| /** @file | |
| The CPU specific programming for PiSmmCpuDxeSmm module. | |
| Copyright (c) 2010 - 2015, Intel Corporation. All rights reserved.<BR> | |
| Copyright (c) Microsoft Corporation. | |
| SPDX-License-Identifier: BSD-2-Clause-Patent | |
| **/ | |
| #include <IndustryStandard/Q35MchIch9.h> | |
| #include <Library/BaseLib.h> | |
| #include <Library/BaseMemoryLib.h> | |
| #include <Library/DebugLib.h> | |
| #include <Library/MemEncryptSevLib.h> | |
| #include <Library/MemoryAllocationLib.h> | |
| #include <Library/PcdLib.h> | |
| #include <Library/SafeIntLib.h> | |
| #include <Library/SmmCpuFeaturesLib.h> | |
| #include <Library/SmmServicesTableLib.h> | |
| #include <Library/UefiBootServicesTableLib.h> | |
| #include <Pcd/CpuHotEjectData.h> | |
| #include <PiSmm.h> | |
| STATIC CPU_HOT_EJECT_DATA *mCpuHotEjectData = NULL; | |
| /** | |
| The common constructor function | |
| @retval EFI_SUCCESS The constructor always returns EFI_SUCCESS. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| MmCpuFeaturesLibConstructorCommon ( | |
| VOID | |
| ); | |
| /** | |
| Initialize mCpuHotEjectData if PcdCpuMaxLogicalProcessorNumber > 1. | |
| Also setup the corresponding PcdCpuHotEjectDataAddress. | |
| **/ | |
| STATIC | |
| VOID | |
| InitCpuHotEjectData ( | |
| VOID | |
| ) | |
| { | |
| UINTN Size; | |
| UINT32 Idx; | |
| UINT32 MaxNumberOfCpus; | |
| RETURN_STATUS PcdStatus; | |
| MaxNumberOfCpus = PcdGet32 (PcdCpuMaxLogicalProcessorNumber); | |
| if (MaxNumberOfCpus == 1) { | |
| return; | |
| } | |
| // | |
| // We allocate CPU_HOT_EJECT_DATA and CPU_HOT_EJECT_DATA->QemuSelectorMap[] | |
| // in a single allocation, and explicitly align the QemuSelectorMap[] (which | |
| // is a UINT64 array) at its natural boundary. | |
| // Accordingly, allocate: | |
| // sizeof(*mCpuHotEjectData) + (MaxNumberOfCpus * sizeof(UINT64)) | |
| // and, add sizeof(UINT64) - 1 to use as padding if needed. | |
| // | |
| if (RETURN_ERROR (SafeUintnMult (MaxNumberOfCpus, sizeof (UINT64), &Size)) || | |
| RETURN_ERROR (SafeUintnAdd (Size, sizeof (*mCpuHotEjectData), &Size)) || | |
| RETURN_ERROR (SafeUintnAdd (Size, sizeof (UINT64) - 1, &Size))) | |
| { | |
| DEBUG ((DEBUG_ERROR, "%a: invalid CPU_HOT_EJECT_DATA\n", __func__)); | |
| goto Fatal; | |
| } | |
| mCpuHotEjectData = AllocatePool (Size); | |
| if (mCpuHotEjectData == NULL) { | |
| ASSERT (mCpuHotEjectData != NULL); | |
| goto Fatal; | |
| } | |
| mCpuHotEjectData->Handler = NULL; | |
| mCpuHotEjectData->ArrayLength = MaxNumberOfCpus; | |
| mCpuHotEjectData->QemuSelectorMap = ALIGN_POINTER ( | |
| mCpuHotEjectData + 1, | |
| sizeof (UINT64) | |
| ); | |
| // | |
| // We use mCpuHotEjectData->QemuSelectorMap to map | |
| // ProcessorNum -> QemuSelector. Initialize to invalid values. | |
| // | |
| for (Idx = 0; Idx < mCpuHotEjectData->ArrayLength; Idx++) { | |
| mCpuHotEjectData->QemuSelectorMap[Idx] = CPU_EJECT_QEMU_SELECTOR_INVALID; | |
| } | |
| // | |
| // Expose address of CPU Hot eject Data structure | |
| // | |
| PcdStatus = PcdSet64S ( | |
| PcdCpuHotEjectDataAddress, | |
| (UINTN)(VOID *)mCpuHotEjectData | |
| ); | |
| ASSERT_RETURN_ERROR (PcdStatus); | |
| return; | |
| Fatal: | |
| CpuDeadLoop (); | |
| } | |
| /** | |
| Hook point in normal execution mode that allows the one CPU that was elected | |
| as monarch during System Management Mode initialization to perform additional | |
| initialization actions immediately after all of the CPUs have processed their | |
| first SMI and called SmmCpuFeaturesInitializeProcessor() relocating SMBASE | |
| into a buffer in SMRAM and called SmmCpuFeaturesHookReturnFromSmm(). | |
| **/ | |
| VOID | |
| EFIAPI | |
| SmmCpuFeaturesSmmRelocationComplete ( | |
| VOID | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| UINTN MapPagesBase; | |
| UINTN MapPagesCount; | |
