| /*++ | |
| Caution: This file is used for Duet platform only, do not use them in real platform. | |
| All variable code, variable metadata, and variable data used by Duet platform are on | |
| disk. They can be changed by user. BIOS is not able to protoect those. | |
| Duet trusts all meta data from disk. If variable code, variable metadata and variable | |
| data is modified in inproper way, the behavior is undefined. | |
| Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.<BR> | |
| This program and the accompanying materials | |
| are licensed and made available under the terms and conditions of the BSD License | |
| which accompanies this distribution. The full text of the license may be found at | |
| http://opensource.org/licenses/bsd-license.php | |
| THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
| WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
| Module Name: | |
| FSVariable.c | |
| Abstract: | |
| Provide support functions for variable services. | |
| --*/ | |
| #include "FSVariable.h" | |
| VARIABLE_STORE_HEADER mStoreHeaderTemplate = { | |
| VARIABLE_STORE_SIGNATURE, | |
| VOLATILE_VARIABLE_STORE_SIZE, | |
| VARIABLE_STORE_FORMATTED, | |
| VARIABLE_STORE_HEALTHY, | |
| 0, | |
| 0 | |
| }; | |
| // | |
| // Don't use module globals after the SetVirtualAddress map is signaled | |
| // | |
| VARIABLE_GLOBAL *mGlobal; | |
| /** | |
| Update the variable region with Variable information. These are the same | |
| arguments as the EFI Variable services. | |
| @param[in] VariableName Name of variable | |
| @param[in] VendorGuid Guid of variable | |
| @param[in] Data Variable data | |
| @param[in] DataSize Size of data. 0 means delete | |
| @param[in] Attributes Attribues of the variable | |
| @param[in] Variable The variable information which is used to keep track of variable usage. | |
| @retval EFI_SUCCESS The update operation is success. | |
| @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| UpdateVariable ( | |
| IN CHAR16 *VariableName, | |
| IN EFI_GUID *VendorGuid, | |
| IN VOID *Data, | |
| IN UINTN DataSize, | |
| IN UINT32 Attributes OPTIONAL, | |
| IN VARIABLE_POINTER_TRACK *Variable | |
| ); | |
| VOID | |
| EFIAPI | |
| OnVirtualAddressChangeFsv ( | |
| IN EFI_EVENT Event, | |
| IN VOID *Context | |
| ); | |
| VOID | |
| EFIAPI | |
| OnSimpleFileSystemInstall ( | |
| IN EFI_EVENT Event, | |
| IN VOID *Context | |
| ); | |
| BOOLEAN | |
| IsValidVariableHeader ( | |
| IN VARIABLE_HEADER *Variable | |
| ) | |
| /*++ | |
| Routine Description: | |
| This code checks if variable header is valid or not. | |
| Arguments: | |
| Variable Pointer to the Variable Header. | |
| Returns: | |
| TRUE Variable header is valid. | |
| FALSE Variable header is not valid. | |
| --*/ | |
| { | |
| if (Variable == NULL || Variable->StartId != VARIABLE_DATA) { | |
| return FALSE; | |
| } | |
| return TRUE; | |
| } | |
| VARIABLE_STORE_STATUS | |
| GetVariableStoreStatus ( | |
| IN VARIABLE_STORE_HEADER *VarStoreHeader | |
| ) | |
| /*++ | |
| Routine Description: | |
| This code gets the current status of Variable Store. | |
| Arguments: | |
| VarStoreHeader Pointer to the Variable Store Header. | |
| Returns: | |
| EfiRaw Variable store status is raw | |
| EfiValid Variable store status is valid | |
| EfiInvalid Variable store status is invalid | |
| --*/ | |
| { | |
| if (CompareGuid (&VarStoreHeader->Signature, &mStoreHeaderTemplate.Signature) && | |
| (VarStoreHeader->Format == mStoreHeaderTemplate.Format) && | |
| (VarStoreHeader->State == mStoreHeaderTemplate.State) | |
| ) { | |
| return EfiValid; | |
| } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == VAR_DEFAULT_VALUE_32 && | |
| ((UINT32 *)(&VarStoreHeader->Signature))[1] == VAR_DEFAULT_VALUE_32 && | |
| ((UINT32 *)(&VarStoreHeader->Signature))[2] == VAR_DEFAULT_VALUE_32 && | |
| ((UINT32 *)(&VarStoreHeader->Signature))[3] == VAR_DEFAULT_VALUE_32 && | |
| VarStoreHeader->Size == VAR_DEFAULT_VALUE_32 && | |
| VarStoreHeader->Format == VAR_DEFAULT_VALUE && | |
| VarStoreHeader->State == VAR_DEFAULT_VALUE | |
| ) { | |
| return EfiRaw; | |
| } else { | |
| return EfiInvalid; | |
| } | |
| } | |
| UINT8 * | |
| GetVariableDataPtr ( | |
| IN VARIABLE_HEADER *Variable | |
| ) | |
| /*++ | |
| Routine Description: | |
| This code gets the pointer to the variable data. | |
| Arguments: | |
| Variable Pointer to the Variable Header. | |
| Returns: | |
| UINT8* Pointer to Variable Data | |
| --*/ | |
| { | |
| // | |
| // Be careful about pad size for alignment | |
| // | |
| return (UINT8 *) ((UINTN) GET_VARIABLE_NAME_PTR (Variable) + Variable->NameSize + GET_PAD_SIZE (Variable->NameSize)); | |
| } | |
| VARIABLE_HEADER * | |
| GetNextVariablePtr ( | |
| IN VARIABLE_HEADER *Variable | |
| ) | |
| /*++ | |
| Routine Description: | |
| This code gets the pointer to the next variable header. | |
| Arguments: | |
| Variable Pointer to the Variable Header. | |
| Returns: | |
| VARIABLE_HEADER* Pointer to next variable header. | |
| --*/ | |
| { | |
| if (!IsValidVariableHeader (Variable)) { | |
| return NULL; | |
| } | |
| // | |
| // Be careful about pad size for alignment | |
| // | |
| return (VARIABLE_HEADER *) ((UINTN) GetVariableDataPtr (Variable) + Variable->DataSize + GET_PAD_SIZE (Variable->DataSize)); | |
| } | |
| VARIABLE_HEADER * | |
| GetEndPointer ( | |
| IN VARIABLE_STORE_HEADER *VarStoreHeader | |
| ) | |
| /*++ | |
| Routine Description: | |
| This code gets the pointer to the last variable memory pointer byte | |
| Arguments: | |
| VarStoreHeader Pointer to the Variable Store Header. | |
| Returns: | |
| VARIABLE_HEADER* Pointer to last unavailable Variable Header | |
| --*/ | |
| { | |
| // | |
| // The end of variable store | |
| // | |
| return (VARIABLE_HEADER *) ((UINTN) VarStoreHeader + VarStoreHeader->Size); | |
| } | |
| BOOLEAN | |
| ExistNewerVariable ( | |
| IN VARIABLE_HEADER *Variable | |
| ) | |
| /*++ | |
| Routine Description: | |
| Check if exist newer variable when doing reclaim | |
| Arguments: | |
| Variable Pointer to start position | |
| Returns: | |
| TRUE - Exists another variable, which is newer than the current one | |
| FALSE - Doesn't exist another vairable which is newer than the current one | |
| --*/ | |
| { | |
| VARIABLE_HEADER *NextVariable; | |
| CHAR16 *VariableName; | |
| EFI_GUID *VendorGuid; | |
| VendorGuid = &Variable->VendorGuid; | |
| VariableName = GET_VARIABLE_NAME_PTR(Variable); | |
| NextVariable = GetNextVariablePtr (Variable); | |
| while (IsValidVariableHeader (NextVariable)) { | |
| if ((NextVariable->State == VAR_ADDED) || (NextVariable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) { | |
| // | |
| // If match Guid and Name | |
| // | |
| if (CompareGuid (VendorGuid, &NextVariable->VendorGuid)) { | |
| if (CompareMem (VariableName, GET_VARIABLE_NAME_PTR (NextVariable), StrSize (VariableName)) == 0) { | |
| return TRUE; | |
| } | |
| } | |
| } | |
| NextVariable = GetNextVariablePtr (NextVariable); | |
| } | |
| return FALSE; | |
| } | |
| EFI_STATUS | |
| Reclaim ( | |
| IN VARIABLE_STORAGE_TYPE StorageType, | |
| IN VARIABLE_HEADER *CurrentVariable OPTIONAL | |
| ) | |
| /*++ | |
| Routine Description: | |
| Variable store garbage collection and reclaim operation | |
| Arguments: | |
| IsVolatile The variable store is volatile or not, | |
| if it is non-volatile, need FTW | |
| CurrentVairable If it is not NULL, it means not to process | |
| current variable for Reclaim. | |
