| /** @file | |
| The common variable operation routines shared by DXE_RUNTIME variable | |
| module and DXE_SMM variable module. | |
| Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR> | |
| This program and the accompanying materials | |
| are licensed and made available under the terms and conditions of the BSD License | |
| which accompanies this distribution. The full text of the license may be found at | |
| http://opensource.org/licenses/bsd-license.php | |
| THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
| WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
| **/ | |
| #include "Variable.h" | |
| VARIABLE_MODULE_GLOBAL *mVariableModuleGlobal; | |
| /// | |
| /// Define a memory cache that improves the search performance for a variable. | |
| /// | |
| VARIABLE_STORE_HEADER *mNvVariableCache = NULL; | |
| /// | |
| /// The memory entry used for variable statistics data. | |
| /// | |
| VARIABLE_INFO_ENTRY *gVariableInfo = NULL; | |
| /// | |
| /// The list to store the variables which cannot be set after the EFI_END_OF_DXE_EVENT_GROUP_GUID | |
| /// or EVT_GROUP_READY_TO_BOOT event. | |
| /// | |
| LIST_ENTRY mLockedVariableList = INITIALIZE_LIST_HEAD_VARIABLE (mLockedVariableList); | |
| /// | |
| /// The flag to indicate whether the platform has left the DXE phase of execution. | |
| /// | |
| BOOLEAN mEndOfDxe = FALSE; | |
| /// | |
| /// The flag to indicate whether the variable storage locking is enabled. | |
| /// | |
| BOOLEAN mEnableLocking = TRUE; | |
| // | |
| // To prevent name collisions with possible future globally defined variables, | |
| // other internal firmware data variables that are not defined here must be | |
| // saved with a unique VendorGuid other than EFI_GLOBAL_VARIABLE or | |
| // any other GUID defined by the UEFI Specification. Implementations must | |
| // only permit the creation of variables with a UEFI Specification-defined | |
| // VendorGuid when these variables are documented in the UEFI Specification. | |
| // | |
| GLOBAL_VARIABLE_ENTRY mGlobalVariableList[] = { | |
| {EFI_LANG_CODES_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_LANG_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, | |
| {EFI_TIME_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, | |
| {EFI_PLATFORM_LANG_CODES_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_PLATFORM_LANG_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, | |
| {EFI_CON_IN_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, | |
| {EFI_CON_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, | |
| {EFI_ERR_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, | |
| {EFI_CON_IN_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_CON_OUT_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_ERR_OUT_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_BOOT_ORDER_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, | |
| {EFI_BOOT_NEXT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, | |
| {EFI_BOOT_CURRENT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_BOOT_OPTION_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_DRIVER_ORDER_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, | |
| {EFI_HW_ERR_REC_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, | |
| {EFI_SETUP_MODE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_KEY_EXCHANGE_KEY_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT_AT}, | |
| {EFI_PLATFORM_KEY_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT_AT}, | |
| {EFI_SIGNATURE_SUPPORT_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_SECURE_BOOT_MODE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_KEK_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_PK_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_DB_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_DBX_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_DBT_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_OS_INDICATIONS_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| {EFI_OS_INDICATIONS_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, | |
| {EFI_VENDOR_KEYS_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, | |
| }; | |
| GLOBAL_VARIABLE_ENTRY mGlobalVariableList2[] = { | |
| {L"Boot####", VARIABLE_ATTRIBUTE_NV_BS_RT}, | |
| {L"Driver####", VARIABLE_ATTRIBUTE_NV_BS_RT}, | |
| {L"Key####", VARIABLE_ATTRIBUTE_NV_BS_RT}, | |
| }; | |
| /** | |
| Routine used to track statistical information about variable usage. | |
| The data is stored in the EFI system table so it can be accessed later. | |
| VariableInfo.efi can dump out the table. Only Boot Services variable | |
| accesses are tracked by this code. The PcdVariableCollectStatistics | |
| build flag controls if this feature is enabled. | |
| A read that hits in the cache will have Read and Cache true for | |
| the transaction. Data is allocated by this routine, but never | |
| freed. | |
| @param[in] VariableName Name of the Variable to track. | |
| @param[in] VendorGuid Guid of the Variable to track. | |
| @param[in] Volatile TRUE if volatile FALSE if non-volatile. | |
| @param[in] Read TRUE if GetVariable() was called. | |
| @param[in] Write TRUE if SetVariable() was called. | |
| @param[in] Delete TRUE if deleted via SetVariable(). | |
| @param[in] Cache TRUE for a cache hit. | |
| **/ | |
| VOID | |
| UpdateVariableInfo ( | |
| IN CHAR16 *VariableName, | |
| IN EFI_GUID *VendorGuid, | |
| IN BOOLEAN Volatile, | |
| IN BOOLEAN Read, | |
| IN BOOLEAN Write, | |
| IN BOOLEAN Delete, | |
| IN BOOLEAN Cache | |
| ) | |
| { | |
| VARIABLE_INFO_ENTRY *Entry; | |
| if (FeaturePcdGet (PcdVariableCollectStatistics)) { | |
| if (AtRuntime ()) { | |
| // Don't collect statistics at runtime. | |
| return; | |
| } | |
| if (gVariableInfo == NULL) { | |
| // | |
| // On the first call allocate a entry and place a pointer to it in | |
| // the EFI System Table. | |
| // | |
| gVariableInfo = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY)); | |
| ASSERT (gVariableInfo != NULL); | |
| CopyGuid (&gVariableInfo->VendorGuid, VendorGuid); | |
| gVariableInfo->Name = AllocatePool (StrSize (VariableName)); | |
| ASSERT (gVariableInfo->Name != NULL); | |
| StrCpy (gVariableInfo->Name, VariableName); | |
| gVariableInfo->Volatile = Volatile; | |
| } | |
| for (Entry = gVariableInfo; Entry != NULL; Entry = Entry->Next) { | |
| if (CompareGuid (VendorGuid, &Entry->VendorGuid)) { | |
| if (StrCmp (VariableName, Entry->Name) == 0) { | |
| if (Read) { | |
| Entry->ReadCount++; | |
| } | |
| if (Write) { | |
| Entry->WriteCount++; | |
| } | |
| if (Delete) { | |
| Entry->DeleteCount++; | |
| } | |
| if (Cache) { | |
| Entry->CacheCount++; | |
| } | |
| return; | |
| } | |
| } | |
| if (Entry->Next == NULL) { | |
| // | |
| // If the entry is not in the table add it. | |
| // Next iteration of the loop will fill in the data. | |
| // | |
| Entry->Next = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY)); | |
| ASSERT (Entry->Next != NULL); | |
| CopyGuid (&Entry->Next->VendorGuid, VendorGuid); | |
| Entry->Next->Name = AllocatePool (StrSize (VariableName)); | |
| ASSERT (Entry->Next->Name != NULL); | |
| StrCpy (Entry->Next->Name, VariableName); | |
| Entry->Next->Volatile = Volatile; | |
| } | |
| } | |
| } | |
| } | |
| /** | |
| This code checks if variable header is valid or not. | |
| @param Variable Pointer to the Variable Header. | |
| @retval TRUE Variable header is valid. | |
| @retval FALSE Variable header is not valid. | |
| **/ | |
| BOOLEAN | |
