| /** @file | |
| ACPI Timer implements one instance of Timer Library. | |
| Copyright (c) 2013 - 2018, Intel Corporation. All rights reserved.<BR> | |
| SPDX-License-Identifier: BSD-2-Clause-Patent | |
| **/ | |
| #include <Base.h> | |
| #include <Library/TimerLib.h> | |
| #include <Library/BaseLib.h> | |
| #include <Library/PcdLib.h> | |
| #include <Library/PciLib.h> | |
| #include <Library/IoLib.h> | |
| #include <Library/DebugLib.h> | |
| #include <IndustryStandard/Acpi.h> | |
| GUID mFrequencyHobGuid = { | |
| 0x3fca54f6, 0xe1a2, 0x4b20, { 0xbe, 0x76, 0x92, 0x6b, 0x4b, 0x48, 0xbf, 0xaa } | |
| }; | |
| /** | |
| Internal function to retrieves the 64-bit frequency in Hz. | |
| Internal function to retrieves the 64-bit frequency in Hz. | |
| @return The frequency in Hz. | |
| **/ | |
| UINT64 | |
| InternalGetPerformanceCounterFrequency ( | |
| VOID | |
| ); | |
| /** | |
| The constructor function enables ACPI IO space. | |
| If ACPI I/O space not enabled, this function will enable it. | |
| It will always return RETURN_SUCCESS. | |
| @retval EFI_SUCCESS The constructor always returns RETURN_SUCCESS. | |
| **/ | |
| RETURN_STATUS | |
| EFIAPI | |
| AcpiTimerLibConstructor ( | |
| VOID | |
| ) | |
| { | |
| UINTN Bus; | |
| UINTN Device; | |
| UINTN Function; | |
| UINTN EnableRegister; | |
| UINT8 EnableMask; | |
| // | |
| // ASSERT for the invalid PCD values. They must be configured to the real value. | |
| // | |
| ASSERT (PcdGet16 (PcdAcpiIoPciBarRegisterOffset) != 0xFFFF); | |
| ASSERT (PcdGet16 (PcdAcpiIoPortBaseAddress) != 0xFFFF); | |
| // | |
| // If the register offset to the BAR for the ACPI I/O Port Base Address is 0x0000, then | |
| // no PCI register programming is required to enable access to the ACPI registers | |
| // specified by PcdAcpiIoPortBaseAddress | |
| // | |
| if (PcdGet16 (PcdAcpiIoPciBarRegisterOffset) == 0x0000) { | |
| return RETURN_SUCCESS; | |
| } | |
| // | |
| // ASSERT for the invalid PCD values. They must be configured to the real value. | |
| // | |
| ASSERT (PcdGet8 (PcdAcpiIoPciDeviceNumber) != 0xFF); | |
| ASSERT (PcdGet8 (PcdAcpiIoPciFunctionNumber) != 0xFF); | |
| ASSERT (PcdGet16 (PcdAcpiIoPciEnableRegisterOffset) != 0xFFFF); | |
| // | |
| // Retrieve the PCD values for the PCI configuration space required to program the ACPI I/O Port Base Address | |
| // | |
| Bus = PcdGet8 (PcdAcpiIoPciBusNumber); | |
| Device = PcdGet8 (PcdAcpiIoPciDeviceNumber); | |
| Function = PcdGet8 (PcdAcpiIoPciFunctionNumber); | |
| EnableRegister = PcdGet16 (PcdAcpiIoPciEnableRegisterOffset); | |
| EnableMask = PcdGet8 (PcdAcpiIoBarEnableMask); | |
| // | |
| // If ACPI I/O space is not enabled yet, program ACPI I/O base address and enable it. | |
| // | |
| if ((PciRead8 (PCI_LIB_ADDRESS (Bus, Device, Function, EnableRegister)) & EnableMask) != EnableMask) { | |
| PciWrite16 ( | |
| PCI_LIB_ADDRESS (Bus, Device, Function, PcdGet16 (PcdAcpiIoPciBarRegisterOffset)), | |
| PcdGet16 (PcdAcpiIoPortBaseAddress) | |
| ); | |
| PciOr8 ( | |
| PCI_LIB_ADDRESS (Bus, Device, Function, EnableRegister), | |
| EnableMask | |
| ); | |
| } | |
| return RETURN_SUCCESS; | |
| } | |
| /** | |
| Internal function to retrieve the ACPI I/O Port Base Address. | |
| Internal function to retrieve the ACPI I/O Port Base Address. | |
| @return The 16-bit ACPI I/O Port Base Address. | |
| **/ | |
| UINT16 | |
| InternalAcpiGetAcpiTimerIoPort ( | |
| VOID | |
| ) | |
| { | |
| UINT16 Port; | |
| Port = PcdGet16 (PcdAcpiIoPortBaseAddress); | |
| // | |
| // If the register offset to the BAR for the ACPI I/O Port Base Address is not 0x0000, then | |
| // read the PCI register for the ACPI BAR value in case the BAR has been programmed to a | |
| // value other than PcdAcpiIoPortBaseAddress | |
| // | |
| if (PcdGet16 (PcdAcpiIoPciBarRegisterOffset) != 0x0000) { | |
| Port = PciRead16 ( | |
| PCI_LIB_ADDRESS ( | |