| Returns: | |
| EFI STATUS | |
| --*/ | |
| { | |
| VARIABLE_HEADER *Variable; | |
| VARIABLE_HEADER *NextVariable; | |
| VARIABLE_STORE_HEADER *VariableStoreHeader; | |
| UINT8 *ValidBuffer; | |
| UINTN ValidBufferSize; | |
| UINTN VariableSize; | |
| UINT8 *CurrPtr; | |
| EFI_STATUS Status; | |
| VariableStoreHeader = (VARIABLE_STORE_HEADER *) mGlobal->VariableBase[StorageType]; | |
| // | |
| // Start Pointers for the variable. | |
| // | |
| Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1); | |
| // | |
| // recaluate the total size of Common/HwErr type variables in non-volatile area. | |
| // | |
| if (!StorageType) { | |
| mGlobal->CommonVariableTotalSize = 0; | |
| mGlobal->HwErrVariableTotalSize = 0; | |
| } | |
| // | |
| // To make the reclaim, here we just allocate a memory that equal to the original memory | |
| // | |
| ValidBufferSize = sizeof (VARIABLE_STORE_HEADER) + VariableStoreHeader->Size; | |
| Status = gBS->AllocatePool ( | |
| EfiBootServicesData, | |
| ValidBufferSize, | |
| (VOID**) &ValidBuffer | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| CurrPtr = ValidBuffer; | |
| // | |
| // Copy variable store header | |
| // | |
| CopyMem (CurrPtr, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER)); | |
| CurrPtr += sizeof (VARIABLE_STORE_HEADER); | |
| // | |
| // Start Pointers for the variable. | |
| // | |
| Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1); | |
| ValidBufferSize = sizeof (VARIABLE_STORE_HEADER); | |
| while (IsValidVariableHeader (Variable)) { | |
| NextVariable = GetNextVariablePtr (Variable); | |
| // | |
| // State VAR_ADDED or VAR_IN_DELETED_TRANSITION are to kept, | |
| // The CurrentVariable, is also saved, as SetVariable may fail due to lack of space | |
| // | |
| if (Variable->State == VAR_ADDED) { | |
| VariableSize = (UINTN) NextVariable - (UINTN) Variable; | |
| CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize); | |
| ValidBufferSize += VariableSize; | |
| CurrPtr += VariableSize; | |
| if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { | |
| mGlobal->HwErrVariableTotalSize += VariableSize; | |
| } else if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { | |
| mGlobal->CommonVariableTotalSize += VariableSize; | |
| } | |
| } else if (Variable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION)) { | |
| // | |
| // As variables that with the same guid and name may exist in NV due to power failure during SetVariable, | |
| // we will only save the latest valid one | |
| // | |
| if (!ExistNewerVariable(Variable)) { | |
| VariableSize = (UINTN) NextVariable - (UINTN) Variable; | |
| CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize); | |
| // | |
| // If CurrentVariable == Variable, mark as VAR_IN_DELETED_TRANSITION | |
| // | |
| if (Variable != CurrentVariable){ | |
| ((VARIABLE_HEADER *)CurrPtr)->State = VAR_ADDED; | |
| } | |
| CurrPtr += VariableSize; | |
| ValidBufferSize += VariableSize; | |
| if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { | |
| mGlobal->HwErrVariableTotalSize += VariableSize; | |
| } else if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { | |
| mGlobal->CommonVariableTotalSize += VariableSize; | |
| } | |
| } | |
| } | |
| Variable = NextVariable; | |
| } | |
| mGlobal->LastVariableOffset[StorageType] = ValidBufferSize; | |
| // | |
| // TODO: cannot restore to original state, basic FTW needed | |
| // | |
| Status = mGlobal->VariableStore[StorageType]->Erase ( | |
| mGlobal->VariableStore[StorageType] | |
| ); | |
| Status = mGlobal->VariableStore[StorageType]->Write ( | |
| mGlobal->VariableStore[StorageType], | |
| 0, | |
| ValidBufferSize, | |
| ValidBuffer | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| // | |
| // If error, then reset the last variable offset to zero. | |
| // | |
| mGlobal->LastVariableOffset[StorageType] = 0; | |
| }; | |
| gBS->FreePool (ValidBuffer); | |
| return Status; | |
| } | |
| EFI_STATUS | |
| FindVariable ( | |
| IN CHAR16 *VariableName, | |
| IN EFI_GUID *VendorGuid, | |
| OUT VARIABLE_POINTER_TRACK *PtrTrack | |
| ) | |
| /*++ | |
| Routine Description: | |
| This code finds variable in storage blocks (Volatile or Non-Volatile) | |
| Arguments: | |
| VariableName Name of the variable to be found | |
| VendorGuid Vendor GUID to be found. | |
| PtrTrack Variable Track Pointer structure that contains | |
| Variable Information. | |
| Contains the pointer of Variable header. | |
| Returns: | |
| EFI_INVALID_PARAMETER - Invalid parameter | |
| EFI_SUCCESS - Find the specified variable | |
| EFI_NOT_FOUND - Not found | |
| --*/ | |
| { | |
| VARIABLE_HEADER *Variable; | |
| VARIABLE_STORE_HEADER *VariableStoreHeader; | |
| UINTN Index; | |
| VARIABLE_HEADER *InDeleteVariable; | |
| UINTN InDeleteIndex; | |
| VARIABLE_HEADER *InDeleteStartPtr; | |
| VARIABLE_HEADER *InDeleteEndPtr; | |
| if (VariableName[0] != 0 && VendorGuid == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| InDeleteVariable = NULL; | |
| InDeleteIndex = (UINTN)-1; | |
| InDeleteStartPtr = NULL; | |
| InDeleteEndPtr = NULL; | |
| for (Index = 0; Index < MaxType; Index ++) { | |
| // | |
| // 0: Non-Volatile, 1: Volatile | |
| // | |
| VariableStoreHeader = (VARIABLE_STORE_HEADER *) mGlobal->VariableBase[Index]; | |
| // | |
| // Start Pointers for the variable. | |
| // Actual Data Pointer where data can be written. | |
| // | |
| Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1); | |
| // | |
| // Find the variable by walk through non-volatile and volatile variable store | |
| // | |
| PtrTrack->StartPtr = Variable; | |
| PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader); | |
| while ((Variable < PtrTrack->EndPtr) && IsValidVariableHeader (Variable)) { | |
| if (Variable->State == VAR_ADDED) { | |
| if (!EfiAtRuntime () || (Variable->Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) { | |
| if (VariableName[0] == 0) { | |
| PtrTrack->CurrPtr = Variable; | |
| PtrTrack->Type = (VARIABLE_STORAGE_TYPE) Index; | |
| return EFI_SUCCESS; | |
| } else { | |
| if (CompareGuid (VendorGuid, &Variable->VendorGuid)) { | |
| if (!CompareMem (VariableName, GET_VARIABLE_NAME_PTR (Variable), StrSize (VariableName))) { | |
| PtrTrack->CurrPtr = Variable; | |
| PtrTrack->Type = (VARIABLE_STORAGE_TYPE) Index; | |
| return EFI_SUCCESS; | |
| } | |
| } | |
| } | |
| } | |
| } else if (Variable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION)) { | |
| // | |
| // VAR_IN_DELETED_TRANSITION should also be checked. | |
| // | |
| if (!EfiAtRuntime () || (Variable->Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) { | |
| if (VariableName[0] == 0) { | |
| InDeleteVariable = Variable; | |
| InDeleteIndex = Index; | |
| InDeleteStartPtr = PtrTrack->StartPtr; | |
| InDeleteEndPtr = PtrTrack->EndPtr; | |
| } else { | |
| if (CompareGuid (VendorGuid, &Variable->VendorGuid)) { | |
| if (!CompareMem (VariableName, GET_VARIABLE_NAME_PTR (Variable), StrSize (VariableName))) { | |
| InDeleteVariable = Variable; | |
| InDeleteIndex = Index; | |
| InDeleteStartPtr = PtrTrack->StartPtr; | |
| InDeleteEndPtr = PtrTrack->EndPtr; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| Variable = GetNextVariablePtr (Variable); | |
| } | |
| // | |
| // While (...) | |
| // | |
| } | |
| // | |
| // for (...) | |
| // | |
| // | |
| // if VAR_IN_DELETED_TRANSITION found, and VAR_ADDED not found, | |
| // we return it. | |
| // | |
| if (InDeleteVariable != NULL) { | |