| IsValidVariableHeader ( | |
| IN VARIABLE_HEADER *Variable | |
| ) | |
| { | |
| if (Variable == NULL || Variable->StartId != VARIABLE_DATA) { | |
| return FALSE; | |
| } | |
| return TRUE; | |
| } | |
| /** | |
| This function writes data to the FWH at the correct LBA even if the LBAs | |
| are fragmented. | |
| @param Global Pointer to VARAIBLE_GLOBAL structure. | |
| @param Volatile Point out the Variable is Volatile or Non-Volatile. | |
| @param SetByIndex TRUE if target pointer is given as index. | |
| FALSE if target pointer is absolute. | |
| @param Fvb Pointer to the writable FVB protocol. | |
| @param DataPtrIndex Pointer to the Data from the end of VARIABLE_STORE_HEADER | |
| structure. | |
| @param DataSize Size of data to be written. | |
| @param Buffer Pointer to the buffer from which data is written. | |
| @retval EFI_INVALID_PARAMETER Parameters not valid. | |
| @retval EFI_SUCCESS Variable store successfully updated. | |
| **/ | |
| EFI_STATUS | |
| UpdateVariableStore ( | |
| IN VARIABLE_GLOBAL *Global, | |
| IN BOOLEAN Volatile, | |
| IN BOOLEAN SetByIndex, | |
| IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb, | |
| IN UINTN DataPtrIndex, | |
| IN UINT32 DataSize, | |
| IN UINT8 *Buffer | |
| ) | |
| { | |
| EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry; | |
| UINTN BlockIndex2; | |
| UINTN LinearOffset; | |
| UINTN CurrWriteSize; | |
| UINTN CurrWritePtr; | |
| UINT8 *CurrBuffer; | |
| EFI_LBA LbaNumber; | |
| UINTN Size; | |
| EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; | |
| VARIABLE_STORE_HEADER *VolatileBase; | |
| EFI_PHYSICAL_ADDRESS FvVolHdr; | |
| EFI_PHYSICAL_ADDRESS DataPtr; | |
| EFI_STATUS Status; | |
| FwVolHeader = NULL; | |
| DataPtr = DataPtrIndex; | |
| // | |
| // Check if the Data is Volatile. | |
| // | |
| if (!Volatile) { | |
| ASSERT (Fvb != NULL); | |
| Status = Fvb->GetPhysicalAddress(Fvb, &FvVolHdr); | |
| ASSERT_EFI_ERROR (Status); | |
| FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvVolHdr); | |
| // | |
| // Data Pointer should point to the actual Address where data is to be | |
| // written. | |
| // | |
| if (SetByIndex) { | |
| DataPtr += mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase; | |
| } | |
| if ((DataPtr + DataSize) >= ((EFI_PHYSICAL_ADDRESS) (UINTN) ((UINT8 *) FwVolHeader + FwVolHeader->FvLength))) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| } else { | |
| // | |
| // Data Pointer should point to the actual Address where data is to be | |
| // written. | |
| // | |
| VolatileBase = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase); | |
| if (SetByIndex) { | |
| DataPtr += mVariableModuleGlobal->VariableGlobal.VolatileVariableBase; | |
| } | |
| if ((DataPtr + DataSize) >= ((UINTN) ((UINT8 *) VolatileBase + VolatileBase->Size))) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // If Volatile Variable just do a simple mem copy. | |
| // | |
| CopyMem ((UINT8 *)(UINTN)DataPtr, Buffer, DataSize); | |
| return EFI_SUCCESS; | |
| } | |
| // | |
| // If we are here we are dealing with Non-Volatile Variables. | |
| // | |
| LinearOffset = (UINTN) FwVolHeader; | |
| CurrWritePtr = (UINTN) DataPtr; | |
| CurrWriteSize = DataSize; | |
| CurrBuffer = Buffer; | |
| LbaNumber = 0; | |
| if (CurrWritePtr < LinearOffset) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| for (PtrBlockMapEntry = FwVolHeader->BlockMap; PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) { | |
| for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) { | |
| // | |
| // Check to see if the Variable Writes are spanning through multiple | |
| // blocks. | |
| // | |
| if ((CurrWritePtr >= LinearOffset) && (CurrWritePtr < LinearOffset + PtrBlockMapEntry->Length)) { | |
| if ((CurrWritePtr + CurrWriteSize) <= (LinearOffset + PtrBlockMapEntry->Length)) { | |
| Status = Fvb->Write ( | |
| Fvb, | |
| LbaNumber, | |
| (UINTN) (CurrWritePtr - LinearOffset), | |
| &CurrWriteSize, | |
| CurrBuffer | |
| ); | |
| return Status; | |
| } else { | |
| Size = (UINT32) (LinearOffset + PtrBlockMapEntry->Length - CurrWritePtr); | |
| Status = Fvb->Write ( | |
| Fvb, | |
| LbaNumber, | |
| (UINTN) (CurrWritePtr - LinearOffset), | |
| &Size, | |
| CurrBuffer | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| CurrWritePtr = LinearOffset + PtrBlockMapEntry->Length; | |
| CurrBuffer = CurrBuffer + Size; | |
| CurrWriteSize = CurrWriteSize - Size; | |
| } | |
| } | |
| LinearOffset += PtrBlockMapEntry->Length; | |
| LbaNumber++; | |
| } | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| This code gets the current status of Variable Store. | |
| @param VarStoreHeader Pointer to the Variable Store Header. | |
| @retval EfiRaw Variable store status is raw. | |
| @retval EfiValid Variable store status is valid. | |
| @retval EfiInvalid Variable store status is invalid. | |
| **/ | |
| VARIABLE_STORE_STATUS | |
| GetVariableStoreStatus ( | |
| IN VARIABLE_STORE_HEADER *VarStoreHeader | |
| ) | |
| { | |
| if (CompareGuid (&VarStoreHeader->Signature, &gEfiVariableGuid) && | |
| VarStoreHeader->Format == VARIABLE_STORE_FORMATTED && | |
| VarStoreHeader->State == VARIABLE_STORE_HEALTHY | |
| ) { | |
| return EfiValid; | |
| } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == 0xffffffff && | |
| ((UINT32 *)(&VarStoreHeader->Signature))[1] == 0xffffffff && | |
| ((UINT32 *)(&VarStoreHeader->Signature))[2] == 0xffffffff && | |
| ((UINT32 *)(&VarStoreHeader->Signature))[3] == 0xffffffff && | |
| VarStoreHeader->Size == 0xffffffff && | |
| VarStoreHeader->Format == 0xff && | |
| VarStoreHeader->State == 0xff | |
| ) { | |
| return EfiRaw; | |
| } else { | |
| return EfiInvalid; | |
| } | |
| } | |
| /** | |
| This code gets the size of name of variable. | |
| @param Variable Pointer to the Variable Header. | |
| @return UINTN Size of variable in bytes. | |
| **/ | |
| UINTN | |
| NameSizeOfVariable ( | |
| IN VARIABLE_HEADER *Variable | |
| ) | |
| { | |
| if (Variable->State == (UINT8) (-1) || | |
| Variable->DataSize == (UINT32) (-1) || | |
| Variable->NameSize == (UINT32) (-1) || | |
| Variable->Attributes == (UINT32) (-1)) { | |
| return 0; | |
| } | |
| return (UINTN) Variable->NameSize; | |
| } | |
| /** | |
| This code gets the size of variable data. | |
| @param Variable Pointer to the Variable Header. | |
| @return Size of variable in bytes. | |
| **/ | |
| UINTN | |
| DataSizeOfVariable ( | |
| IN VARIABLE_HEADER *Variable | |
| ) | |
| { | |
| if (Variable->State == (UINT8) (-1) || | |
| Variable->DataSize == (UINT32) (-1) || | |
| Variable->NameSize == (UINT32) (-1) || | |
| Variable->Attributes == (UINT32) (-1)) { | |
| return 0; | |
| } | |
| return (UINTN) Variable->DataSize; | |
| } | |
| /** | |
| This code gets the pointer to the variable name. | |
| @param Variable Pointer to the Variable Header. | |
| @return Pointer to Variable Name which is Unicode encoding. | |
| **/ | |
| CHAR16 * | |
| GetVariableNamePtr ( | |
| IN VARIABLE_HEADER *Variable | |
| ) | |
| { | |
| return (CHAR16 *) (Variable + 1); | |
| } | |
| /** | |
| This code gets the pointer to the variable data. | |
| @param Variable Pointer to the Variable Header. | |
| @return Pointer to Variable Data. | |
| **/ | |
| UINT8 * | |
| GetVariableDataPtr ( | |
| IN VARIABLE_HEADER *Variable | |
| ) | |
| { | |
| UINTN Value; | |
| // | |
| // Be careful about pad size for alignment. | |
| // | |
| Value = (UINTN) GetVariableNamePtr (Variable); | |
| Value += NameSizeOfVariable (Variable); | |
| Value += GET_PAD_SIZE (NameSizeOfVariable (Variable)); | |
