| /* Abstract syntax tree manipulation functions | |
| * | |
| * SOFTWARE RIGHTS | |
| * | |
| * We reserve no LEGAL rights to the Purdue Compiler Construction Tool | |
| * Set (PCCTS) -- PCCTS is in the public domain. An individual or | |
| * company may do whatever they wish with source code distributed with | |
| * PCCTS or the code generated by PCCTS, including the incorporation of | |
| * PCCTS, or its output, into commerical software. | |
| * | |
| * We encourage users to develop software with PCCTS. However, we do ask | |
| * that credit is given to us for developing PCCTS. By "credit", | |
| * we mean that if you incorporate our source code into one of your | |
| * programs (commercial product, research project, or otherwise) that you | |
| * acknowledge this fact somewhere in the documentation, research report, | |
| * etc... If you like PCCTS and have developed a nice tool with the | |
| * output, please mention that you developed it using PCCTS. In | |
| * addition, we ask that this header remain intact in our source code. | |
| * As long as these guidelines are kept, we expect to continue enhancing | |
| * this system and expect to make other tools available as they are | |
| * completed. | |
| * | |
| * ANTLR 1.33 | |
| * Terence Parr | |
| * Parr Research Corporation | |
| * with Purdue University and AHPCRC, University of Minnesota | |
| * 1989-2000 | |
| */ | |
| #include "pcctscfg.h" | |
| #ifdef PCCTS_USE_STDARG | |
| #include "pccts_stdarg.h" | |
| #else | |
| #include <varargs.h> | |
| #endif | |
| /* ensure that tree manipulation variables are current after a rule | |
| * reference | |
| */ | |
| void | |
| #ifdef __USE_PROTOS | |
| zzlink(AST **_root, AST **_sibling, AST **_tail) | |
| #else | |
| zzlink(_root, _sibling, _tail) | |
| AST **_root, **_sibling, **_tail; | |
| #endif | |
| { | |
| if ( *_sibling == NULL ) return; | |
| if ( *_root == NULL ) *_root = *_sibling; | |
| else if ( *_root != *_sibling ) (*_root)->down = *_sibling; | |
| if ( *_tail==NULL ) *_tail = *_sibling; | |
| while ( (*_tail)->right != NULL ) *_tail = (*_tail)->right; | |
| } | |
| AST * | |
| #ifdef __USE_PROTOS | |
| zzastnew(void) | |
| #else | |
| zzastnew() | |
| #endif | |
| { | |
| AST *p = (AST *) calloc(1, sizeof(AST)); | |
| if ( p == NULL ) fprintf(stderr,"%s(%d): cannot allocate AST node\n",__FILE__,__LINE__); | |
| return p; | |
| } | |
| /* add a child node to the current sibling list */ | |
| void | |
| #ifdef __USE_PROTOS | |
| zzsubchild(AST **_root, AST **_sibling, AST **_tail) | |
| #else | |
| zzsubchild(_root, _sibling, _tail) | |
| AST **_root, **_sibling, **_tail; | |
| #endif | |
| { | |
| AST *n; | |
| zzNON_GUESS_MODE { | |
| n = zzastnew(); | |
| #ifdef DEMAND_LOOK | |
| zzcr_ast(n, &(zzaCur), LA(0), LATEXT(0)); | |
| #else | |
| zzcr_ast(n, &(zzaCur), LA(1), LATEXT(1)); | |
| #endif | |
| zzastPush( n ); | |
| if ( *_tail != NULL ) (*_tail)->right = n; | |
| else { | |
| *_sibling = n; | |
| if ( *_root != NULL ) (*_root)->down = *_sibling; | |
| } | |
| *_tail = n; | |
| if ( *_root == NULL ) *_root = *_sibling; | |
| } | |
