BiosCtlSave = SaveAndDisableSpiPrefetchCache (SpiBaseAddress);
}
//
// Make sure it's safe to program the command.
//
if (!WaitForSpiCycleComplete (ScSpiBar0, FALSE)) {
Status = EFI_DEVICE_ERROR;
goto SendSpiCmdEnd;
}
HardwareSpiAddr = Address;
if ((FlashCycleType == FlashCycleRead) ||
(FlashCycleType == FlashCycleWrite) ||
(FlashCycleType == FlashCycleErase))
{
switch (FlashRegionType) {
case FlashRegionDescriptor:
if (FlashCycleType == FlashCycleRead) {
PermissionBit = B_SPI_FRAP_BRRA_FLASHD;
} else {
PermissionBit = B_SPI_FRAP_BRWA_FLASHD;
}
Data32 = MmioRead32 (ScSpiBar0 + R_SPI_FREG0_FLASHD);
HardwareSpiAddr += (Data32 & B_SPI_FREG0_BASE_MASK) << N_SPI_FREG0_BASE;
LimitAddress = (Data32 & B_SPI_FREG0_LIMIT_MASK) >> N_SPI_FREG0_LIMIT;
break;
case FlashRegionBios:
if (FlashCycleType == FlashCycleRead) {
PermissionBit = B_SPI_FRAP_BRRA_BIOS;
} else {
PermissionBit = B_SPI_FRAP_BRWA_BIOS;
}
Data32 = MmioRead32 (ScSpiBar0 + R_SPI_FREG1_BIOS);
HardwareSpiAddr += (Data32 & B_SPI_FREG1_BASE_MASK) << N_SPI_FREG1_BASE;
LimitAddress = (Data32 & B_SPI_FREG1_LIMIT_MASK) >> N_SPI_FREG1_LIMIT;
break;
case FlashRegionMe:
if (FlashCycleType == FlashCycleRead) {
PermissionBit = B_SPI_FRAP_BRRA_SEC;
} else {
PermissionBit = B_SPI_FRAP_BRWA_SEC;
}
Data32 = MmioRead32 (ScSpiBar0 + R_SPI_FREG2_SEC);
HardwareSpiAddr += (Data32 & B_SPI_FREG2_BASE_MASK) << N_SPI_FREG2_BASE;
LimitAddress = (Data32 & B_SPI_FREG2_LIMIT_MASK) >> N_SPI_FREG2_LIMIT;
break;
case FlashRegionGbE:
if (FlashCycleType == FlashCycleRead) {
PermissionBit = B_SPI_FRAP_BRRA_GBE;
} else {
PermissionBit = B_SPI_FRAP_BRWA_GBE;
}
Data32 = MmioRead32 (ScSpiBar0 + R_SPI_FREG3_GBE);
HardwareSpiAddr += (Data32 & B_SPI_FREG3_BASE_MASK) << N_SPI_FREG3_BASE;
LimitAddress = (Data32 & B_SPI_FREG3_LIMIT_MASK) >> N_SPI_FREG3_LIMIT;
break;
case FlashRegionPlatformData:
if (FlashCycleType == FlashCycleRead) {
PermissionBit = B_SPI_FRAP_BRRA_PLATFORM;
} else {
PermissionBit = B_SPI_FRAP_BRWA_PLATFORM;
}
Data32 = MmioRead32 (ScSpiBar0 + R_SPI_FREG4_PLATFORM_DATA);
HardwareSpiAddr += (Data32 & B_SPI_FREG4_BASE_MASK) << N_SPI_FREG4_BASE;
LimitAddress = (Data32 & B_SPI_FREG4_LIMIT_MASK) >> N_SPI_FREG4_LIMIT;
break;
case FlashRegionAll:
//
// FlashRegionAll indicates address is relative to flash device
// No error checking for this case
//
LimitAddress = 0;
PermissionBit = 0;
break;
default:
Status = EFI_UNSUPPORTED;
goto SendSpiCmdEnd;
}
if ((LimitAddress != 0) && (Address > LimitAddress)) {
Status = EFI_INVALID_PARAMETER;
goto SendSpiCmdEnd;
}
//
// If the operation is read, but the region attribute is not read allowed, return error.