| return (UINT8 *) Value; | |
| } | |
| /** | |
| This code gets the pointer to the next variable header. | |
| @param Variable Pointer to the Variable Header. | |
| @return Pointer to next variable header. | |
| **/ | |
| VARIABLE_HEADER * | |
| GetNextVariablePtr ( | |
| IN VARIABLE_HEADER *Variable | |
| ) | |
| { | |
| UINTN Value; | |
| if (!IsValidVariableHeader (Variable)) { | |
| return NULL; | |
| } | |
| Value = (UINTN) GetVariableDataPtr (Variable); | |
| Value += DataSizeOfVariable (Variable); | |
| Value += GET_PAD_SIZE (DataSizeOfVariable (Variable)); | |
| // | |
| // Be careful about pad size for alignment. | |
| // | |
| return (VARIABLE_HEADER *) HEADER_ALIGN (Value); | |
| } | |
| /** | |
| Gets the pointer to the first variable header in given variable store area. | |
| @param VarStoreHeader Pointer to the Variable Store Header. | |
| @return Pointer to the first variable header. | |
| **/ | |
| VARIABLE_HEADER * | |
| GetStartPointer ( | |
| IN VARIABLE_STORE_HEADER *VarStoreHeader | |
| ) | |
| { | |
| // | |
| // The end of variable store. | |
| // | |
| return (VARIABLE_HEADER *) HEADER_ALIGN (VarStoreHeader + 1); | |
| } | |
| /** | |
| Gets the pointer to the end of the variable storage area. | |
| This function gets pointer to the end of the variable storage | |
| area, according to the input variable store header. | |
| @param VarStoreHeader Pointer to the Variable Store Header. | |
| @return Pointer to the end of the variable storage area. | |
| **/ | |
| VARIABLE_HEADER * | |
| GetEndPointer ( | |
| IN VARIABLE_STORE_HEADER *VarStoreHeader | |
| ) | |
| { | |
| // | |
| // The end of variable store | |
| // | |
| return (VARIABLE_HEADER *) HEADER_ALIGN ((UINTN) VarStoreHeader + VarStoreHeader->Size); | |
| } | |
| /** | |
| Variable store garbage collection and reclaim operation. | |
| @param VariableBase Base address of variable store. | |
| @param LastVariableOffset Offset of last variable. | |
| @param IsVolatile The variable store is volatile or not; | |
| if it is non-volatile, need FTW. | |
| @param UpdatingPtrTrack Pointer to updating variable pointer track structure. | |
| @param NewVariable Pointer to new variable. | |
| @param NewVariableSize New variable size. | |
| @return EFI_OUT_OF_RESOURCES | |
| @return EFI_SUCCESS | |
| @return Others | |
| **/ | |
| EFI_STATUS | |
| Reclaim ( | |
| IN EFI_PHYSICAL_ADDRESS VariableBase, | |
| OUT UINTN *LastVariableOffset, | |
| IN BOOLEAN IsVolatile, | |
| IN OUT VARIABLE_POINTER_TRACK *UpdatingPtrTrack, | |
| IN VARIABLE_HEADER *NewVariable, | |
| IN UINTN NewVariableSize | |
| ) | |
| { | |
| VARIABLE_HEADER *Variable; | |
| VARIABLE_HEADER *AddedVariable; | |
| VARIABLE_HEADER *NextVariable; | |
| VARIABLE_HEADER *NextAddedVariable; | |
| VARIABLE_STORE_HEADER *VariableStoreHeader; | |
| UINT8 *ValidBuffer; | |
| UINTN MaximumBufferSize; | |
| UINTN VariableSize; | |
| UINTN NameSize; | |
| UINT8 *CurrPtr; | |
| VOID *Point0; | |
| VOID *Point1; | |
| BOOLEAN FoundAdded; | |
| EFI_STATUS Status; | |
| UINTN CommonVariableTotalSize; | |
| UINTN HwErrVariableTotalSize; | |
| VARIABLE_HEADER *UpdatingVariable; | |
| VARIABLE_HEADER *UpdatingInDeletedTransition; | |
| UpdatingVariable = NULL; | |
| UpdatingInDeletedTransition = NULL; | |
| if (UpdatingPtrTrack != NULL) { | |
| UpdatingVariable = UpdatingPtrTrack->CurrPtr; | |
| UpdatingInDeletedTransition = UpdatingPtrTrack->InDeletedTransitionPtr; | |
| } | |
| VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) VariableBase); | |
| CommonVariableTotalSize = 0; | |
| HwErrVariableTotalSize = 0; | |
| if (IsVolatile) { | |
| // | |
| // Start Pointers for the variable. | |
| // | |
| Variable = GetStartPointer (VariableStoreHeader); | |
| MaximumBufferSize = sizeof (VARIABLE_STORE_HEADER); | |
| while (IsValidVariableHeader (Variable)) { | |
| NextVariable = GetNextVariablePtr (Variable); | |
| if ((Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) && | |
| Variable != UpdatingVariable && | |
| Variable != UpdatingInDeletedTransition | |
| ) { | |
| VariableSize = (UINTN) NextVariable - (UINTN) Variable; | |
| MaximumBufferSize += VariableSize; | |
| } | |
| Variable = NextVariable; | |
| } | |
| if (NewVariable != NULL) { | |
| // | |
| // Add the new variable size. | |
| // | |
| MaximumBufferSize += NewVariableSize; | |
| } | |
| // | |
| // Reserve the 1 Bytes with Oxff to identify the | |
| // end of the variable buffer. | |
| // | |
| MaximumBufferSize += 1; | |
| ValidBuffer = AllocatePool (MaximumBufferSize); | |
| if (ValidBuffer == NULL) { | |
| return EFI_OUT_OF_RESOURCES; | |
| } | |
| } else { | |
| // | |
| // For NV variable reclaim, don't allocate pool here and just use mNvVariableCache | |
| // as the buffer to reduce SMRAM consumption for SMM variable driver. | |
| // | |
| MaximumBufferSize = mNvVariableCache->Size; | |
| ValidBuffer = (UINT8 *) mNvVariableCache; | |
| } | |
| SetMem (ValidBuffer, MaximumBufferSize, 0xff); | |
| // | |
| // Copy variable store header. | |
| // | |
| CopyMem (ValidBuffer, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER)); | |
| CurrPtr = (UINT8 *) GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer); | |
| // | |
| // Reinstall all ADDED variables as long as they are not identical to Updating Variable. | |
| // | |
| Variable = GetStartPointer (VariableStoreHeader); | |
| while (IsValidVariableHeader (Variable)) { | |
| NextVariable = GetNextVariablePtr (Variable); | |
| if (Variable != UpdatingVariable && Variable->State == VAR_ADDED) { | |
| VariableSize = (UINTN) NextVariable - (UINTN) Variable; | |
| CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize); | |
| CurrPtr += VariableSize; | |
| if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { | |
| HwErrVariableTotalSize += VariableSize; | |
| } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { | |
| CommonVariableTotalSize += VariableSize; | |
| } | |
| } | |
| Variable = NextVariable; | |
| } | |
| // | |
| // Reinstall all in delete transition variables. | |
| // | |
| Variable = GetStartPointer (VariableStoreHeader); | |
| while (IsValidVariableHeader (Variable)) { | |
| NextVariable = GetNextVariablePtr (Variable); | |
| if (Variable != UpdatingVariable && Variable != UpdatingInDeletedTransition && Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { | |
| // | |
| // Buffer has cached all ADDED variable. | |
| // Per IN_DELETED variable, we have to guarantee that | |
| // no ADDED one in previous buffer. | |
| // | |
| FoundAdded = FALSE; | |
| AddedVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer); | |
| while (IsValidVariableHeader (AddedVariable)) { | |
| NextAddedVariable = GetNextVariablePtr (AddedVariable); | |
| NameSize = NameSizeOfVariable (AddedVariable); | |
| if (CompareGuid (&AddedVariable->VendorGuid, &Variable->VendorGuid) && | |
| NameSize == NameSizeOfVariable (Variable) | |
| ) { | |
| Point0 = (VOID *) GetVariableNamePtr (AddedVariable); | |
| Point1 = (VOID *) GetVariableNamePtr (Variable); | |
| if (CompareMem (Point0, Point1, NameSize) == 0) { | |
| FoundAdded = TRUE; | |
| break; | |
| } | |
| } | |
| AddedVariable = NextAddedVariable; | |
| } | |
| if (!FoundAdded) { | |
| // | |
| // Promote VAR_IN_DELETED_TRANSITION to VAR_ADDED. | |
| // | |
| VariableSize = (UINTN) NextVariable - (UINTN) Variable; | |
| CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize); | |
| ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED; | |