| InitCpuHotEjectData (); | |
| if (!MemEncryptSevIsEnabled ()) { | |
| return; | |
| } | |
| // | |
| // Now that SMBASE relocation is complete, re-encrypt the original SMRAM save | |
| // state map's container pages, and release the pages to DXE. (The pages were | |
| // allocated in PlatformPei.) | |
| // | |
| Status = MemEncryptSevLocateInitialSmramSaveStateMapPages ( | |
| &MapPagesBase, | |
| &MapPagesCount | |
| ); | |
| ASSERT_EFI_ERROR (Status); | |
| Status = MemEncryptSevSetPageEncMask ( | |
| 0, // Cr3BaseAddress -- use current CR3 | |
| MapPagesBase, // BaseAddress | |
| MapPagesCount // NumPages | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| DEBUG (( | |
| DEBUG_ERROR, | |
| "%a: MemEncryptSevSetPageEncMask(): %r\n", | |
| __func__, | |
| Status | |
| )); | |
| ASSERT (FALSE); | |
| CpuDeadLoop (); | |
| } | |
| ZeroMem ((VOID *)MapPagesBase, EFI_PAGES_TO_SIZE (MapPagesCount)); | |
| if (PcdGetBool (PcdQ35SmramAtDefaultSmbase)) { | |
| // | |
| // The initial SMRAM Save State Map has been covered as part of a larger | |
| // reserved memory allocation in PlatformPei's InitializeRamRegions(). That | |
| // allocation is supposed to survive into OS runtime; we must not release | |
| // any part of it. Only re-assert the containment here. | |
| // | |
| ASSERT (SMM_DEFAULT_SMBASE <= MapPagesBase); | |
| ASSERT ( | |
| (MapPagesBase + EFI_PAGES_TO_SIZE (MapPagesCount) <= | |
| SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE) | |
| ); | |
| } else { | |
| Status = gBS->FreePages (MapPagesBase, MapPagesCount); | |
| ASSERT_EFI_ERROR (Status); | |
| } | |
| } | |
| /** | |
| Processor specific hook point each time a CPU exits System Management Mode. | |
| @param[in] CpuIndex The index of the CPU that is exiting SMM. The value | |
| must be between 0 and the NumberOfCpus field in the | |
| System Management System Table (SMST). | |
| **/ | |
| VOID | |
| EFIAPI | |
| SmmCpuFeaturesRendezvousExit ( | |
| IN UINTN CpuIndex | |
| ) | |
| { | |
| // | |
| // We only call the Handler if CPU hot-eject is enabled | |
| // (PcdCpuMaxLogicalProcessorNumber > 1), and hot-eject is needed | |
| // in this SMI exit (otherwise mCpuHotEjectData->Handler is not armed.) | |
| // | |
| if (mCpuHotEjectData != NULL) { | |
| CPU_HOT_EJECT_HANDLER Handler; | |
| // | |
| // As the comment above mentions, mCpuHotEjectData->Handler might be | |
| // written to on the BSP as part of handling of the CPU-ejection. | |
| // | |
| // We know that any initial assignment to mCpuHotEjectData->Handler | |
| // (on the BSP, in the CpuHotplugMmi() context) is ordered-before the | |
| // load below, since it is guaranteed to happen before the | |
| // control-dependency of the BSP's SMI exit signal -- by way of a store | |
| // to AllCpusInSync (on the BSP, in BspHandler()) and the corresponding | |
| // AllCpusInSync loop (on the APs, in SmiRendezvous()) which depends on | |
| // that store. | |
| // | |
| // This guarantees that these pieces of code can never execute | |
| // simultaneously. In addition, we ensure that the following load is | |
| // ordered-after the AllCpusInSync loop by using a MemoryFence() with | |
| // acquire semantics. | |
| // | |
| MemoryFence (); | |
| Handler = mCpuHotEjectData->Handler; | |
| if (Handler != NULL) { | |
| Handler (CpuIndex); | |
| } | |
| } | |
| } | |
| /** | |
| The constructor function | |
| @param[in] ImageHandle The firmware allocated handle for the EFI image. | |
| @param[in] SystemTable A pointer to the EFI System Table. | |
| @retval EFI_SUCCESS The constructor always returns EFI_SUCCESS. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| SmmCpuFeaturesLibConstructor ( | |
| IN EFI_HANDLE ImageHandle, | |
| IN EFI_SYSTEM_TABLE *SystemTable | |
| ) | |
| { | |
| return MmCpuFeaturesLibConstructorCommon (); | |
| } |