| } | |
| /* make a new AST node. Make the newly-created | |
| * node the root for the current sibling list. If a root node already | |
| * exists, make the newly-created node the root of the current root. | |
| */ | |
| void | |
| #ifdef __USE_PROTOS | |
| zzsubroot(AST **_root, AST **_sibling, AST **_tail) | |
| #else | |
| zzsubroot(_root, _sibling, _tail) | |
| AST **_root, **_sibling, **_tail; | |
| #endif | |
| { | |
| AST *n; | |
| zzNON_GUESS_MODE { | |
| n = zzastnew(); | |
| #ifdef DEMAND_LOOK | |
| zzcr_ast(n, &(zzaCur), LA(0), LATEXT(0)); | |
| #else | |
| zzcr_ast(n, &(zzaCur), LA(1), LATEXT(1)); | |
| #endif | |
| zzastPush( n ); | |
| if ( *_root != NULL ) | |
| if ( (*_root)->down == *_sibling ) *_sibling = *_tail = *_root; | |
| *_root = n; | |
| (*_root)->down = *_sibling; | |
| } | |
| } | |
| /* Apply function to root then each sibling | |
| * example: print tree in child-sibling LISP-format (AST has token field) | |
| * | |
| * void show(tree) | |
| * AST *tree; | |
| * { | |
| * if ( tree == NULL ) return; | |
| * printf(" %s", zztokens[tree->token]); | |
| * } | |
| * | |
| * void before() { printf(" ("); } | |
| * void after() { printf(" )"); } | |
| * | |
| * LISPdump() { zzpre_ast(tree, show, before, after); } | |
| * | |
| */ | |
| void | |
| #ifdef __USE_PROTOS | |
| zzpre_ast( | |
| AST *tree, | |
| void (*func)(AST *), /* apply this to each tree node */ | |
| void (*before)(AST *), /* apply this to root of subtree before preordering it */ | |
| void (*after)(AST *)) /* apply this to root of subtree after preordering it */ | |
| #else | |
| zzpre_ast(tree, func, before, after) | |
| AST *tree; | |
| void (*func)(), /* apply this to each tree node */ | |
| (*before)(), /* apply this to root of subtree before preordering it */ | |
| (*after)(); /* apply this to root of subtree after preordering it */ | |
| #endif | |
| { | |
| while ( tree!= NULL ) | |
| { | |
| if ( tree->down != NULL ) (*before)(tree); | |
| (*func)(tree); | |
| zzpre_ast(tree->down, func, before, after); | |
| if ( tree->down != NULL ) (*after)(tree); | |
| tree = tree->right; | |
| } | |
| } | |
| /* free all AST nodes in tree; apply func to each before freeing */ | |
| #if 0 | |
| ////void | |
| ////#ifdef __USE_PROTOS | |
| ////zzfree_ast(AST *tree) | |
| ////#else | |
| ////zzfree_ast(tree) | |
| ////AST *tree; | |
| ////#endif | |
| ////{ | |
| //// if ( tree == NULL ) return; | |
| //// zzfree_ast( tree->down ); | |
| //// zzfree_ast( tree->right ); | |
| //// zztfree( tree ); | |
| ////} | |
| #endif | |
| /* | |
| MR19 Optimize freeing of the following structure to limit recursion | |
| SAKAI Kiyotaka (ksakai@isr.co.jp) | |
| */ | |
| /* | |
| NULL o | |
| / \ | |
| NULL o | |
| / \ | |
| NULL NULL | |
| */ | |
| /* | |
| MR21 Another refinement to replace recursion with iteration | |
| NAKAJIMA Mutsuki (muc@isr.co.jp). | |
| */ | |
| void | |
| #ifdef __USE_PROTOS | |
| zzfree_ast(AST *tree) | |
| #else | |
| zzfree_ast(tree) | |
| AST *tree; | |
| #endif | |
| { | |
| AST *otree; | |
| if (tree == NULL) return; | |