| PcdGet8 (PcdAcpiIoPciBusNumber), | |
| PcdGet8 (PcdAcpiIoPciDeviceNumber), | |
| PcdGet8 (PcdAcpiIoPciFunctionNumber), | |
| PcdGet16 (PcdAcpiIoPciBarRegisterOffset) | |
| ) | |
| ); | |
| } | |
| return (Port & PcdGet16 (PcdAcpiIoPortBaseAddressMask)) + PcdGet16 (PcdAcpiPm1TmrOffset); | |
| } | |
| /** | |
| Stalls the CPU for at least the given number of ticks. | |
| Stalls the CPU for at least the given number of ticks. It's invoked by | |
| MicroSecondDelay() and NanoSecondDelay(). | |
| @param Delay A period of time to delay in ticks. | |
| **/ | |
| VOID | |
| InternalAcpiDelay ( | |
| IN UINT32 Delay | |
| ) | |
| { | |
| UINT16 Port; | |
| UINT32 Ticks; | |
| UINT32 Times; | |
| Port = InternalAcpiGetAcpiTimerIoPort (); | |
| Times = Delay >> 22; | |
| Delay &= BIT22 - 1; | |
| do { | |
| // | |
| // The target timer count is calculated here | |
| // | |
| Ticks = IoBitFieldRead32 (Port, 0, 23) + Delay; | |
| Delay = BIT22; | |
| // | |
| // Wait until time out | |
| // Delay >= 2^23 could not be handled by this function | |
| // Timer wrap-arounds are handled correctly by this function | |
| // | |
| while (((Ticks - IoBitFieldRead32 (Port, 0, 23)) & BIT23) == 0) { | |
| CpuPause (); | |
| } | |
| } while (Times-- > 0); | |
| } | |
| /** | |
| Stalls the CPU for at least the given number of microseconds. | |
| Stalls the CPU for the number of microseconds specified by MicroSeconds. | |
| @param MicroSeconds The minimum number of microseconds to delay. | |
| @return MicroSeconds | |
| **/ | |
| UINTN | |
| EFIAPI | |
| MicroSecondDelay ( | |
| IN UINTN MicroSeconds | |
| ) | |
| { | |
| InternalAcpiDelay ( | |
| (UINT32)DivU64x32 ( | |
| MultU64x32 ( | |
| MicroSeconds, | |
| ACPI_TIMER_FREQUENCY | |
| ), | |
| 1000000u | |
| ) | |
| ); | |
| return MicroSeconds; | |
| } | |
| /** | |
| Stalls the CPU for at least the given number of nanoseconds. | |
| Stalls the CPU for the number of nanoseconds specified by NanoSeconds. | |
| @param NanoSeconds The minimum number of nanoseconds to delay. | |
| @return NanoSeconds | |
| **/ | |
| UINTN | |
| EFIAPI | |
| NanoSecondDelay ( | |
| IN UINTN NanoSeconds | |
| ) | |
| { | |
| InternalAcpiDelay ( | |
| (UINT32)DivU64x32 ( | |
| MultU64x32 ( | |
| NanoSeconds, | |
| ACPI_TIMER_FREQUENCY | |
| ), | |
| 1000000000u | |
| ) | |
| ); | |
| return NanoSeconds; | |
| } | |
| /** | |
| Retrieves the current value of a 64-bit free running performance counter. | |
| Retrieves the current value of a 64-bit free running performance counter. The | |
| counter can either count up by 1 or count down by 1. If the physical | |
| performance counter counts by a larger increment, then the counter values | |
| must be translated. The properties of the counter can be retrieved from | |
| GetPerformanceCounterProperties(). | |
| @return The current value of the free running performance counter. | |
| **/ | |
| UINT64 | |
| EFIAPI | |
| GetPerformanceCounter ( | |
| VOID | |
| ) | |
| { | |
| return AsmReadTsc (); | |
| } | |
| /** | |
| Retrieves the 64-bit frequency in Hz and the range of performance counter | |
| values. | |
| If StartValue is not NULL, then the value that the performance counter starts | |
| with immediately after is it rolls over is returned in StartValue. If | |
| EndValue is not NULL, then the value that the performance counter end with | |
| immediately before it rolls over is returned in EndValue. The 64-bit | |
| frequency of the performance counter in Hz is always returned. If StartValue | |
| is less than EndValue, then the performance counter counts up. If StartValue | |
| is greater than EndValue, then the performance counter counts down. For | |
| example, a 64-bit free running counter that counts up would have a StartValue | |
| of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter | |
| that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0. | |