// If the operation is write, but the region attribute is not write allowed, return error.
//
if ((PermissionBit != 0) && ((SpiInstance->RegionPermission & PermissionBit) == 0)) {
Status = EFI_ACCESS_DENIED;
goto SendSpiCmdEnd;
}
}
//
// Check for SC SPI hardware sequencing required commands
//
FlashCycle = 0;
switch (FlashCycleType) {
case FlashCycleRead:
FlashCycle = (UINT32)(V_SPI_HSFS_CYCLE_READ << N_SPI_HSFS_CYCLE);
break;
case FlashCycleWrite:
FlashCycle = (UINT32)(V_SPI_HSFS_CYCLE_WRITE << N_SPI_HSFS_CYCLE);
break;
case FlashCycleErase:
if (((ByteCount % SIZE_4KB) != 0) || ((HardwareSpiAddr % SIZE_4KB) != 0)) {
DEBUG ((DEBUG_ERROR, "Erase and erase size must be 4KB aligned. \n"));
ASSERT (FALSE);
Status = EFI_INVALID_PARAMETER;
goto SendSpiCmdEnd;
}
break;
case FlashCycleReadSfdp:
FlashCycle = (UINT32)(V_SPI_HSFS_CYCLE_READ_SFDP << N_SPI_HSFS_CYCLE);
break;
case FlashCycleReadJedecId:
FlashCycle = (UINT32)(V_SPI_HSFS_CYCLE_READ_JEDEC_ID << N_SPI_HSFS_CYCLE);
break;
case FlashCycleWriteStatus:
FlashCycle = (UINT32)(V_SPI_HSFS_CYCLE_WRITE_STATUS << N_SPI_HSFS_CYCLE);
break;
case FlashCycleReadStatus:
FlashCycle = (UINT32)(V_SPI_HSFS_CYCLE_READ_STATUS << N_SPI_HSFS_CYCLE);
break;
default:
//
// Unrecognized Operation
//
ASSERT (FALSE);
Status = EFI_INVALID_PARAMETER;
goto SendSpiCmdEnd;
break;
}
do {
SpiDataCount = ByteCount;
if ((FlashCycleType == FlashCycleRead) || (FlashCycleType == FlashCycleWrite)) {
//
// Trim at 256 byte boundary per operation,
// - SC SPI controller requires trimming at 4KB boundary
// - Some SPI chips require trimming at 256 byte boundary for write operation
// - Trimming has limited performance impact as we can read / write at most 64 byte
// per operation
//
if (HardwareSpiAddr + ByteCount > ((HardwareSpiAddr + BIT8) &~(BIT8 - 1))) {
SpiDataCount = (((UINT32)(HardwareSpiAddr) + BIT8) &~(BIT8 - 1)) - (UINT32)(HardwareSpiAddr);
}
//
// Calculate the number of bytes to shift in/out during the SPI data cycle.
// Valid settings for the number of bytes during each data portion of the
// SC SPI cycles are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32, 40, 48, 56, 64
//
if (SpiDataCount >= 64) {
SpiDataCount = 64;
} else if ((SpiDataCount &~0x07) != 0) {
SpiDataCount = SpiDataCount &~0x07;
}
}
if (FlashCycleType == FlashCycleErase) {
if (((ByteCount / SIZE_64KB) != 0) &&
((ByteCount % SIZE_64KB) == 0) &&
((HardwareSpiAddr % SIZE_64KB) == 0))
{
if (HardwareSpiAddr < SpiInstance->Component1StartAddr) {
//
// Check whether Component0 support 64k Erase
//
if ((SpiInstance->SfdpVscc0Value & B_SPI_LVSCC_EO_64K) != 0) {
SpiDataCount = SIZE_64KB;
} else {
SpiDataCount = SIZE_4KB;
}
} else {
//
// Check whether Component1 support 64k Erase
//
if ((SpiInstance->SfdpVscc1Value & B_SPI_LVSCC_EO_64K) != 0) {
SpiDataCount = SIZE_64KB;
} else {
SpiDataCount = SIZE_4KB;
}
}
} else {
SpiDataCount = SIZE_4KB;
}
if (SpiDataCount == SIZE_4KB) {
FlashCycle = (UINT32)(V_SPI_HSFS_CYCLE_4K_ERASE << N_SPI_HSFS_CYCLE);
} else {
FlashCycle = (UINT32)(V_SPI_HSFS_CYCLE_64K_ERASE << N_SPI_HSFS_CYCLE);
}
}
//
// If it's write cycle, load data into the SPI data buffer.