| CurrPtr += VariableSize; | |
| if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { | |
| HwErrVariableTotalSize += VariableSize; | |
| } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { | |
| CommonVariableTotalSize += VariableSize; | |
| } | |
| } | |
| } | |
| Variable = NextVariable; | |
| } | |
| // | |
| // Install the new variable if it is not NULL. | |
| // | |
| if (NewVariable != NULL) { | |
| if ((UINTN) (CurrPtr - ValidBuffer) + NewVariableSize > VariableStoreHeader->Size) { | |
| // | |
| // No enough space to store the new variable. | |
| // | |
| Status = EFI_OUT_OF_RESOURCES; | |
| goto Done; | |
| } | |
| if (!IsVolatile) { | |
| if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { | |
| HwErrVariableTotalSize += NewVariableSize; | |
| } else if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) { | |
| CommonVariableTotalSize += NewVariableSize; | |
| } | |
| if ((HwErrVariableTotalSize > PcdGet32 (PcdHwErrStorageSize)) || | |
| (CommonVariableTotalSize > VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize))) { | |
| // | |
| // No enough space to store the new variable by NV or NV+HR attribute. | |
| // | |
| Status = EFI_OUT_OF_RESOURCES; | |
| goto Done; | |
| } | |
| } | |
| CopyMem (CurrPtr, (UINT8 *) NewVariable, NewVariableSize); | |
| ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED; | |
| if (UpdatingVariable != NULL) { | |
| UpdatingPtrTrack->CurrPtr = (VARIABLE_HEADER *)((UINTN)UpdatingPtrTrack->StartPtr + ((UINTN)CurrPtr - (UINTN)GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer))); | |
| UpdatingPtrTrack->InDeletedTransitionPtr = NULL; | |
| } | |
| CurrPtr += NewVariableSize; | |
| } | |
| if (IsVolatile) { | |
| // | |
| // If volatile variable store, just copy valid buffer. | |
| // | |
| SetMem ((UINT8 *) (UINTN) VariableBase, VariableStoreHeader->Size, 0xff); | |
| CopyMem ((UINT8 *) (UINTN) VariableBase, ValidBuffer, (UINTN) (CurrPtr - ValidBuffer)); | |
| *LastVariableOffset = (UINTN) (CurrPtr - ValidBuffer); | |
| Status = EFI_SUCCESS; | |
| } else { | |
| // | |
| // If non-volatile variable store, perform FTW here. | |
| // | |
| Status = FtwVariableSpace ( | |
| VariableBase, | |
| (VARIABLE_STORE_HEADER *) ValidBuffer | |
| ); | |
| if (!EFI_ERROR (Status)) { | |
| *LastVariableOffset = (UINTN) (CurrPtr - ValidBuffer); | |
| mVariableModuleGlobal->HwErrVariableTotalSize = HwErrVariableTotalSize; | |
| mVariableModuleGlobal->CommonVariableTotalSize = CommonVariableTotalSize; | |
| } else { | |
| NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase); | |
| while (IsValidVariableHeader (NextVariable)) { | |
| VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER); | |
| if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { | |
| mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize); | |
| } else if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) { | |
| mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize); | |
| } | |
| NextVariable = GetNextVariablePtr (NextVariable); | |
| } | |
| *LastVariableOffset = (UINTN) NextVariable - (UINTN) VariableBase; | |
| } | |
| } | |
| Done: | |
| if (IsVolatile) { | |
| FreePool (ValidBuffer); | |
| } else { | |
| // | |
| // For NV variable reclaim, we use mNvVariableCache as the buffer, so copy the data back. | |
| // | |
| CopyMem (mNvVariableCache, (UINT8 *)(UINTN)VariableBase, VariableStoreHeader->Size); | |
| } | |
| return Status; | |
| } | |
| /** | |
| Find the variable in the specified variable store. | |
| @param VariableName Name of the variable to be found | |
| @param VendorGuid Vendor GUID to be found. | |
| @param IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute | |
| check at runtime when searching variable. | |
| @param PtrTrack Variable Track Pointer structure that contains Variable Information. | |
| @retval EFI_SUCCESS Variable found successfully | |
| @retval EFI_NOT_FOUND Variable not found | |
| **/ | |
| EFI_STATUS | |
| FindVariableEx ( | |
| IN CHAR16 *VariableName, | |
| IN EFI_GUID *VendorGuid, | |
| IN BOOLEAN IgnoreRtCheck, | |
| IN OUT VARIABLE_POINTER_TRACK *PtrTrack | |
| ) | |
| { | |
| VARIABLE_HEADER *InDeletedVariable; | |
| VOID *Point; | |
| PtrTrack->InDeletedTransitionPtr = NULL; | |
| // | |
| // Find the variable by walk through HOB, volatile and non-volatile variable store. | |
| // | |
| InDeletedVariable = NULL; | |
| for ( PtrTrack->CurrPtr = PtrTrack->StartPtr | |
| ; (PtrTrack->CurrPtr < PtrTrack->EndPtr) && IsValidVariableHeader (PtrTrack->CurrPtr) | |
| ; PtrTrack->CurrPtr = GetNextVariablePtr (PtrTrack->CurrPtr) | |
| ) { | |
| if (PtrTrack->CurrPtr->State == VAR_ADDED || | |
| PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED) | |
| ) { | |
| if (IgnoreRtCheck || !AtRuntime () || ((PtrTrack->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) { | |
| if (VariableName[0] == 0) { | |
| if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { | |
| InDeletedVariable = PtrTrack->CurrPtr; | |
| } else { | |
| PtrTrack->InDeletedTransitionPtr = InDeletedVariable; | |
| return EFI_SUCCESS; | |
| } | |
| } else { | |
| if (CompareGuid (VendorGuid, &PtrTrack->CurrPtr->VendorGuid)) { | |
| Point = (VOID *) GetVariableNamePtr (PtrTrack->CurrPtr); | |
| ASSERT (NameSizeOfVariable (PtrTrack->CurrPtr) != 0); | |
| if (CompareMem (VariableName, Point, NameSizeOfVariable (PtrTrack->CurrPtr)) == 0) { | |
| if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { | |
| InDeletedVariable = PtrTrack->CurrPtr; | |
| } else { | |
| PtrTrack->InDeletedTransitionPtr = InDeletedVariable; | |
| return EFI_SUCCESS; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| } | |
| } | |
| PtrTrack->CurrPtr = InDeletedVariable; | |
| return (PtrTrack->CurrPtr == NULL) ? EFI_NOT_FOUND : EFI_SUCCESS; | |
| } | |
| /** | |
| Finds variable in storage blocks of volatile and non-volatile storage areas. | |
| This code finds variable in storage blocks of volatile and non-volatile storage areas. | |
| If VariableName is an empty string, then we just return the first | |
| qualified variable without comparing VariableName and VendorGuid. | |
| If IgnoreRtCheck is TRUE, then we ignore the EFI_VARIABLE_RUNTIME_ACCESS attribute check | |
| at runtime when searching existing variable, only VariableName and VendorGuid are compared. | |
| Otherwise, variables without EFI_VARIABLE_RUNTIME_ACCESS are not visible at runtime. | |
| @param VariableName Name of the variable to be found. | |
| @param VendorGuid Vendor GUID to be found. | |
| @param PtrTrack VARIABLE_POINTER_TRACK structure for output, | |
| including the range searched and the target position. | |
| @param Global Pointer to VARIABLE_GLOBAL structure, including | |
| base of volatile variable storage area, base of | |
| NV variable storage area, and a lock. | |
| @param IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute | |
| check at runtime when searching variable. | |
| @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while | |
| VendorGuid is NULL. | |
| @retval EFI_SUCCESS Variable successfully found. | |
| @retval EFI_NOT_FOUND Variable not found | |
| **/ | |
| EFI_STATUS | |
| FindVariable ( | |
| IN CHAR16 *VariableName, | |
| IN EFI_GUID *VendorGuid, | |
| OUT VARIABLE_POINTER_TRACK *PtrTrack, | |
| IN VARIABLE_GLOBAL *Global, | |
| IN BOOLEAN IgnoreRtCheck | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax]; | |
| VARIABLE_STORE_TYPE Type; | |
| if (VariableName[0] != 0 && VendorGuid == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // 0: Volatile, 1: HOB, 2: Non-Volatile. | |