| @param StartValue The value the performance counter starts with when it | |
| rolls over. | |
| @param EndValue The value that the performance counter ends with before | |
| it rolls over. | |
| @return The frequency in Hz. | |
| **/ | |
| UINT64 | |
| EFIAPI | |
| GetPerformanceCounterProperties ( | |
| OUT UINT64 *StartValue OPTIONAL, | |
| OUT UINT64 *EndValue OPTIONAL | |
| ) | |
| { | |
| if (StartValue != NULL) { | |
| *StartValue = 0; | |
| } | |
| if (EndValue != NULL) { | |
| *EndValue = 0xffffffffffffffffULL; | |
| } | |
| return InternalGetPerformanceCounterFrequency (); | |
| } | |
| /** | |
| Converts elapsed ticks of performance counter to time in nanoseconds. | |
| This function converts the elapsed ticks of running performance counter to | |
| time value in unit of nanoseconds. | |
| @param Ticks The number of elapsed ticks of running performance counter. | |
| @return The elapsed time in nanoseconds. | |
| **/ | |
| UINT64 | |
| EFIAPI | |
| GetTimeInNanoSecond ( | |
| IN UINT64 Ticks | |
| ) | |
| { | |
| UINT64 Frequency; | |
| UINT64 NanoSeconds; | |
| UINT64 Remainder; | |
| INTN Shift; | |
| Frequency = GetPerformanceCounterProperties (NULL, NULL); | |
| // | |
| // Ticks | |
| // Time = --------- x 1,000,000,000 | |
| // Frequency | |
| // | |
| NanoSeconds = MultU64x32 (DivU64x64Remainder (Ticks, Frequency, &Remainder), 1000000000u); | |
| // | |
| // Ensure (Remainder * 1,000,000,000) will not overflow 64-bit. | |
| // Since 2^29 < 1,000,000,000 = 0x3B9ACA00 < 2^30, Remainder should < 2^(64-30) = 2^34, | |
| // i.e. highest bit set in Remainder should <= 33. | |
| // | |
| Shift = MAX (0, HighBitSet64 (Remainder) - 33); | |
| Remainder = RShiftU64 (Remainder, (UINTN)Shift); | |
| Frequency = RShiftU64 (Frequency, (UINTN)Shift); | |
| NanoSeconds += DivU64x64Remainder (MultU64x32 (Remainder, 1000000000u), Frequency, NULL); | |
| return NanoSeconds; | |
| } | |
| /** | |
| Calculate TSC frequency. | |
| The TSC counting frequency is determined by comparing how far it counts | |
| during a 101.4 us period as determined by the ACPI timer. | |
| The ACPI timer is used because it counts at a known frequency. | |
| The TSC is sampled, followed by waiting 363 counts of the ACPI timer, | |
| or 101.4 us. The TSC is then sampled again. The difference multiplied by | |
| 9861 is the TSC frequency. There will be a small error because of the | |
| overhead of reading the ACPI timer. An attempt is made to determine and | |
| compensate for this error. | |
| @return The number of TSC counts per second. | |
| **/ | |
| UINT64 | |
| InternalCalculateTscFrequency ( | |
| VOID | |
| ) | |
| { | |
| UINT64 StartTSC; | |
| UINT64 EndTSC; | |
| UINT16 TimerAddr; | |
| UINT32 Ticks; | |
| UINT64 TscFrequency; | |
| BOOLEAN InterruptState; | |
| InterruptState = SaveAndDisableInterrupts (); | |
| TimerAddr = InternalAcpiGetAcpiTimerIoPort (); | |
| // | |
| // Compute the number of ticks to wait to measure TSC frequency. | |
| // Use 363 * 9861 = 3579543 Hz which is within 2 Hz of ACPI_TIMER_FREQUENCY. | |
| // 363 counts is a calibration time of 101.4 uS. | |
| // | |
| Ticks = IoBitFieldRead32 (TimerAddr, 0, 23) + 363; | |
| StartTSC = AsmReadTsc (); // Get base value for the TSC | |
| // | |
| // Wait until the ACPI timer has counted 101.4 us. | |
| // Timer wrap-arounds are handled correctly by this function. | |
| // When the current ACPI timer value is greater than 'Ticks', | |
| // the while loop will exit. | |
| // | |
| while (((Ticks - IoBitFieldRead32 (TimerAddr, 0, 23)) & BIT23) == 0) { | |
| CpuPause (); | |
| } | |
| EndTSC = AsmReadTsc (); // TSC value 101.4 us later | |
| TscFrequency = MultU64x32 ( | |
| (EndTSC - StartTSC), // Number of TSC counts in 101.4 us | |
| 9861 // Number of 101.4 us in a second | |
| ); | |
| SetInterruptState (InterruptState); | |
| return TscFrequency; | |
| } |