//
if ((FlashCycleType == FlashCycleWrite) || (FlashCycleType == FlashCycleWriteStatus)) {
if ((SpiDataCount & 0x07) != 0) {
//
// Use Byte write if Data Count is 0, 1, 2, 3, 4, 5, 6, 7
//
for (Index = 0; Index < SpiDataCount; Index++) {
MmioWrite8 (ScSpiBar0 + R_SPI_FDATA00 + Index, Buffer[Index]);
}
} else {
//
// Use Dword write if Data Count is 8, 16, 24, 32, 40, 48, 56, 64
//
for (Index = 0; Index < SpiDataCount; Index += sizeof (UINT32)) {
MmioWrite32 (ScSpiBar0 + R_SPI_FDATA00 + Index, *(UINT32 *)(Buffer + Index));
}
}
}
//
// Set the Flash Address
//
MmioWrite32 (ScSpiBar0 + R_SPI_FADDR, (UINT32)(HardwareSpiAddr & B_SPI_FADDR_MASK));
//
// Set Data count, Flash cycle, and Set Go bit to start a cycle
//
MmioAndThenOr32 (
ScSpiBar0 + R_SPI_HSFS,
(UINT32)(~(B_SPI_HSFS_FDBC_MASK | B_SPI_HSFS_CYCLE_MASK)),
(UINT32)(((SpiDataCount - 1) << N_SPI_HSFS_FDBC) | FlashCycle | B_SPI_HSFS_CYCLE_FGO)
);
//
// Wait for command execution complete.
//
if (!WaitForSpiCycleComplete (ScSpiBar0, TRUE)) {
Status = EFI_DEVICE_ERROR;
goto SendSpiCmdEnd;
}
//
// If it's read cycle, load data into the caller's buffer.
//
if ((FlashCycleType == FlashCycleRead) ||
(FlashCycleType == FlashCycleReadSfdp) ||
(FlashCycleType == FlashCycleReadJedecId) ||
(FlashCycleType == FlashCycleReadStatus))
{
if ((SpiDataCount & 0x07) != 0) {
//
// Use Byte read if Data Count is 0, 1, 2, 3, 4, 5, 6, 7
//
for (Index = 0; Index < SpiDataCount; Index++) {
Buffer[Index] = MmioRead8 (ScSpiBar0 + R_SPI_FDATA00 + Index);
}
} else {
//
// Use Dword read if Data Count is 8, 16, 24, 32, 40, 48, 56, 64
//
for (Index = 0; Index < SpiDataCount; Index += sizeof (UINT32)) {
*(UINT32 *)(Buffer + Index) = MmioRead32 (ScSpiBar0 + R_SPI_FDATA00 + Index);
}
}
}
HardwareSpiAddr += SpiDataCount;
Buffer += SpiDataCount;
ByteCount -= SpiDataCount;
} while (ByteCount > 0);
SendSpiCmdEnd:
///
/// Restore the settings for SPI Prefetching and Caching and enable BIOS Write Protect
///
if ((FlashCycleType == FlashCycleWrite) || (FlashCycleType == FlashCycleErase)) {
EnableBiosWriteProtect (SpiBaseAddress, mSpiInstance->Flags & FLAGS_SPI_DISABLE_SMM_WRITE_PROTECT);
SetSpiBiosControlRegister (SpiBaseAddress, BiosCtlSave);
}
ReleaseSpiBar0 (SpiBaseAddress);
return Status;
}
/**
Wait execution cycle to complete on the SPI interface.