| PtrTrack->CurrPtr = InDeleteVariable; | |
| PtrTrack->Type = (VARIABLE_STORAGE_TYPE) InDeleteIndex; | |
| PtrTrack->StartPtr = InDeleteStartPtr; | |
| PtrTrack->EndPtr = InDeleteEndPtr; | |
| return EFI_SUCCESS; | |
| } | |
| PtrTrack->CurrPtr = NULL; | |
| return EFI_NOT_FOUND; | |
| } | |
| /** | |
| Get index from supported language codes according to language string. | |
| This code is used to get corresponding index in supported language codes. It can handle | |
| RFC4646 and ISO639 language tags. | |
| In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index. | |
| In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index. | |
| For example: | |
| SupportedLang = "engfraengfra" | |
| Lang = "eng" | |
| Iso639Language = TRUE | |
| The return value is "0". | |
| Another example: | |
| SupportedLang = "en;fr;en-US;fr-FR" | |
| Lang = "fr-FR" | |
| Iso639Language = FALSE | |
| The return value is "3". | |
| @param SupportedLang Platform supported language codes. | |
| @param Lang Configured language. | |
| @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646. | |
| @retval the index of language in the language codes. | |
| **/ | |
| UINTN | |
| GetIndexFromSupportedLangCodes( | |
| IN CHAR8 *SupportedLang, | |
| IN CHAR8 *Lang, | |
| IN BOOLEAN Iso639Language | |
| ) | |
| { | |
| UINTN Index; | |
| UINTN CompareLength; | |
| UINTN LanguageLength; | |
| if (Iso639Language) { | |
| CompareLength = ISO_639_2_ENTRY_SIZE; | |
| for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) { | |
| if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) { | |
| // | |
| // Successfully find the index of Lang string in SupportedLang string. | |
| // | |
| Index = Index / CompareLength; | |
| return Index; | |
| } | |
| } | |
| ASSERT (FALSE); | |
| return 0; | |
| } else { | |
| // | |
| // Compare RFC4646 language code | |
| // | |
| Index = 0; | |
| for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++); | |
| for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) { | |
| // | |
| // Skip ';' characters in SupportedLang | |
| // | |
| for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++); | |
| // | |
| // Determine the length of the next language code in SupportedLang | |
| // | |
| for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++); | |
| if ((CompareLength == LanguageLength) && | |
| (AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) { | |
| // | |
| // Successfully find the index of Lang string in SupportedLang string. | |
| // | |
| return Index; | |
| } | |
| } | |
| ASSERT (FALSE); | |
| return 0; | |
| } | |
| } | |
| /** | |
| Get language string from supported language codes according to index. | |
| This code is used to get corresponding language string in supported language codes. It can handle | |
| RFC4646 and ISO639 language tags. | |
| In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index. | |
| In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index. | |
| For example: | |
| SupportedLang = "engfraengfra" | |
| Index = "1" | |
| Iso639Language = TRUE | |
| The return value is "fra". | |
| Another example: | |
| SupportedLang = "en;fr;en-US;fr-FR" | |
| Index = "1" | |
| Iso639Language = FALSE | |
| The return value is "fr". | |
| @param SupportedLang Platform supported language codes. | |
| @param Index the index in supported language codes. | |
| @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646. | |
| @retval the language string in the language codes. | |
| **/ | |
| CHAR8 * | |
| GetLangFromSupportedLangCodes ( | |
| IN CHAR8 *SupportedLang, | |
| IN UINTN Index, | |
| IN BOOLEAN Iso639Language | |
| ) | |
| { | |
| UINTN SubIndex; | |
| UINTN CompareLength; | |
| CHAR8 *Supported; | |
| SubIndex = 0; | |
| Supported = SupportedLang; | |
| if (Iso639Language) { | |
| // | |
| // according to the index of Lang string in SupportedLang string to get the language. | |
| // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation. | |
| // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string. | |
| // | |
| CompareLength = ISO_639_2_ENTRY_SIZE; | |
| mGlobal->Lang[CompareLength] = '\0'; | |
| return CopyMem (mGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength); | |
| } else { | |
| while (TRUE) { | |
| // | |
| // take semicolon as delimitation, sequentially traverse supported language codes. | |
| // | |
| for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) { | |
| Supported++; | |
| } | |
| if ((*Supported == '\0') && (SubIndex != Index)) { | |
| // | |
| // Have completed the traverse, but not find corrsponding string. | |
| // This case is not allowed to happen. | |
| // | |
| ASSERT(FALSE); | |
| return NULL; | |
| } | |
| if (SubIndex == Index) { | |
| // | |
| // according to the index of Lang string in SupportedLang string to get the language. | |
| // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation. | |
| // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string. | |
| // | |
| mGlobal->PlatformLang[CompareLength] = '\0'; | |
| return CopyMem (mGlobal->PlatformLang, Supported - CompareLength, CompareLength); | |
| } | |
| SubIndex++; | |
| // | |
| // Skip ';' characters in Supported | |
| // | |
| for (; *Supported != '\0' && *Supported == ';'; Supported++); | |
| } | |
| } | |
| } | |
| /** | |
| Returns a pointer to an allocated buffer that contains the best matching language | |
| from a set of supported languages. | |
| This function supports both ISO 639-2 and RFC 4646 language codes, but language | |
| code types may not be mixed in a single call to this function. This function | |
| supports a variable argument list that allows the caller to pass in a prioritized | |
| list of language codes to test against all the language codes in SupportedLanguages. | |
| If SupportedLanguages is NULL, then ASSERT(). | |
| @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that | |
| contains a set of language codes in the format | |
| specified by Iso639Language. | |
| @param[in] Iso639Language If TRUE, then all language codes are assumed to be | |
| in ISO 639-2 format. If FALSE, then all language | |
| codes are assumed to be in RFC 4646 language format | |
| @param[in] ... A variable argument list that contains pointers to | |
| Null-terminated ASCII strings that contain one or more | |
| language codes in the format specified by Iso639Language. | |
| The first language code from each of these language | |
| code lists is used to determine if it is an exact or | |
| close match to any of the language codes in | |
| SupportedLanguages. Close matches only apply to RFC 4646 | |
| language codes, and the matching algorithm from RFC 4647 | |
| is used to determine if a close match is present. If | |
| an exact or close match is found, then the matching | |
| language code from SupportedLanguages is returned. If | |
| no matches are found, then the next variable argument | |
| parameter is evaluated. The variable argument list | |
| is terminated by a NULL. | |
| @retval NULL The best matching language could not be found in SupportedLanguages. | |
| @retval NULL There are not enough resources available to return the best matching | |
| language. | |
| @retval Other A pointer to a Null-terminated ASCII string that is the best matching | |
| language in SupportedLanguages. | |
| **/ | |
| CHAR8 * | |
| EFIAPI | |
| VariableGetBestLanguage ( | |
| IN CONST CHAR8 *SupportedLanguages, | |