| // The index and attributes mapping must be kept in this order as RuntimeServiceGetNextVariableName | |
| // make use of this mapping to implement search algorithm. | |
| // | |
| VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) Global->VolatileVariableBase; | |
| VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) Global->HobVariableBase; | |
| VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache; | |
| // | |
| // Find the variable by walk through HOB, volatile and non-volatile variable store. | |
| // | |
| for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) { | |
| if (VariableStoreHeader[Type] == NULL) { | |
| continue; | |
| } | |
| PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[Type]); | |
| PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[Type]); | |
| PtrTrack->Volatile = (BOOLEAN) (Type == VariableStoreTypeVolatile); | |
| Status = FindVariableEx (VariableName, VendorGuid, IgnoreRtCheck, PtrTrack); | |
| if (!EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| } | |
| return EFI_NOT_FOUND; | |
| } | |
| /** | |
| Get index from supported language codes according to language string. | |
| This code is used to get corresponding index in supported language codes. It can handle | |
| RFC4646 and ISO639 language tags. | |
| In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index. | |
| In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index. | |
| For example: | |
| SupportedLang = "engfraengfra" | |
| Lang = "eng" | |
| Iso639Language = TRUE | |
| The return value is "0". | |
| Another example: | |
| SupportedLang = "en;fr;en-US;fr-FR" | |
| Lang = "fr-FR" | |
| Iso639Language = FALSE | |
| The return value is "3". | |
| @param SupportedLang Platform supported language codes. | |
| @param Lang Configured language. | |
| @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646. | |
| @retval The index of language in the language codes. | |
| **/ | |
| UINTN | |
| GetIndexFromSupportedLangCodes( | |
| IN CHAR8 *SupportedLang, | |
| IN CHAR8 *Lang, | |
| IN BOOLEAN Iso639Language | |
| ) | |
| { | |
| UINTN Index; | |
| UINTN CompareLength; | |
| UINTN LanguageLength; | |
| if (Iso639Language) { | |
| CompareLength = ISO_639_2_ENTRY_SIZE; | |
| for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) { | |
| if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) { | |
| // | |
| // Successfully find the index of Lang string in SupportedLang string. | |
| // | |
| Index = Index / CompareLength; | |
| return Index; | |
| } | |
| } | |
| ASSERT (FALSE); | |
| return 0; | |
| } else { | |
| // | |
| // Compare RFC4646 language code | |
| // | |
| Index = 0; | |
| for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++); | |
| for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) { | |
| // | |
| // Skip ';' characters in SupportedLang | |
| // | |
| for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++); | |
| // | |
| // Determine the length of the next language code in SupportedLang | |
| // | |
| for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++); | |
| if ((CompareLength == LanguageLength) && | |
| (AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) { | |
| // | |
| // Successfully find the index of Lang string in SupportedLang string. | |
| // | |
| return Index; | |
| } | |
| } | |
| ASSERT (FALSE); | |
| return 0; | |
| } | |
| } | |
| /** | |
| Get language string from supported language codes according to index. | |
| This code is used to get corresponding language strings in supported language codes. It can handle | |
| RFC4646 and ISO639 language tags. | |
| In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index. | |
| In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index. | |
| For example: | |
| SupportedLang = "engfraengfra" | |
| Index = "1" | |
| Iso639Language = TRUE | |
| The return value is "fra". | |
| Another example: | |
| SupportedLang = "en;fr;en-US;fr-FR" | |
| Index = "1" | |
| Iso639Language = FALSE | |
| The return value is "fr". | |
| @param SupportedLang Platform supported language codes. | |
| @param Index The index in supported language codes. | |
| @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646. | |
| @retval The language string in the language codes. | |
| **/ | |
| CHAR8 * | |
| GetLangFromSupportedLangCodes ( | |
| IN CHAR8 *SupportedLang, | |
| IN UINTN Index, | |
| IN BOOLEAN Iso639Language | |
| ) | |
| { | |
| UINTN SubIndex; | |
| UINTN CompareLength; | |
| CHAR8 *Supported; | |
| SubIndex = 0; | |
| Supported = SupportedLang; | |
| if (Iso639Language) { | |
| // | |
| // According to the index of Lang string in SupportedLang string to get the language. | |
| // This code will be invoked in RUNTIME, therefore there is not a memory allocate/free operation. | |
| // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string. | |
| // | |
| CompareLength = ISO_639_2_ENTRY_SIZE; | |
| mVariableModuleGlobal->Lang[CompareLength] = '\0'; | |
| return CopyMem (mVariableModuleGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength); | |
| } else { | |
| while (TRUE) { | |
| // | |
| // Take semicolon as delimitation, sequentially traverse supported language codes. | |
| // | |
| for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) { | |
| Supported++; | |
| } | |
| if ((*Supported == '\0') && (SubIndex != Index)) { | |
| // | |
| // Have completed the traverse, but not find corrsponding string. | |
| // This case is not allowed to happen. | |
| // | |
| ASSERT(FALSE); | |
| return NULL; | |
| } | |
| if (SubIndex == Index) { | |
| // | |
| // According to the index of Lang string in SupportedLang string to get the language. | |
| // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation. | |
| // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string. | |
| // | |
| mVariableModuleGlobal->PlatformLang[CompareLength] = '\0'; | |
| return CopyMem (mVariableModuleGlobal->PlatformLang, Supported - CompareLength, CompareLength); | |
| } | |
| SubIndex++; | |
| // | |
| // Skip ';' characters in Supported | |
| // | |
| for (; *Supported != '\0' && *Supported == ';'; Supported++); | |
| } | |
| } | |
| } | |
| /** | |
| Returns a pointer to an allocated buffer that contains the best matching language | |
| from a set of supported languages. | |
| This function supports both ISO 639-2 and RFC 4646 language codes, but language | |
| code types may not be mixed in a single call to this function. This function | |
| supports a variable argument list that allows the caller to pass in a prioritized | |
| list of language codes to test against all the language codes in SupportedLanguages. | |
| If SupportedLanguages is NULL, then ASSERT(). | |
| @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that | |
| contains a set of language codes in the format | |
| specified by Iso639Language. | |
| @param[in] Iso639Language If TRUE, then all language codes are assumed to be | |
| in ISO 639-2 format. If FALSE, then all language | |
| codes are assumed to be in RFC 4646 language format | |
| @param[in] ... A variable argument list that contains pointers to | |
| Null-terminated ASCII strings that contain one or more | |
| language codes in the format specified by Iso639Language. | |
| The first language code from each of these language | |
| code lists is used to determine if it is an exact or | |
| close match to any of the language codes in | |
| SupportedLanguages. Close matches only apply to RFC 4646 | |