| while (tree->down == NULL || tree->right == NULL) { | |
| if (tree->down == NULL && tree->right == NULL) { | |
| zztfree(tree); | |
| return; | |
| } | |
| otree = tree; | |
| if (tree->down == NULL) { | |
| tree = tree->right; | |
| } else { | |
| tree = tree->down; | |
| } | |
| zztfree( otree ); | |
| } | |
| while (tree != NULL) { | |
| zzfree_ast(tree->down); | |
| otree = tree; | |
| tree = otree->right; | |
| zztfree(otree); | |
| } | |
| } | |
| /* build a tree (root child1 child2 ... NULL) | |
| * If root is NULL, simply make the children siblings and return ptr | |
| * to 1st sibling (child1). If root is not single node, return NULL. | |
| * | |
| * Siblings that are actually siblins lists themselves are handled | |
| * correctly. For example #( NULL, #( NULL, A, B, C), D) results | |
| * in the tree ( NULL A B C D ). | |
| * | |
| * Requires at least two parameters with the last one being NULL. If | |
| * both are NULL, return NULL. | |
| */ | |
| #ifdef PCCTS_USE_STDARG | |
| AST *zztmake(AST *rt, ...) | |
| #else | |
| AST *zztmake(va_alist) | |
| va_dcl | |
| #endif | |
| { | |
| va_list ap; | |
| register AST *child, *sibling=NULL, *tail=NULL /* MR20 */, *w; | |
| AST *root; | |
| #ifdef PCCTS_USE_STDARG | |
| va_start(ap, rt); | |
| root = rt; | |
| #else | |
| va_start(ap); | |
| root = va_arg(ap, AST *); | |
| #endif | |
| if ( root != NULL ) | |
| if ( root->down != NULL ) return NULL; | |
| child = va_arg(ap, AST *); | |
| while ( child != NULL ) | |
| { | |
| for (w=child; w->right!=NULL; w=w->right) {;} /* find end of child */ | |
| if ( sibling == NULL ) {sibling = child; tail = w;} | |
| else {tail->right = child; tail = w;} | |
| child = va_arg(ap, AST *); | |
| } | |
| if ( root==NULL ) root = sibling; | |
| else root->down = sibling; | |
| va_end(ap); | |
| return root; | |
| } | |
| /* tree duplicate */ | |
| AST * | |
| #ifdef __USE_PROTOS | |
| zzdup_ast(AST *t) | |
| #else | |
| zzdup_ast(t) | |
| AST *t; | |
| #endif | |
| { | |
| AST *u; | |
| if ( t == NULL ) return NULL; | |
| u = zzastnew(); | |
| *u = *t; | |
| #ifdef zzAST_DOUBLE | |
| u->up = NULL; /* set by calling invocation */ | |
| u->left = NULL; | |
| #endif | |
| u->right = zzdup_ast(t->right); | |
| u->down = zzdup_ast(t->down); | |
| #ifdef zzAST_DOUBLE | |
| if ( u->right!=NULL ) u->right->left = u; | |
| if ( u->down!=NULL ) u->down->up = u; | |
| #endif | |
| return u; | |
| } | |
| void | |
| #ifdef __USE_PROTOS | |
| zztfree(AST *t) | |
| #else | |
| zztfree(t) | |
| AST *t; | |
| #endif | |
| { | |
| #ifdef zzd_ast | |
| zzd_ast( t ); | |
| #endif | |
| free( t ); | |
| } | |
| #ifdef zzAST_DOUBLE | |
| /* | |
| * Set the 'up', and 'left' pointers of all nodes in 't'. | |
| * Initial call is double_link(your_tree, NULL, NULL). | |
| */ | |
| void | |
| #ifdef __USE_PROTOS | |
| zzdouble_link(AST *t, AST *left, AST *up) | |
| #else | |
| zzdouble_link(t, left, up) | |
| AST *t, *left, *up; | |
| #endif | |
| { | |
| if ( t==NULL ) return; | |
| t->left = left; | |
| t->up = up; | |
| zzdouble_link(t->down, NULL, t); | |
| zzdouble_link(t->right, t, up); | |
| } | |
| #endif |