| IN BOOLEAN Iso639Language, | |
| ... | |
| ) | |
| { | |
| VA_LIST Args; | |
| CHAR8 *Language; | |
| UINTN CompareLength; | |
| UINTN LanguageLength; | |
| CONST CHAR8 *Supported; | |
| CHAR8 *Buffer; | |
| ASSERT (SupportedLanguages != NULL); | |
| VA_START (Args, Iso639Language); | |
| while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) { | |
| // | |
| // Default to ISO 639-2 mode | |
| // | |
| CompareLength = 3; | |
| LanguageLength = MIN (3, AsciiStrLen (Language)); | |
| // | |
| // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language | |
| // | |
| if (!Iso639Language) { | |
| for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++); | |
| } | |
| // | |
| // Trim back the length of Language used until it is empty | |
| // | |
| while (LanguageLength > 0) { | |
| // | |
| // Loop through all language codes in SupportedLanguages | |
| // | |
| for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) { | |
| // | |
| // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages | |
| // | |
| if (!Iso639Language) { | |
| // | |
| // Skip ';' characters in Supported | |
| // | |
| for (; *Supported != '\0' && *Supported == ';'; Supported++); | |
| // | |
| // Determine the length of the next language code in Supported | |
| // | |
| for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++); | |
| // | |
| // If Language is longer than the Supported, then skip to the next language | |
| // | |
| if (LanguageLength > CompareLength) { | |
| continue; | |
| } | |
| } | |
| // | |
| // See if the first LanguageLength characters in Supported match Language | |
| // | |
| if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) { | |
| VA_END (Args); | |
| Buffer = Iso639Language ? mGlobal->Lang : mGlobal->PlatformLang; | |
| Buffer[CompareLength] = '\0'; | |
| return CopyMem (Buffer, Supported, CompareLength); | |
| } | |
| } | |
| if (Iso639Language) { | |
| // | |
| // If ISO 639 mode, then each language can only be tested once | |
| // | |
| LanguageLength = 0; | |
| } else { | |
| // | |
| // If RFC 4646 mode, then trim Language from the right to the next '-' character | |
| // | |
| for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--); | |
| } | |
| } | |
| } | |
| VA_END (Args); | |
| // | |
| // No matches were found | |
| // | |
| return NULL; | |
| } | |
| /** | |
| Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang. | |
| When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes. | |
| According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization, | |
| and are read-only. Therefore, in variable driver, only store the original value for other use. | |
| @param[in] VariableName Name of variable | |
| @param[in] Data Variable data | |
| @param[in] DataSize Size of data. 0 means delete | |
| **/ | |
| VOID | |
| AutoUpdateLangVariable( | |
| IN CHAR16 *VariableName, | |
| IN VOID *Data, | |
| IN UINTN DataSize | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| CHAR8 *BestPlatformLang; | |
| CHAR8 *BestLang; | |
| UINTN Index; | |
| UINT32 Attributes; | |
| VARIABLE_POINTER_TRACK Variable; | |
| BOOLEAN SetLanguageCodes; | |
| // | |
| // Don't do updates for delete operation | |
| // | |
| if (DataSize == 0) { | |
| return; | |
| } | |
| SetLanguageCodes = FALSE; | |
| if (StrCmp (VariableName, L"PlatformLangCodes") == 0) { | |
| // | |
| // PlatformLangCodes is a volatile variable, so it can not be updated at runtime. | |
| // | |
| if (EfiAtRuntime ()) { | |
| return; | |
| } | |
| SetLanguageCodes = TRUE; | |
| // | |
| // According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only | |
| // Therefore, in variable driver, only store the original value for other use. | |
| // | |
| if (mGlobal->PlatformLangCodes != NULL) { | |
| FreePool (mGlobal->PlatformLangCodes); | |
| } | |
| mGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data); | |
| ASSERT (mGlobal->PlatformLangCodes != NULL); | |
| // | |
| // PlatformLang holds a single language from PlatformLangCodes, | |
| // so the size of PlatformLangCodes is enough for the PlatformLang. | |
| // | |
| if (mGlobal->PlatformLang != NULL) { | |
| FreePool (mGlobal->PlatformLang); | |
| } | |
| mGlobal->PlatformLang = AllocateRuntimePool (DataSize); | |
| ASSERT (mGlobal->PlatformLang != NULL); | |
| } else if (StrCmp (VariableName, L"LangCodes") == 0) { | |
| // | |
| // LangCodes is a volatile variable, so it can not be updated at runtime. | |
| // | |
| if (EfiAtRuntime ()) { | |
| return; | |
| } | |
| SetLanguageCodes = TRUE; | |
| // | |
| // According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only | |
| // Therefore, in variable driver, only store the original value for other use. | |
| // | |
| if (mGlobal->LangCodes != NULL) { | |
| FreePool (mGlobal->LangCodes); | |
| } | |
| mGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data); | |
| ASSERT (mGlobal->LangCodes != NULL); | |
| } | |
| if (SetLanguageCodes | |
| && (mGlobal->PlatformLangCodes != NULL) | |
| && (mGlobal->LangCodes != NULL)) { | |
| // | |
| // Update Lang if PlatformLang is already set | |
| // Update PlatformLang if Lang is already set | |
| // | |
| Status = FindVariable (L"PlatformLang", &gEfiGlobalVariableGuid, &Variable); | |
| if (!EFI_ERROR (Status)) { | |
| // | |
| // Update Lang | |
| // | |
| VariableName = L"PlatformLang"; | |
| Data = GetVariableDataPtr (Variable.CurrPtr); | |
| DataSize = Variable.CurrPtr->DataSize; | |
| } else { | |
| Status = FindVariable (L"Lang", &gEfiGlobalVariableGuid, &Variable); | |
| if (!EFI_ERROR (Status)) { | |
| // | |
| // Update PlatformLang | |
| // | |
| VariableName = L"Lang"; | |
| Data = GetVariableDataPtr (Variable.CurrPtr); | |
| DataSize = Variable.CurrPtr->DataSize; | |
| } else { | |
| // | |
| // Neither PlatformLang nor Lang is set, directly return | |
| // | |
| return; | |
| } | |
| } | |
| } | |
| // | |
| // According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions. | |
| // | |
| Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS; | |
| if (StrCmp (VariableName, L"PlatformLang") == 0) { | |
| // | |
| // Update Lang when PlatformLangCodes/LangCodes were set. | |
| // | |
| if ((mGlobal->PlatformLangCodes != NULL) && (mGlobal->LangCodes != NULL)) { | |
| // | |
| // When setting PlatformLang, firstly get most matched language string from supported language codes. | |
| // | |
| BestPlatformLang = VariableGetBestLanguage (mGlobal->PlatformLangCodes, FALSE, Data, NULL); | |
| if (BestPlatformLang != NULL) { | |
| // | |
| // Get the corresponding index in language codes. | |
| // | |
| Index = GetIndexFromSupportedLangCodes (mGlobal->PlatformLangCodes, BestPlatformLang, FALSE); | |
| // | |
| // Get the corresponding ISO639 language tag according to RFC4646 language tag. | |
| // | |
| BestLang = GetLangFromSupportedLangCodes (mGlobal->LangCodes, Index, TRUE); | |
| // | |
| // Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously. | |
| // | |
| FindVariable(L"Lang", &gEfiGlobalVariableGuid, &Variable); | |
| Status = UpdateVariable (L"Lang", &gEfiGlobalVariableGuid, BestLang, ISO_639_2_ENTRY_SIZE + 1, Attributes, &Variable); | |
| DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a\n", BestPlatformLang, BestLang)); | |
| ASSERT_EFI_ERROR(Status); | |
| } | |
| } | |
| } else if (StrCmp (VariableName, L"Lang") == 0) { | |
| // | |
| // Update PlatformLang when PlatformLangCodes/LangCodes were set. | |
| // | |