| language codes, and the matching algorithm from RFC 4647 | |
| is used to determine if a close match is present. If | |
| an exact or close match is found, then the matching | |
| language code from SupportedLanguages is returned. If | |
| no matches are found, then the next variable argument | |
| parameter is evaluated. The variable argument list | |
| is terminated by a NULL. | |
| @retval NULL The best matching language could not be found in SupportedLanguages. | |
| @retval NULL There are not enough resources available to return the best matching | |
| language. | |
| @retval Other A pointer to a Null-terminated ASCII string that is the best matching | |
| language in SupportedLanguages. | |
| **/ | |
| CHAR8 * | |
| EFIAPI | |
| VariableGetBestLanguage ( | |
| IN CONST CHAR8 *SupportedLanguages, | |
| IN BOOLEAN Iso639Language, | |
| ... | |
| ) | |
| { | |
| VA_LIST Args; | |
| CHAR8 *Language; | |
| UINTN CompareLength; | |
| UINTN LanguageLength; | |
| CONST CHAR8 *Supported; | |
| CHAR8 *Buffer; | |
| ASSERT (SupportedLanguages != NULL); | |
| VA_START (Args, Iso639Language); | |
| while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) { | |
| // | |
| // Default to ISO 639-2 mode | |
| // | |
| CompareLength = 3; | |
| LanguageLength = MIN (3, AsciiStrLen (Language)); | |
| // | |
| // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language | |
| // | |
| if (!Iso639Language) { | |
| for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++); | |
| } | |
| // | |
| // Trim back the length of Language used until it is empty | |
| // | |
| while (LanguageLength > 0) { | |
| // | |
| // Loop through all language codes in SupportedLanguages | |
| // | |
| for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) { | |
| // | |
| // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages | |
| // | |
| if (!Iso639Language) { | |
| // | |
| // Skip ';' characters in Supported | |
| // | |
| for (; *Supported != '\0' && *Supported == ';'; Supported++); | |
| // | |
| // Determine the length of the next language code in Supported | |
| // | |
| for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++); | |
| // | |
| // If Language is longer than the Supported, then skip to the next language | |
| // | |
| if (LanguageLength > CompareLength) { | |
| continue; | |
| } | |
| } | |
| // | |
| // See if the first LanguageLength characters in Supported match Language | |
| // | |
| if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) { | |
| VA_END (Args); | |
| Buffer = Iso639Language ? mVariableModuleGlobal->Lang : mVariableModuleGlobal->PlatformLang; | |
| Buffer[CompareLength] = '\0'; | |
| return CopyMem (Buffer, Supported, CompareLength); | |
| } | |
| } | |
| if (Iso639Language) { | |
| // | |
| // If ISO 639 mode, then each language can only be tested once | |
| // | |
| LanguageLength = 0; | |
| } else { | |
| // | |
| // If RFC 4646 mode, then trim Language from the right to the next '-' character | |
| // | |
| for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--); | |
| } | |
| } | |
| } | |
| VA_END (Args); | |
| // | |
| // No matches were found | |
| // | |
| return NULL; | |
| } | |
| /** | |
| This function is to check if the remaining variable space is enough to set | |
| all Variables from argument list successfully. The purpose of the check | |
| is to keep the consistency of the Variables to be in variable storage. | |
| Note: Variables are assumed to be in same storage. | |
| The set sequence of Variables will be same with the sequence of VariableEntry from argument list, | |
| so follow the argument sequence to check the Variables. | |
| @param[in] Attributes Variable attributes for Variable entries. | |
| @param ... The variable argument list with type VARIABLE_ENTRY_CONSISTENCY *. | |
| A NULL terminates the list. The VariableSize of | |
| VARIABLE_ENTRY_CONSISTENCY is the variable data size as input. | |
| It will be changed to variable total size as output. | |
| @retval TRUE Have enough variable space to set the Variables successfully. | |
| @retval FALSE No enough variable space to set the Variables successfully. | |
| **/ | |
| BOOLEAN | |
| EFIAPI | |
| CheckRemainingSpaceForConsistency ( | |
| IN UINT32 Attributes, | |
| ... | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| VA_LIST Args; | |
| VARIABLE_ENTRY_CONSISTENCY *VariableEntry; | |
| UINT64 MaximumVariableStorageSize; | |
| UINT64 RemainingVariableStorageSize; | |
| UINT64 MaximumVariableSize; | |
| UINTN TotalNeededSize; | |
| UINTN OriginalVarSize; | |
| VARIABLE_STORE_HEADER *VariableStoreHeader; | |
| VARIABLE_POINTER_TRACK VariablePtrTrack; | |
| VARIABLE_HEADER *NextVariable; | |
| UINTN VarNameSize; | |
| UINTN VarDataSize; | |
| // | |
| // Non-Volatile related. | |
| // | |
| VariableStoreHeader = mNvVariableCache; | |
| Status = VariableServiceQueryVariableInfoInternal ( | |
| Attributes, | |
| &MaximumVariableStorageSize, | |
| &RemainingVariableStorageSize, | |
| &MaximumVariableSize | |
| ); | |
| ASSERT_EFI_ERROR (Status); | |
| TotalNeededSize = 0; | |
| VA_START (Args, Attributes); | |
| VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *); | |
| while (VariableEntry != NULL) { | |
| // | |
| // Calculate variable total size. | |
| // | |
| VarNameSize = StrSize (VariableEntry->Name); | |
| VarNameSize += GET_PAD_SIZE (VarNameSize); | |
| VarDataSize = VariableEntry->VariableSize; | |
| VarDataSize += GET_PAD_SIZE (VarDataSize); | |
| VariableEntry->VariableSize = HEADER_ALIGN (sizeof (VARIABLE_HEADER) + VarNameSize + VarDataSize); | |
| TotalNeededSize += VariableEntry->VariableSize; | |
| VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *); | |
| } | |
| VA_END (Args); | |
| if (RemainingVariableStorageSize >= TotalNeededSize) { | |
| // | |
| // Already have enough space. | |
| // | |
| return TRUE; | |
| } else if (AtRuntime ()) { | |
| // | |
| // At runtime, no reclaim. | |
| // The original variable space of Variables can't be reused. | |
| // | |
| return FALSE; | |
| } | |
| VA_START (Args, Attributes); | |
| VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *); | |
| while (VariableEntry != NULL) { | |
| // | |
| // Check if Variable[Index] has been present and get its size. | |
| // | |
| OriginalVarSize = 0; | |
| VariablePtrTrack.StartPtr = GetStartPointer (VariableStoreHeader); | |
| VariablePtrTrack.EndPtr = GetEndPointer (VariableStoreHeader); | |
| Status = FindVariableEx ( | |
| VariableEntry->Name, | |
| VariableEntry->Guid, | |
| FALSE, | |
| &VariablePtrTrack | |
| ); | |
| if (!EFI_ERROR (Status)) { | |
| // | |
| // Get size of Variable[Index]. | |
| // | |
| NextVariable = GetNextVariablePtr (VariablePtrTrack.CurrPtr); | |
| OriginalVarSize = (UINTN) NextVariable - (UINTN) VariablePtrTrack.CurrPtr; | |
| // | |
| // Add the original size of Variable[Index] to remaining variable storage size. | |
| // | |
| RemainingVariableStorageSize += OriginalVarSize; | |
| } | |
| if (VariableEntry->VariableSize > RemainingVariableStorageSize) { | |
| // | |
| // No enough space for Variable[Index]. | |
| // | |
| VA_END (Args); | |
| return FALSE; | |
| } | |
| // | |
| // Sub the (new) size of Variable[Index] from remaining variable storage size. | |
| // | |
| RemainingVariableStorageSize -= VariableEntry->VariableSize; | |
| VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *); | |
| } | |
| VA_END (Args); | |
| return TRUE; | |
| } | |
| /** | |
| Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang. | |