@param[in] ScSpiBar0 Spi MMIO base address
@param[in] ErrorCheck TRUE if the SpiCycle needs to do the error check
@retval TRUE SPI cycle completed on the interface.
@retval FALSE Time out while waiting the SPI cycle to complete.
It's not safe to program the next command on the SPI interface.
**/
BOOLEAN
WaitForSpiCycleComplete (
IN UINT32 ScSpiBar0,
IN BOOLEAN ErrorCheck
)
{
UINT64 WaitTicks;
UINT64 WaitCount;
UINT32 Data32;
//
// Convert the wait period allowed into to tick count
//
WaitCount = WAIT_TIME / WAIT_PERIOD;
//
// Wait for the SPI cycle to complete.
//
for (WaitTicks = 0; WaitTicks < WaitCount; WaitTicks++) {
Data32 = MmioRead32 (ScSpiBar0 + R_SPI_HSFS);
if ((Data32 & B_SPI_HSFS_SCIP) == 0) {
MmioWrite32 (ScSpiBar0 + R_SPI_HSFS, B_SPI_HSFS_FCERR | B_SPI_HSFS_FDONE);
if (((Data32 & B_SPI_HSFS_FCERR) != 0) && ErrorCheck) {
return FALSE;
} else {
return TRUE;
}
}
MicroSecondDelay (WAIT_PERIOD);
}
return FALSE;
}
/**
Get the SPI region base and size, based on the enum type
@param[in] FlashRegionType The Flash Region type for for the base address which is listed in the Descriptor.
@param[out] BaseAddress The Flash Linear Address for the Region 'n' Base
@param[out] RegionSize The size for the Region 'n'
@retval EFI_SUCCESS Read success
@retval EFI_INVALID_PARAMETER Invalid region type given
@retval EFI_DEVICE_ERROR The region is not used
**/
EFI_STATUS
EFIAPI
SpiGetRegionAddress (
IN FLASH_REGION_TYPE FlashRegionType,
OUT UINT32 *BaseAddress OPTIONAL,
OUT UINT32 *RegionSize OPTIONAL
)
{
UINT32 ScSpiBar0;
UINT32 ReadValue;
UINT32 Base;
SPI_INSTANCE *SpiInstance;
if (FlashRegionType >= FlashRegionMax) {
return EFI_INVALID_PARAMETER;
}
SpiInstance = GetSpiInstance ();
if (SpiInstance == NULL) {
return EFI_DEVICE_ERROR;
}
if (FlashRegionType == FlashRegionAll) {
if (BaseAddress != NULL) {
*BaseAddress = 0;
}
if (RegionSize != NULL) {
*RegionSize = SpiInstance->Component1StartAddr;
}
return EFI_SUCCESS;
}
ScSpiBar0 = AcquireSpiBar0 (SpiInstance->PchSpiBase);
ReadValue = MmioRead32 (ScSpiBar0 + R_SPI_FREG0_FLASHD + S_SPI_FREGX * (UINT32)FlashRegionType);
ReleaseSpiBar0 (SpiInstance->PchSpiBase);
//
// If the region is not used, the Region Base is 7FFFh and Region Limit is 0000h
//
if (ReadValue == B_SPI_FREGX_BASE_MASK) {
return EFI_DEVICE_ERROR;
}
Base = (ReadValue & B_SPI_FREG1_BASE_MASK) << N_SPI_FREG1_BASE;
if (BaseAddress != NULL) {
*BaseAddress = Base;
}
if (RegionSize != NULL) {
*RegionSize = ((((ReadValue & B_SPI_FREGX_LIMIT_MASK) >> N_SPI_FREGX_LIMIT) + 1) <<
N_SPI_FREGX_LIMIT_REPR) - Base;
}
return EFI_SUCCESS;
}