| if ((mGlobal->PlatformLangCodes != NULL) && (mGlobal->LangCodes != NULL)) { | |
| // | |
| // When setting Lang, firstly get most matched language string from supported language codes. | |
| // | |
| BestLang = VariableGetBestLanguage (mGlobal->LangCodes, TRUE, Data, NULL); | |
| if (BestLang != NULL) { | |
| // | |
| // Get the corresponding index in language codes. | |
| // | |
| Index = GetIndexFromSupportedLangCodes (mGlobal->LangCodes, BestLang, TRUE); | |
| // | |
| // Get the corresponding RFC4646 language tag according to ISO639 language tag. | |
| // | |
| BestPlatformLang = GetLangFromSupportedLangCodes (mGlobal->PlatformLangCodes, Index, FALSE); | |
| // | |
| // Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously. | |
| // | |
| FindVariable(L"PlatformLang", &gEfiGlobalVariableGuid, &Variable); | |
| Status = UpdateVariable (L"PlatformLang", &gEfiGlobalVariableGuid, BestPlatformLang, | |
| AsciiStrSize (BestPlatformLang), Attributes, &Variable); | |
| DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a\n", BestLang, BestPlatformLang)); | |
| ASSERT_EFI_ERROR (Status); | |
| } | |
| } | |
| } | |
| } | |
| /** | |
| Update the variable region with Variable information. These are the same | |
| arguments as the EFI Variable services. | |
| @param[in] VariableName Name of variable | |
| @param[in] VendorGuid Guid of variable | |
| @param[in] Data Variable data | |
| @param[in] DataSize Size of data. 0 means delete | |
| @param[in] Attributes Attribues of the variable | |
| @param[in] Variable The variable information which is used to keep track of variable usage. | |
| @retval EFI_SUCCESS The update operation is success. | |
| @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| UpdateVariable ( | |
| IN CHAR16 *VariableName, | |
| IN EFI_GUID *VendorGuid, | |
| IN VOID *Data, | |
| IN UINTN DataSize, | |
| IN UINT32 Attributes OPTIONAL, | |
| IN VARIABLE_POINTER_TRACK *Variable | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| VARIABLE_HEADER *NextVariable; | |
| UINTN VarNameOffset; | |
| UINTN VarDataOffset; | |
| UINTN VarNameSize; | |
| UINTN VarSize; | |
| UINT8 State; | |
| BOOLEAN Reclaimed; | |
| VARIABLE_STORAGE_TYPE StorageType; | |
| Reclaimed = FALSE; | |
| if (Variable->CurrPtr != NULL) { | |
| // | |
| // Update/Delete existing variable | |
| // | |
| if (EfiAtRuntime ()) { | |
| // | |
| // If EfiAtRuntime and the variable is Volatile and Runtime Access, | |
| // the volatile is ReadOnly, and SetVariable should be aborted and | |
| // return EFI_WRITE_PROTECTED. | |
| // | |
| if (Variable->Type == Volatile) { | |
| return EFI_WRITE_PROTECTED; | |
| } | |
| // | |
| // Only variable have NV attribute can be updated/deleted in Runtime | |
| // | |
| if (!(Variable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| } | |
| // | |
| // Setting a data variable with no access, or zero DataSize attributes | |
| // specified causes it to be deleted. | |
| // | |
| if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) { | |
| // | |
| // Found this variable in storage | |
| // | |
| State = Variable->CurrPtr->State; | |
| State &= VAR_DELETED; | |
| Status = mGlobal->VariableStore[Variable->Type]->Write ( | |
| mGlobal->VariableStore[Variable->Type], | |
| VARIABLE_MEMBER_OFFSET (State, (UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr), | |
| sizeof (Variable->CurrPtr->State), | |
| &State | |
| ); | |
| // | |
| // NOTE: Write operation at least can write data to memory cache | |
| // Discard file writing failure here. | |
| // | |
| return EFI_SUCCESS; | |
| } | |
| // | |
| // Found this variable in storage | |
| // If the variable is marked valid and the same data has been passed in | |
| // then return to the caller immediately. | |
| // | |
| if ((Variable->CurrPtr->DataSize == DataSize) && | |
| (CompareMem (Data, GetVariableDataPtr (Variable->CurrPtr), DataSize) == 0) | |
| ) { | |
| return EFI_SUCCESS; | |
| } else if ((Variable->CurrPtr->State == VAR_ADDED) || | |
| (Variable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) { | |
| // | |
| // Mark the old variable as in delete transition | |
| // | |
| State = Variable->CurrPtr->State; | |
| State &= VAR_IN_DELETED_TRANSITION; | |
| Status = mGlobal->VariableStore[Variable->Type]->Write ( | |
| mGlobal->VariableStore[Variable->Type], | |
| VARIABLE_MEMBER_OFFSET (State, (UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr), | |
| sizeof (Variable->CurrPtr->State), | |
| &State | |
| ); | |
| // | |
| // NOTE: Write operation at least can write data to memory cache | |
| // Discard file writing failure here. | |
| // | |
| } | |
| } else { | |
| // | |
| // Create a new variable | |
| // | |
| // | |
| // Make sure we are trying to create a new variable. | |
| // Setting a data variable with no access, or zero DataSize attributes means to delete it. | |
| // | |
| if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) { | |
| return EFI_NOT_FOUND; | |
| } | |
| // | |
| // Only variable have NV|RT attribute can be created in Runtime | |
| // | |
| if (EfiAtRuntime () && | |
| (!(Attributes & EFI_VARIABLE_RUNTIME_ACCESS) || !(Attributes & EFI_VARIABLE_NON_VOLATILE))) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| } | |
| // | |
| // Function part - create a new variable and copy the data. | |
| // Both update a variable and create a variable will come here. | |
| // We can firstly write all the data in memory, then write them to file | |
| // This can reduce the times of write operation | |
| // | |
| NextVariable = (VARIABLE_HEADER *) mGlobal->Scratch; | |
| NextVariable->StartId = VARIABLE_DATA; | |
| NextVariable->Attributes = Attributes; | |
| NextVariable->State = VAR_ADDED; | |
| NextVariable->Reserved = 0; | |
| VarNameOffset = sizeof (VARIABLE_HEADER); | |
| VarNameSize = StrSize (VariableName); | |
| CopyMem ( | |
| (UINT8 *) ((UINTN) NextVariable + VarNameOffset), | |
| VariableName, | |
| VarNameSize | |
| ); | |
| VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize); | |
| CopyMem ( | |
| (UINT8 *) ((UINTN) NextVariable + VarDataOffset), | |
| Data, | |
| DataSize | |
| ); | |
| CopyMem (&NextVariable->VendorGuid, VendorGuid, sizeof (EFI_GUID)); | |
| // | |
| // There will be pad bytes after Data, the NextVariable->NameSize and | |
| // NextVariable->DataSize should not include pad size so that variable | |
| // service can get actual size in GetVariable | |
| // | |
| NextVariable->NameSize = (UINT32)VarNameSize; | |
| NextVariable->DataSize = (UINT32)DataSize; | |
| // | |
| // The actual size of the variable that stores in storage should | |
| // include pad size. | |
| // VarDataOffset: offset from begin of current variable header | |
| // | |
| VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize); | |
| StorageType = (Attributes & EFI_VARIABLE_NON_VOLATILE) ? NonVolatile : Volatile; | |
| if ((UINT32) (VarSize + mGlobal->LastVariableOffset[StorageType]) > | |
| ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[StorageType])->Size | |
| ) { | |
| if ((StorageType == NonVolatile) && EfiAtRuntime ()) { | |
| return EFI_OUT_OF_RESOURCES; | |
| } | |
| // | |
| // Perform garbage collection & reclaim operation | |
| // | |
| Status = Reclaim (StorageType, Variable->CurrPtr); | |
| if (EFI_ERROR (Status)) { | |
| // | |
| // Reclaim error | |
| // we cannot restore to original state, fetal error, report to user | |
| // | |
| DEBUG ((EFI_D_ERROR, "FSVariable: Recalim error (fetal error) - %r\n", Status)); | |
