| /** @file | |
| A PEIM providing synchronous SMI activations via the | |
| EFI_PEI_MM_CONTROL_PPI. | |
| We expect the PEI phase to have covered the following: | |
| - ensure that the underlying QEMU machine type be Q35 | |
| (responsible: OvmfPkg/SmmAccess/SmmAccessPei.inf) | |
| - ensure that the ACPI PM IO space be configured | |
| (responsible: OvmfPkg/PlatformPei/PlatformPei.inf) | |
| Our own entry point is responsible for confirming the SMI feature and for | |
| configuring it. | |
| Copyright (C) 2013, 2015, Red Hat, Inc.<BR> | |
| Copyright (c) 2009 - 2010, Intel Corporation. All rights reserved.<BR> | |
| Copyright (c) Microsoft Corporation. | |
| SPDX-License-Identifier: BSD-2-Clause-Patent | |
| **/ | |
| #include <PiPei.h> | |
| #include <IndustryStandard/Q35MchIch9.h> | |
| #include <Library/BaseLib.h> | |
| #include <Library/DebugLib.h> | |
| #include <Library/IoLib.h> | |
| #include <Library/PcdLib.h> | |
| #include <Library/PciLib.h> | |
| #include <Library/PeiServicesLib.h> | |
| #include <Library/QemuFwCfgLib.h> | |
| #include <Ppi/MmControl.h> | |
| #include "SmiFeatures.h" | |
| // | |
| // The absolute IO port address of the SMI Control and Enable Register. | |
| // | |
| STATIC UINTN mSmiEnable; | |
| /** | |
| Invokes PPI activation from the PI PEI environment. | |
| @param PeiServices An indirect pointer to the PEI Services Table published by the PEI Foundation. | |
| @param This The PEI_MM_CONTROL_PPI instance. | |
| @param ArgumentBuffer The value passed to the MMI handler. This value corresponds to the | |
| SwMmiInputValue in the RegisterContext parameter for the Register() | |
| function in the EFI_MM_SW_DISPATCH_PROTOCOL and in the Context parameter | |
| in the call to the DispatchFunction | |
| @param ArgumentBufferSize The size of the data passed in ArgumentBuffer or NULL if ArgumentBuffer is NULL. | |
| @param Periodic An optional mechanism to periodically repeat activation. | |
| @param ActivationInterval An optional parameter to repeat at this period one | |
| time or, if the Periodic Boolean is set, periodically. | |
| @retval EFI_SUCCESS The MMI has been engendered. | |
| @retval EFI_DEVICE_ERROR The timing is unsupported. | |
| @retval EFI_INVALID_PARAMETER The activation period is unsupported. | |
| @retval EFI_NOT_STARTED The MM base service has not been initialized. | |
| **/ | |
| STATIC | |
| EFI_STATUS | |
| EFIAPI | |
| MmControlPeiTrigger ( | |
| IN EFI_PEI_SERVICES **PeiServices, | |
| IN EFI_PEI_MM_CONTROL_PPI *This, | |
| IN OUT INT8 *ArgumentBuffer OPTIONAL, | |
| IN OUT UINTN *ArgumentBufferSize OPTIONAL, | |
| IN BOOLEAN Periodic OPTIONAL, | |
| IN UINTN ActivationInterval OPTIONAL | |
| ) | |
| { | |
| UINT8 Command; | |
| UINT8 Data; | |
| // | |
| // No support for queued or periodic activation. | |
| // | |
| if (Periodic || (ActivationInterval > 0)) { | |
| return EFI_DEVICE_ERROR; | |
| } | |
| if ((ArgumentBufferSize != NULL) && (ArgumentBuffer == NULL)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // The 0th byte as command, 1st as data... Right? | |
| // | |
| if ((NULL == ArgumentBuffer) || (*ArgumentBufferSize == 0)) { | |
| Command = 0; | |
| Data = 0; | |
| } else if (*ArgumentBufferSize == 1) { | |
| Command = *ArgumentBuffer; | |
| Data = 0; | |
| } else if (*ArgumentBufferSize == 2) { | |
| Command = ArgumentBuffer[0]; | |
| Data = ArgumentBuffer[1]; | |
| } else { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // The so-called "Advanced Power Management Status Port Register" is in fact | |
| // a generic data passing register, between the caller and the SMI | |
| // dispatcher. The ICH9 spec calls it "scratchpad register" -- calling it | |
| // "status" elsewhere seems quite the misnomer. Status registers usually | |
| // report about hardware status, while this register is fully governed by | |
| // software. | |
| // | |
| // Write to the status register first, as this won't trigger the SMI just | |
| // yet. Then write to the control register. | |
| // | |
| IoWrite8 (ICH9_APM_STS, Data); | |
| IoWrite8 (ICH9_APM_CNT, Command); | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Clears any system state that was created in response to the Trigger() call. | |
| @param PeiServices General purpose services available to every PEIM. | |
| @param This The PEI_MM_CONTROL_PPI instance. | |
| @param Periodic Optional parameter to repeat at this period one | |