| When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes. | |
| According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization, | |
| and are read-only. Therefore, in variable driver, only store the original value for other use. | |
| @param[in] VariableName Name of variable. | |
| @param[in] Data Variable data. | |
| @param[in] DataSize Size of data. 0 means delete. | |
| @retval EFI_SUCCESS The update operation is successful or ignored. | |
| @retval EFI_WRITE_PROTECTED Update PlatformLangCodes/LangCodes at runtime. | |
| @retval EFI_OUT_OF_RESOURCES No enough variable space to do the update operation. | |
| @retval Others Other errors happened during the update operation. | |
| **/ | |
| EFI_STATUS | |
| AutoUpdateLangVariable ( | |
| IN CHAR16 *VariableName, | |
| IN VOID *Data, | |
| IN UINTN DataSize | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| CHAR8 *BestPlatformLang; | |
| CHAR8 *BestLang; | |
| UINTN Index; | |
| UINT32 Attributes; | |
| VARIABLE_POINTER_TRACK Variable; | |
| BOOLEAN SetLanguageCodes; | |
| VARIABLE_ENTRY_CONSISTENCY VariableEntry[2]; | |
| // | |
| // Don't do updates for delete operation | |
| // | |
| if (DataSize == 0) { | |
| return EFI_SUCCESS; | |
| } | |
| SetLanguageCodes = FALSE; | |
| if (StrCmp (VariableName, EFI_PLATFORM_LANG_CODES_VARIABLE_NAME) == 0) { | |
| // | |
| // PlatformLangCodes is a volatile variable, so it can not be updated at runtime. | |
| // | |
| if (AtRuntime ()) { | |
| return EFI_WRITE_PROTECTED; | |
| } | |
| SetLanguageCodes = TRUE; | |
| // | |
| // According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only | |
| // Therefore, in variable driver, only store the original value for other use. | |
| // | |
| if (mVariableModuleGlobal->PlatformLangCodes != NULL) { | |
| FreePool (mVariableModuleGlobal->PlatformLangCodes); | |
| } | |
| mVariableModuleGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data); | |
| ASSERT (mVariableModuleGlobal->PlatformLangCodes != NULL); | |
| // | |
| // PlatformLang holds a single language from PlatformLangCodes, | |
| // so the size of PlatformLangCodes is enough for the PlatformLang. | |
| // | |
| if (mVariableModuleGlobal->PlatformLang != NULL) { | |
| FreePool (mVariableModuleGlobal->PlatformLang); | |
| } | |
| mVariableModuleGlobal->PlatformLang = AllocateRuntimePool (DataSize); | |
| ASSERT (mVariableModuleGlobal->PlatformLang != NULL); | |
| } else if (StrCmp (VariableName, EFI_LANG_CODES_VARIABLE_NAME) == 0) { | |
| // | |
| // LangCodes is a volatile variable, so it can not be updated at runtime. | |
| // | |
| if (AtRuntime ()) { | |
| return EFI_WRITE_PROTECTED; | |
| } | |
| SetLanguageCodes = TRUE; | |
| // | |
| // According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only | |
| // Therefore, in variable driver, only store the original value for other use. | |
| // | |
| if (mVariableModuleGlobal->LangCodes != NULL) { | |
| FreePool (mVariableModuleGlobal->LangCodes); | |
| } | |
| mVariableModuleGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data); | |
| ASSERT (mVariableModuleGlobal->LangCodes != NULL); | |
| } | |
| if (SetLanguageCodes | |
| && (mVariableModuleGlobal->PlatformLangCodes != NULL) | |
| && (mVariableModuleGlobal->LangCodes != NULL)) { | |
| // | |
| // Update Lang if PlatformLang is already set | |
| // Update PlatformLang if Lang is already set | |
| // | |
| Status = FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); | |
| if (!EFI_ERROR (Status)) { | |
| // | |
| // Update Lang | |
| // | |
| VariableName = EFI_PLATFORM_LANG_VARIABLE_NAME; | |
| Data = GetVariableDataPtr (Variable.CurrPtr); | |
| DataSize = Variable.CurrPtr->DataSize; | |
| } else { | |
| Status = FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); | |
| if (!EFI_ERROR (Status)) { | |
| // | |
| // Update PlatformLang | |
| // | |
| VariableName = EFI_LANG_VARIABLE_NAME; | |
| Data = GetVariableDataPtr (Variable.CurrPtr); | |
| DataSize = Variable.CurrPtr->DataSize; | |
| } else { | |
| // | |
| // Neither PlatformLang nor Lang is set, directly return | |
| // | |
| return EFI_SUCCESS; | |
| } | |
| } | |
| } | |
| Status = EFI_SUCCESS; | |
| // | |
| // According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions. | |
| // | |
| Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS; | |
| if (StrCmp (VariableName, EFI_PLATFORM_LANG_VARIABLE_NAME) == 0) { | |
| // | |
| // Update Lang when PlatformLangCodes/LangCodes were set. | |
| // | |
| if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) { | |
| // | |
| // When setting PlatformLang, firstly get most matched language string from supported language codes. | |
| // | |
| BestPlatformLang = VariableGetBestLanguage (mVariableModuleGlobal->PlatformLangCodes, FALSE, Data, NULL); | |
| if (BestPlatformLang != NULL) { | |
| // | |
| // Get the corresponding index in language codes. | |
| // | |
| Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, BestPlatformLang, FALSE); | |
| // | |
| // Get the corresponding ISO639 language tag according to RFC4646 language tag. | |
| // | |
| BestLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, Index, TRUE); | |
| // | |
| // Check the variable space for both Lang and PlatformLang variable. | |
| // | |
| VariableEntry[0].VariableSize = ISO_639_2_ENTRY_SIZE + 1; | |
| VariableEntry[0].Guid = &gEfiGlobalVariableGuid; | |
| VariableEntry[0].Name = EFI_LANG_VARIABLE_NAME; | |
| VariableEntry[1].VariableSize = AsciiStrSize (BestPlatformLang); | |
| VariableEntry[1].Guid = &gEfiGlobalVariableGuid; | |
| VariableEntry[1].Name = EFI_PLATFORM_LANG_VARIABLE_NAME; | |
| if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) { | |
| // | |
| // No enough variable space to set both Lang and PlatformLang successfully. | |
| // | |
| Status = EFI_OUT_OF_RESOURCES; | |
| } else { | |
| // | |
| // Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously. | |
| // | |
| FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); | |
| Status = UpdateVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestLang, | |
| ISO_639_2_ENTRY_SIZE + 1, Attributes, &Variable); | |
| } | |
| DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a Status: %r\n", BestPlatformLang, BestLang, Status)); | |
| } | |
| } | |
| } else if (StrCmp (VariableName, EFI_LANG_VARIABLE_NAME) == 0) { | |
| // | |
| // Update PlatformLang when PlatformLangCodes/LangCodes were set. | |
| // | |
| if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) { | |
| // | |
| // When setting Lang, firstly get most matched language string from supported language codes. | |
| // | |
| BestLang = VariableGetBestLanguage (mVariableModuleGlobal->LangCodes, TRUE, Data, NULL); | |
| if (BestLang != NULL) { | |
| // | |
| // Get the corresponding index in language codes. | |
| // | |
| Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, BestLang, TRUE); | |
| // | |
| // Get the corresponding RFC4646 language tag according to ISO639 language tag. | |
| // | |
| BestPlatformLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, Index, FALSE); | |
| // | |
| // Check the variable space for both PlatformLang and Lang variable. | |
| // | |
| VariableEntry[0].VariableSize = AsciiStrSize (BestPlatformLang); | |
| VariableEntry[0].Guid = &gEfiGlobalVariableGuid; | |
| VariableEntry[0].Name = EFI_PLATFORM_LANG_VARIABLE_NAME; | |
| VariableEntry[1].VariableSize = ISO_639_2_ENTRY_SIZE + 1; | |
| VariableEntry[1].Guid = &gEfiGlobalVariableGuid; | |