| return Status; | |
| } | |
| // | |
| // If still no enough space, return out of resources | |
| // | |
| if ((UINT32) (VarSize + mGlobal->LastVariableOffset[StorageType]) > | |
| ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[StorageType])->Size | |
| ) { | |
| return EFI_OUT_OF_RESOURCES; | |
| } | |
| Reclaimed = TRUE; | |
| } | |
| Status = mGlobal->VariableStore[StorageType]->Write ( | |
| mGlobal->VariableStore[StorageType], | |
| mGlobal->LastVariableOffset[StorageType], | |
| VarSize, | |
| NextVariable | |
| ); | |
| // | |
| // NOTE: Write operation at least can write data to memory cache | |
| // Discard file writing failure here. | |
| // | |
| mGlobal->LastVariableOffset[StorageType] += VarSize; | |
| if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) { | |
| mGlobal->HwErrVariableTotalSize += VarSize; | |
| } else { | |
| mGlobal->CommonVariableTotalSize += VarSize; | |
| } | |
| // | |
| // Mark the old variable as deleted | |
| // | |
| if (!Reclaimed && !EFI_ERROR (Status) && Variable->CurrPtr != NULL) { | |
| State = Variable->CurrPtr->State; | |
| State &= VAR_DELETED; | |
| Status = mGlobal->VariableStore[StorageType]->Write ( | |
| mGlobal->VariableStore[StorageType], | |
| VARIABLE_MEMBER_OFFSET (State, (UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr), | |
| sizeof (Variable->CurrPtr->State), | |
| &State | |
| ); | |
| // | |
| // NOTE: Write operation at least can write data to memory cache | |
| // Discard file writing failure here. | |
| // | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| EFI_STATUS | |
| EFIAPI | |
| DuetGetVariable ( | |
| IN CHAR16 *VariableName, | |
| IN EFI_GUID *VendorGuid, | |
| OUT UINT32 *Attributes OPTIONAL, | |
| IN OUT UINTN *DataSize, | |
| OUT VOID *Data OPTIONAL | |
| ) | |
| /*++ | |
| Routine Description: | |
| This code finds variable in storage blocks (Volatile or Non-Volatile) | |
| Arguments: | |
| VariableName Name of Variable to be found | |
| VendorGuid Variable vendor GUID | |
| Attributes OPTIONAL Attribute value of the variable found | |
| DataSize Size of Data found. If size is less than the | |
| data, this value contains the required size. | |
| Data The buffer to return the contents of the variable. May be NULL | |
| with a zero DataSize in order to determine the size buffer needed. | |
| Returns: | |
| EFI STATUS | |
| --*/ | |
| { | |
| VARIABLE_POINTER_TRACK Variable; | |
| UINTN VarDataSize; | |
| EFI_STATUS Status; | |
| if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if (VariableName[0] == 0) { | |
| return EFI_NOT_FOUND; | |
| } | |
| // | |
| // Find existing variable | |
| // | |
| Status = FindVariable (VariableName, VendorGuid, &Variable); | |
| if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| // | |
| // Get data size | |
| // | |
| VarDataSize = Variable.CurrPtr->DataSize; | |
| if (*DataSize >= VarDataSize) { | |
| if (Data == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize); | |
| if (Attributes != NULL) { | |
| *Attributes = Variable.CurrPtr->Attributes; | |
| } | |
| *DataSize = VarDataSize; | |
| return EFI_SUCCESS; | |
| } else { | |
| *DataSize = VarDataSize; | |
| return EFI_BUFFER_TOO_SMALL; | |
| } | |
| } | |
| EFI_STATUS | |
| EFIAPI | |
| GetNextVariableName ( | |
| IN OUT UINTN *VariableNameSize, | |
| IN OUT CHAR16 *VariableName, | |
| IN OUT EFI_GUID *VendorGuid | |
| ) | |
| /*++ | |
| Routine Description: | |
| This code Finds the Next available variable | |
| Arguments: | |
| VariableNameSize The size of the VariableName buffer. The size must be large | |
| enough to fit input string supplied in VariableName buffer. | |
| VariableName Pointer to variable name | |
| VendorGuid Variable Vendor Guid | |
| Returns: | |
| EFI STATUS | |
| --*/ | |
| { | |
| VARIABLE_POINTER_TRACK Variable; | |
| UINTN VarNameSize; | |
| EFI_STATUS Status; | |
| UINTN MaxLen; | |
| if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Calculate the possible maximum length of name string, including the Null terminator. | |
| // | |
| MaxLen = *VariableNameSize / sizeof (CHAR16); | |
| if ((MaxLen == 0) || (StrnLenS (VariableName, MaxLen) == MaxLen)) { | |
| // | |
| // Null-terminator is not found in the first VariableNameSize bytes of the input VariableName buffer, | |
| // follow spec to return EFI_INVALID_PARAMETER. | |
| // | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| Status = FindVariable (VariableName, VendorGuid, &Variable); | |
| if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) { | |
| // | |
| // For VariableName is an empty string, FindVariable() will try to find and return | |
| // the first qualified variable, and if FindVariable() returns error (EFI_NOT_FOUND) | |
| // as no any variable is found, still go to return the error (EFI_NOT_FOUND). | |
| // | |
| if (VariableName[0] != 0) { | |
| // | |
| // For VariableName is not an empty string, and FindVariable() returns error as | |
| // VariableName and VendorGuid are not a name and GUID of an existing variable, | |
| // there is no way to get next variable, follow spec to return EFI_INVALID_PARAMETER. | |
| // | |
| Status = EFI_INVALID_PARAMETER; | |
| } | |
| return Status; | |
| } | |
| if (VariableName[0] != 0) { | |
| // | |
| // If variable name is not NULL, get next variable | |
| // | |
| Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr); | |
| } | |
| while (TRUE) { | |
| // | |
| // The order we find variable is: 1). NonVolatile; 2). Volatile | |
| // If both volatile and non-volatile variable store are parsed, | |
| // return not found | |
| // | |
| if (Variable.CurrPtr >= Variable.EndPtr || Variable.CurrPtr == NULL) { | |
| if (Variable.Type == Volatile) { | |
| // | |
| // Since we met the end of Volatile storage, we have parsed all the stores. | |
| // | |
| return EFI_NOT_FOUND; | |
| } | |
| // | |
| // End of NonVolatile, continue to parse Volatile | |
| // | |
| Variable.Type = Volatile; | |
| Variable.StartPtr = (VARIABLE_HEADER *) ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[Volatile] + 1); | |
| Variable.EndPtr = (VARIABLE_HEADER *) GetEndPointer ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[Volatile]); | |
| Variable.CurrPtr = Variable.StartPtr; | |
| if (!IsValidVariableHeader (Variable.CurrPtr)) { | |
| continue; | |
| } | |
| } | |
| // | |
| // Variable is found | |
| // | |
| if (IsValidVariableHeader (Variable.CurrPtr) && | |
| ((Variable.CurrPtr->State == VAR_ADDED) || | |
| (Variable.CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION)))) { | |
| if (!EfiAtRuntime () || (Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) { | |
| VarNameSize = Variable.CurrPtr->NameSize; | |
| if (VarNameSize <= *VariableNameSize) { | |
| CopyMem ( | |
| VariableName, | |
| GET_VARIABLE_NAME_PTR (Variable.CurrPtr), | |
| VarNameSize | |
| ); | |
| CopyMem ( | |
| VendorGuid, | |
| &Variable.CurrPtr->VendorGuid, | |
| sizeof (EFI_GUID) | |
| ); | |
| Status = EFI_SUCCESS; | |
| } else { | |
| Status = EFI_BUFFER_TOO_SMALL; | |
| } | |
| *VariableNameSize = VarNameSize; | |
| return Status; | |
| } | |
| } | |
| Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr); | |
| } | |
| } | |
| EFI_STATUS | |
| EFIAPI | |
| SetVariable ( | |
| IN CHAR16 *VariableName, | |
| IN EFI_GUID *VendorGuid, | |
| IN UINT32 Attributes, | |
| IN UINTN DataSize, | |
| IN VOID *Data | |
| ) | |
| /*++ | |
| Routine Description: | |