| time or, if the Periodic Boolean is set, periodically. | |
| @retval EFI_SUCCESS The MMI has been engendered. | |
| @retval EFI_DEVICE_ERROR The source could not be cleared. | |
| @retval EFI_INVALID_PARAMETER The service did not support the Periodic input argument. | |
| **/ | |
| STATIC | |
| EFI_STATUS | |
| EFIAPI | |
| MmControlPeiClear ( | |
| IN EFI_PEI_SERVICES **PeiServices, | |
| IN EFI_PEI_MM_CONTROL_PPI *This, | |
| IN BOOLEAN Periodic OPTIONAL | |
| ) | |
| { | |
| if (Periodic) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // The PI spec v1.4 explains that Clear() is only supposed to clear software | |
| // status; it is not in fact responsible for deasserting the SMI. It gives | |
| // two reasons for this: (a) many boards clear the SMI automatically when | |
| // entering SMM, (b) if Clear() actually deasserted the SMI, then it could | |
| // incorrectly suppress an SMI that was asynchronously asserted between the | |
| // last return of the SMI handler and the call made to Clear(). | |
| // | |
| // In fact QEMU automatically deasserts CPU_INTERRUPT_SMI in: | |
| // - x86_cpu_exec_interrupt() [target-i386/seg_helper.c], and | |
| // - kvm_arch_pre_run() [target-i386/kvm.c]. | |
| // | |
| // So, nothing to do here. | |
| // | |
| return EFI_SUCCESS; | |
| } | |
| STATIC EFI_PEI_MM_CONTROL_PPI mMmControl = | |
| { | |
| .Trigger = MmControlPeiTrigger, | |
| .Clear = MmControlPeiClear | |
| }; | |
| STATIC EFI_PEI_PPI_DESCRIPTOR mSmmControlPpiList = | |
| { | |
| (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), | |
| &gEfiPeiMmControlPpiGuid, | |
| &mMmControl | |
| }; | |
| // | |
| // Entry point of this driver. | |
| // | |
| EFI_STATUS | |
| EFIAPI | |
| MmControlPeiEntryPoint ( | |
| IN EFI_PEI_FILE_HANDLE FileHandle, | |
| IN CONST EFI_PEI_SERVICES **PeiServices | |
| ) | |
| { | |
| UINT32 PmBase; | |
| UINT32 SmiEnableVal; | |
| EFI_STATUS Status; | |
| // | |
| // This module should only be included if SMRAM support is required. | |
| // | |
| ASSERT (FeaturePcdGet (PcdSmmSmramRequire)); | |
| // | |
| // Calculate the absolute IO port address of the SMI Control and Enable | |
| // Register. (As noted at the top, the PEI phase has left us with a working | |
| // ACPI PM IO space.) | |
| // | |
| PmBase = PciRead32 (POWER_MGMT_REGISTER_Q35 (ICH9_PMBASE)) & | |
| ICH9_PMBASE_MASK; | |
| mSmiEnable = PmBase + ICH9_PMBASE_OFS_SMI_EN; | |
| // | |
| // If APMC_EN is pre-set in SMI_EN, that's QEMU's way to tell us that SMI | |
| // support is not available. (For example due to KVM lacking it.) Otherwise, | |
| // this bit is clear after each reset. | |
| // | |
| SmiEnableVal = IoRead32 (mSmiEnable); | |
| if ((SmiEnableVal & ICH9_SMI_EN_APMC_EN) != 0) { | |
| DEBUG (( | |
| DEBUG_ERROR, | |
| "%a: this Q35 implementation lacks SMI\n", | |
| __func__ | |
| )); | |
| goto FatalError; | |
| } | |
| // | |
| // Otherwise, configure the board to inject an SMI when ICH9_APM_CNT is | |
| // written to. (See the Trigger() method above.) | |
| // | |
| SmiEnableVal |= ICH9_SMI_EN_APMC_EN | ICH9_SMI_EN_GBL_SMI_EN; | |
| IoWrite32 (mSmiEnable, SmiEnableVal); | |
| // | |
| // Prevent software from undoing the above (until platform reset). | |
| // | |
| PciOr16 ( | |
| POWER_MGMT_REGISTER_Q35 (ICH9_GEN_PMCON_1), | |
| ICH9_GEN_PMCON_1_SMI_LOCK | |
| ); | |
| // | |
| // If we can clear GBL_SMI_EN now, that means QEMU's SMI support is not | |
| // appropriate. | |
| // | |
| IoWrite32 (mSmiEnable, SmiEnableVal & ~(UINT32)ICH9_SMI_EN_GBL_SMI_EN); | |
| if (IoRead32 (mSmiEnable) != SmiEnableVal) { | |
| DEBUG (( | |
| DEBUG_ERROR, | |
| "%a: failed to lock down GBL_SMI_EN\n", | |
| __func__ | |
| )); | |
| goto FatalError; | |
| } | |
| // | |
| // We have no pointers to convert to virtual addresses. The handle itself | |
| // doesn't matter, as protocol services are not accessible at runtime. | |
| // | |
| Status = (*PeiServices)->InstallPpi (PeiServices, &mSmmControlPpiList); | |
| if (EFI_ERROR (Status)) { | |
| DEBUG (( | |
| DEBUG_ERROR, | |
| "%a: InstallMultipleProtocolInterfaces: %r\n", | |
| __func__, | |
| Status | |
| )); | |
| goto FatalError; | |
| } | |
| return EFI_SUCCESS; | |
| FatalError: | |
| // | |
| // We really don't want to continue in this case. | |
| // | |
| ASSERT (FALSE); | |
| CpuDeadLoop (); | |
| return EFI_UNSUPPORTED; | |
| } |