| This code sets variable in storage blocks (Volatile or Non-Volatile) | |
| Arguments: | |
| VariableName Name of Variable to be found | |
| VendorGuid Variable vendor GUID | |
| Attributes Attribute value of the variable found | |
| DataSize Size of Data found. If size is less than the | |
| data, this value contains the required size. | |
| Data Data pointer | |
| Returns: | |
| EFI_INVALID_PARAMETER - Invalid parameter | |
| EFI_SUCCESS - Set successfully | |
| EFI_OUT_OF_RESOURCES - Resource not enough to set variable | |
| EFI_NOT_FOUND - Not found | |
| EFI_DEVICE_ERROR - Variable can not be saved due to hardware failure | |
| EFI_WRITE_PROTECTED - Variable is read-only | |
| --*/ | |
| { | |
| VARIABLE_POINTER_TRACK Variable; | |
| EFI_STATUS Status; | |
| // | |
| // Check input parameters | |
| // | |
| if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if (DataSize != 0 && Data == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Not support authenticated variable write yet. | |
| // | |
| if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Make sure if runtime bit is set, boot service bit is set also | |
| // | |
| if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // The size of the VariableName, including the Unicode Null in bytes plus | |
| // the DataSize is limited to maximum size of PcdGet32 (PcdMaxHardwareErrorVariableSize) | |
| // bytes for HwErrRec, and PcdGet32 (PcdMaxVariableSize) bytes for the others. | |
| // | |
| if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { | |
| if ((DataSize > PcdGet32(PcdMaxHardwareErrorVariableSize)) || | |
| (sizeof (VARIABLE_HEADER) + StrSize (VariableName) + DataSize > PcdGet32(PcdMaxHardwareErrorVariableSize))) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // According to UEFI spec, HARDWARE_ERROR_RECORD variable name convention should be L"HwErrRecXXXX" | |
| // | |
| if (StrnCmp(VariableName, L"HwErrRec", StrLen(L"HwErrRec")) != 0) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| } else { | |
| if ((DataSize > PcdGet32(PcdMaxVariableSize)) || | |
| (sizeof (VARIABLE_HEADER) + StrSize (VariableName) + DataSize > PcdGet32(PcdMaxVariableSize))) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| } | |
| // | |
| // Check whether the input variable is already existed | |
| // | |
| Status = FindVariable (VariableName, VendorGuid, &Variable); | |
| // | |
| // Hook the operation of setting PlatformLangCodes/PlatformLang and LangCodes/Lang | |
| // | |
| AutoUpdateLangVariable (VariableName, Data, DataSize); | |
| Status = UpdateVariable (VariableName, VendorGuid, Data, DataSize, Attributes, &Variable); | |
| return Status; | |
| } | |
| EFI_STATUS | |
| EFIAPI | |
| QueryVariableInfo ( | |
| IN UINT32 Attributes, | |
| OUT UINT64 *MaximumVariableStorageSize, | |
| OUT UINT64 *RemainingVariableStorageSize, | |
| OUT UINT64 *MaximumVariableSize | |
| ) | |
| /*++ | |
| Routine Description: | |
| This code returns information about the EFI variables. | |
| Arguments: | |
| Attributes Attributes bitmask to specify the type of variables | |
| on which to return information. | |
| MaximumVariableStorageSize Pointer to the maximum size of the storage space available | |
| for the EFI variables associated with the attributes specified. | |
| RemainingVariableStorageSize Pointer to the remaining size of the storage space available | |
| for the EFI variables associated with the attributes specified. | |
| MaximumVariableSize Pointer to the maximum size of the individual EFI variables | |
| associated with the attributes specified. | |
| Returns: | |
| EFI STATUS | |
| EFI_INVALID_PARAMETER - An invalid combination of attribute bits was supplied. | |
| EFI_SUCCESS - Query successfully. | |
| EFI_UNSUPPORTED - The attribute is not supported on this platform. | |
| --*/ | |
| { | |
| VARIABLE_HEADER *Variable; | |
| VARIABLE_HEADER *NextVariable; | |
| UINT64 VariableSize; | |
| VARIABLE_STORE_HEADER *VariableStoreHeader; | |
| UINT64 CommonVariableTotalSize; | |
| UINT64 HwErrVariableTotalSize; | |
| CommonVariableTotalSize = 0; | |
| HwErrVariableTotalSize = 0; | |
| if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == 0) { | |
| // | |
| // Make sure the Attributes combination is supported by the platform. | |
| // | |
| return EFI_UNSUPPORTED; | |
| } else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) { | |
| // | |
| // Make sure if runtime bit is set, boot service bit is set also. | |
| // | |
| return EFI_INVALID_PARAMETER; | |
| } else if (EfiAtRuntime () && !(Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) { | |
| // | |
| // Make sure RT Attribute is set if we are in Runtime phase. | |
| // | |
| return EFI_INVALID_PARAMETER; | |
| } else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { | |
| // | |
| // Make sure Hw Attribute is set with NV. | |
| // | |
| return EFI_INVALID_PARAMETER; | |
| } else if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) { | |
| // | |
| // Not support authentiated variable write yet. | |
| // | |
| return EFI_UNSUPPORTED; | |
| } | |
| VariableStoreHeader = (VARIABLE_STORE_HEADER *) mGlobal->VariableBase[ | |
| (Attributes & EFI_VARIABLE_NON_VOLATILE) ? NonVolatile : Volatile | |
| ]; | |
| // | |
| // Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize | |
| // with the storage size (excluding the storage header size). | |
| // | |
| *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER); | |
| // | |
| // Harware error record variable needs larger size. | |
| // | |
| if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { | |
| *MaximumVariableStorageSize = PcdGet32(PcdHwErrStorageSize); | |
| *MaximumVariableSize = PcdGet32(PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER); | |
| } else { | |
| if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) { | |
| ASSERT (PcdGet32(PcdHwErrStorageSize) < VariableStoreHeader->Size); | |
| *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32(PcdHwErrStorageSize); | |
| } | |
| // | |
| // Let *MaximumVariableSize be PcdGet32(PcdMaxVariableSize) with the exception of the variable header size. | |
| // | |
| *MaximumVariableSize = PcdGet32(PcdMaxVariableSize) - sizeof (VARIABLE_HEADER); | |
| } | |
| // | |
| // Point to the starting address of the variables. | |
| // | |
| Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1); | |
| // | |
| // Now walk through the related variable store. | |
| // | |
| while ((Variable < GetEndPointer (VariableStoreHeader)) && IsValidVariableHeader (Variable)) { | |
| NextVariable = GetNextVariablePtr (Variable); | |
| VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable; | |
| if (EfiAtRuntime ()) { | |
| // | |
| // we don't take the state of the variables in mind | |
| // when calculating RemainingVariableStorageSize, | |
| // since the space occupied by variables not marked with | |
| // VAR_ADDED is not allowed to be reclaimed in Runtime. | |
| // | |
| if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { | |
| HwErrVariableTotalSize += VariableSize; | |
| } else { | |
| CommonVariableTotalSize += VariableSize; | |
| } | |
| } else { | |
| // | |
| // Only care about Variables with State VAR_ADDED,because | |
| // the space not marked as VAR_ADDED is reclaimable now. | |
| // | |
| if ((Variable->State == VAR_ADDED) || (Variable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) { | |
| if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { | |
| HwErrVariableTotalSize += VariableSize; | |
| } else { | |
| CommonVariableTotalSize += VariableSize; | |
| } | |
| } | |
| } | |
| // | |
| // Go to the next one | |
| // | |
| Variable = NextVariable; | |
| } | |
| if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){ | |
| *RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize; | |
| } else { | |
| *RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize; | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| EFI_STATUS | |
| EFIAPI | |
| VariableServiceInitialize ( | |
| IN EFI_HANDLE ImageHandle, | |
| IN EFI_SYSTEM_TABLE *SystemTable | |
| ) | |
| /*++ | |
| Routine Description: | |
| This function does initialization for variable services | |
| Arguments: | |
| ImageHandle - The firmware allocated handle for the EFI image. | |
| SystemTable - A pointer to the EFI System Table. | |
| Returns: | |
| Status code. | |
| EFI_NOT_FOUND - Variable store area not found. | |
| EFI_SUCCESS - Variable services successfully initialized. | |
| --*/ | |
| { | |
| EFI_STATUS Status; | |
| EFI_HANDLE NewHandle; | |
| VS_DEV *Dev; | |
| EFI_PEI_HOB_POINTERS GuidHob; | |
| VARIABLE_HEADER *Variable; | |
| VARIABLE_HEADER *NextVariable; | |
| VARIABLE_STORE_HEADER *VariableStoreHeader; | |
| EFI_FLASH_MAP_FS_ENTRY_DATA *FlashMapEntryData; | |
| EFI_FLASH_SUBAREA_ENTRY VariableStoreEntry; | |
| UINT64 BaseAddress; | |
| UINT64 Length; | |
| EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor; | |
| Status = gBS->AllocatePool ( | |
| EfiRuntimeServicesData, | |
| (UINTN) sizeof (VARIABLE_GLOBAL), | |
| (VOID**) &mGlobal | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| ZeroMem (mGlobal, (UINTN) sizeof (VARIABLE_GLOBAL)); | |
| GuidHob.Raw = GetHobList (); | |
| FlashMapEntryData = NULL; | |
| while ((GuidHob.Raw = GetNextGuidHob (&gEfiFlashMapHobGuid, GuidHob.Raw)) != NULL) { | |
| FlashMapEntryData = (EFI_FLASH_MAP_FS_ENTRY_DATA *) GET_GUID_HOB_DATA (GuidHob.Guid); | |
| if (FlashMapEntryData->AreaType == EFI_FLASH_AREA_EFI_VARIABLES) { | |
| break; | |
| } | |
| GuidHob.Raw = GET_NEXT_HOB (GuidHob); | |
| } | |
| if (FlashMapEntryData == NULL) { | |
| DEBUG ((EFI_D_ERROR, "FSVariable: Could not find flash area for variable!\n")); | |
| Status = EFI_NOT_FOUND; | |
| return Status; | |
| } | |
| CopyMem( | |
| (VOID*)&VariableStoreEntry, | |
| (VOID*)&FlashMapEntryData->Entries[0], | |
| sizeof(EFI_FLASH_SUBAREA_ENTRY) | |
| ); | |
| // | |
| // Mark the variable storage region of the FLASH as RUNTIME | |
| // | |
| BaseAddress = VariableStoreEntry.Base & (~EFI_PAGE_MASK); | |
| Length = VariableStoreEntry.Length + (VariableStoreEntry.Base - BaseAddress); | |
| Length = (Length + EFI_PAGE_SIZE - 1) & (~EFI_PAGE_MASK); | |
| Status = gDS->GetMemorySpaceDescriptor (BaseAddress, &GcdDescriptor); | |
| if (EFI_ERROR (Status)) { | |
| Status = EFI_UNSUPPORTED; | |
| return Status; | |
| } | |
| Status = gDS->SetMemorySpaceAttributes ( | |
| BaseAddress, | |
| Length, | |
| GcdDescriptor.Attributes | EFI_MEMORY_RUNTIME | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| Status = EFI_UNSUPPORTED; | |
| return Status; | |
| } | |
| Status = FileStorageConstructor ( | |
| &mGlobal->VariableStore[NonVolatile], | |
| &mGlobal->GoVirtualChildEvent[NonVolatile], | |
| VariableStoreEntry.Base, | |
| (UINT32) VariableStoreEntry.Length, | |
| FlashMapEntryData->VolumeId, | |
| FlashMapEntryData->FilePath | |
| ); | |
| ASSERT_EFI_ERROR (Status); | |
| // | |
| // Volatile Storage | |
| // | |
| Status = MemStorageConstructor ( | |
| &mGlobal->VariableStore[Volatile], | |
| &mGlobal->GoVirtualChildEvent[Volatile], | |
| VOLATILE_VARIABLE_STORE_SIZE | |
| ); | |
| ASSERT_EFI_ERROR (Status); | |
| // | |
| // Scratch | |
| // | |
| Status = gBS->AllocatePool ( | |
| EfiRuntimeServicesData, | |
| VARIABLE_SCRATCH_SIZE, | |
| &mGlobal->Scratch | |
| ); | |
| ASSERT_EFI_ERROR (Status); | |
| // | |
| // 1. NV Storage | |
| // | |
| Dev = DEV_FROM_THIS (mGlobal->VariableStore[NonVolatile]); | |
| VariableStoreHeader = (VARIABLE_STORE_HEADER *) VAR_DATA_PTR (Dev); | |
| if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) { | |
| if (~VariableStoreHeader->Size == 0) { | |
| VariableStoreHeader->Size = (UINT32) VariableStoreEntry.Length; | |
| } | |
| } | |
| // | |
| // Calculate LastVariableOffset | |
| // | |
| Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1); | |
| while (IsValidVariableHeader (Variable)) { | |
| UINTN VariableSize = 0; | |
| NextVariable = GetNextVariablePtr (Variable); | |
| VariableSize = NextVariable - Variable; | |
| if ((NextVariable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { | |
| mGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize); | |
| } else { | |
| mGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize); | |
| } | |
| Variable = NextVariable; | |
| } | |
| mGlobal->LastVariableOffset[NonVolatile] = (UINTN) Variable - (UINTN) VariableStoreHeader; | |
| mGlobal->VariableBase[NonVolatile] = VariableStoreHeader; | |
| // | |
| // Reclaim if remaining space is too small | |
| // | |
| if ((VariableStoreHeader->Size - mGlobal->LastVariableOffset[NonVolatile]) < VARIABLE_RECLAIM_THRESHOLD) { | |
| Status = Reclaim (NonVolatile, NULL); | |
| if (EFI_ERROR (Status)) { | |
| // | |
| // Reclaim error | |
| // we cannot restore to original state | |
| // | |
| DEBUG ((EFI_D_ERROR, "FSVariable: Reclaim error (fatal error) - %r\n", Status)); | |
| ASSERT_EFI_ERROR (Status); | |
| } | |
| } | |
| // | |
| // 2. Volatile Storage | |
| // | |
| Dev = DEV_FROM_THIS (mGlobal->VariableStore[Volatile]); | |
| VariableStoreHeader = (VARIABLE_STORE_HEADER *) VAR_DATA_PTR (Dev); | |
| mGlobal->VariableBase[Volatile] = VAR_DATA_PTR (Dev); | |
| mGlobal->LastVariableOffset[Volatile] = sizeof (VARIABLE_STORE_HEADER); | |
| // | |
| // init store_header & body in memory. | |
| // | |
| mGlobal->VariableStore[Volatile]->Erase (mGlobal->VariableStore[Volatile]); | |
| mGlobal->VariableStore[Volatile]->Write ( | |
| mGlobal->VariableStore[Volatile], | |
| 0, | |
| sizeof (VARIABLE_STORE_HEADER), | |
| &mStoreHeaderTemplate | |
| ); | |
| SystemTable->RuntimeServices->GetVariable = DuetGetVariable; | |
| SystemTable->RuntimeServices->GetNextVariableName = GetNextVariableName; | |
| SystemTable->RuntimeServices->SetVariable = SetVariable; | |
| SystemTable->RuntimeServices->QueryVariableInfo = QueryVariableInfo; | |
| // | |
| // Now install the Variable Runtime Architectural Protocol on a new handle | |
| // | |
| NewHandle = NULL; | |
| Status = gBS->InstallMultipleProtocolInterfaces ( | |
| &NewHandle, | |
| &gEfiVariableArchProtocolGuid, | |
| NULL, | |
| &gEfiVariableWriteArchProtocolGuid, | |
| NULL, | |
| NULL | |
| ); | |
| ASSERT_EFI_ERROR (Status); | |
| return Status; | |
| } | |
| VOID | |
| EFIAPI | |
| OnVirtualAddressChangeFsv ( | |
| IN EFI_EVENT Event, | |
| IN VOID *Context | |
| ) | |
| { | |
| UINTN Index; | |
| for (Index = 0; Index < MaxType; Index++) { | |
| mGlobal->GoVirtualChildEvent[Index] (Event, mGlobal->VariableStore[Index]); | |
| EfiConvertPointer (0, (VOID**) &mGlobal->VariableStore[Index]); | |
| EfiConvertPointer (0, &mGlobal->VariableBase[Index]); | |
| } | |
| EfiConvertPointer (0, (VOID **) &mGlobal->PlatformLangCodes); | |
| EfiConvertPointer (0, (VOID **) &mGlobal->LangCodes); | |
| EfiConvertPointer (0, (VOID **) &mGlobal->PlatformLang); | |
| EfiConvertPointer (0, &mGlobal->Scratch); | |
| EfiConvertPointer (0, (VOID**) &mGlobal); | |
| } |