| VariableEntry[1].Name = EFI_LANG_VARIABLE_NAME; | |
| if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) { | |
| // | |
| // No enough variable space to set both PlatformLang and Lang successfully. | |
| // | |
| Status = EFI_OUT_OF_RESOURCES; | |
| } else { | |
| // | |
| // Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously. | |
| // | |
| FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); | |
| Status = UpdateVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestPlatformLang, | |
| AsciiStrSize (BestPlatformLang), Attributes, &Variable); | |
| } | |
| DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a Status: %r\n", BestLang, BestPlatformLang, Status)); | |
| } | |
| } | |
| } | |
| if (SetLanguageCodes) { | |
| // | |
| // Continue to set PlatformLangCodes or LangCodes. | |
| // | |
| return EFI_SUCCESS; | |
| } else { | |
| return Status; | |
| } | |
| } | |
| /** | |
| Update the variable region with Variable information. These are the same | |
| arguments as the EFI Variable services. | |
| @param[in] VariableName Name of variable. | |
| @param[in] VendorGuid Guid of variable. | |
| @param[in] Data Variable data. | |
| @param[in] DataSize Size of data. 0 means delete. | |
| @param[in] Attributes Attribues of the variable. | |
| @param[in, out] CacheVariable The variable information which is used to keep track of variable usage. | |
| @retval EFI_SUCCESS The update operation is success. | |
| @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region. | |
| **/ | |
| EFI_STATUS | |
| UpdateVariable ( | |
| IN CHAR16 *VariableName, | |
| IN EFI_GUID *VendorGuid, | |
| IN VOID *Data, | |
| IN UINTN DataSize, | |
| IN UINT32 Attributes OPTIONAL, | |
| IN OUT VARIABLE_POINTER_TRACK *CacheVariable | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| VARIABLE_HEADER *NextVariable; | |
| UINTN ScratchSize; | |
| UINTN NonVolatileVarableStoreSize; | |
| UINTN VarNameOffset; | |
| UINTN VarDataOffset; | |
| UINTN VarNameSize; | |
| UINTN VarSize; | |
| BOOLEAN Volatile; | |
| EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb; | |
| UINT8 State; | |
| VARIABLE_POINTER_TRACK *Variable; | |
| VARIABLE_POINTER_TRACK NvVariable; | |
| VARIABLE_STORE_HEADER *VariableStoreHeader; | |
| UINTN CacheOffset; | |
| if ((mVariableModuleGlobal->FvbInstance == NULL) && ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0)) { | |
| // | |
| // The FVB protocol is not ready. Trying to update NV variable prior to the installation | |
| // of EFI_VARIABLE_WRITE_ARCH_PROTOCOL. | |
| // | |
| return EFI_NOT_AVAILABLE_YET; | |
| } | |
| if ((CacheVariable->CurrPtr == NULL) || CacheVariable->Volatile) { | |
| Variable = CacheVariable; | |
| } else { | |
| // | |
| // Update/Delete existing NV variable. | |
| // CacheVariable points to the variable in the memory copy of Flash area | |
| // Now let Variable points to the same variable in Flash area. | |
| // | |
| VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase); | |
| Variable = &NvVariable; | |
| Variable->StartPtr = GetStartPointer (VariableStoreHeader); | |
| Variable->EndPtr = GetEndPointer (VariableStoreHeader); | |
| Variable->CurrPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->CurrPtr - (UINTN)CacheVariable->StartPtr)); | |
| if (CacheVariable->InDeletedTransitionPtr != NULL) { | |
| Variable->InDeletedTransitionPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->InDeletedTransitionPtr - (UINTN)CacheVariable->StartPtr)); | |
| } else { | |
| Variable->InDeletedTransitionPtr = NULL; | |
| } | |
| Variable->Volatile = FALSE; | |
| } | |
| Fvb = mVariableModuleGlobal->FvbInstance; | |
| if (Variable->CurrPtr != NULL) { | |
| // | |
| // Update/Delete existing variable. | |
| // | |
| if (AtRuntime ()) { | |
| // | |
| // If AtRuntime and the variable is Volatile and Runtime Access, | |
| // the volatile is ReadOnly, and SetVariable should be aborted and | |
| // return EFI_WRITE_PROTECTED. | |
| // | |
| if (Variable->Volatile) { | |
| Status = EFI_WRITE_PROTECTED; | |
| goto Done; | |
| } | |
| // | |
| // Only variable that have NV|RT attributes can be updated/deleted in Runtime. | |
| // | |
| if (((Variable->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Variable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE) == 0)) { | |
| Status = EFI_INVALID_PARAMETER; | |
| goto Done; | |
| } | |
| } | |
| // | |
| // Setting a data variable with no access, or zero DataSize attributes | |
| // causes it to be deleted. | |
| // | |
| if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) { | |
| if (Variable->InDeletedTransitionPtr != NULL) { | |
| // | |
| // Both ADDED and IN_DELETED_TRANSITION variable are present, | |
| // set IN_DELETED_TRANSITION one to DELETED state first. | |
| // | |
| State = Variable->InDeletedTransitionPtr->State; | |
| State &= VAR_DELETED; | |
| Status = UpdateVariableStore ( | |
| &mVariableModuleGlobal->VariableGlobal, | |
| Variable->Volatile, | |
| FALSE, | |
| Fvb, | |
| (UINTN) &Variable->InDeletedTransitionPtr->State, | |
| sizeof (UINT8), | |
| &State | |
| ); | |
| if (!EFI_ERROR (Status)) { | |
| if (!Variable->Volatile) { | |
| ASSERT (CacheVariable->InDeletedTransitionPtr != NULL); | |
| CacheVariable->InDeletedTransitionPtr->State = State; | |
| } | |
| } else { | |
| goto Done; | |
| } | |
| } | |
| State = Variable->CurrPtr->State; | |
| State &= VAR_DELETED; | |
| Status = UpdateVariableStore ( | |
| &mVariableModuleGlobal->VariableGlobal, | |
| Variable->Volatile, | |
| FALSE, | |
| Fvb, | |
| (UINTN) &Variable->CurrPtr->State, | |
| sizeof (UINT8), | |
| &State | |
| ); | |
| if (!EFI_ERROR (Status)) { | |
| UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, FALSE, TRUE, FALSE); | |
| if (!Variable->Volatile) { | |
| CacheVariable->CurrPtr->State = State; | |
| FlushHobVariableToFlash (VariableName, VendorGuid); | |
| } | |
| } | |
| goto Done; | |
| } | |
| // | |
| // If the variable is marked valid, and the same data has been passed in, | |
| // then return to the caller immediately. | |
| // | |
| if (DataSizeOfVariable (Variable->CurrPtr) == DataSize && | |
| (CompareMem (Data, GetVariableDataPtr (Variable->CurrPtr), DataSize) == 0)) { | |
| UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE); | |
| Status = EFI_SUCCESS; | |
| goto Done; | |
| } else if ((Variable->CurrPtr->State == VAR_ADDED) || | |
| (Variable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) { | |
| // | |
| // Mark the old variable as in delete transition. | |
| // | |
| State = Variable->CurrPtr->State; | |
| State &= VAR_IN_DELETED_TRANSITION; | |
| Status = UpdateVariableStore ( | |
| &mVariableModuleGlobal->VariableGlobal, | |
| Variable->Volatile, | |
| FALSE, | |
| Fvb, | |
| (UINTN) &Variable->CurrPtr->State, | |
| sizeof (UINT8), | |
| &State | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| goto Done; | |
| } | |
| if (!Variable->Volatile) { | |
| CacheVariable->CurrPtr->State = State; | |
| } | |
| } | |
| } else { | |
| // | |
| // Not found existing variable. Create a new variable. | |
| // | |
| // | |
| // Make sure we are trying to create a new variable. | |
| // Setting a data variable with zero DataSize or no access attributes means to delete it. | |
| // | |
| if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) { | |
| Status = EFI_NOT_FOUND; | |
| goto Done; | |
| } | |
| // | |
| // Only variable have NV|RT attribute can be created in Runtime. | |
| // | |
| if (AtRuntime () && | |
| (((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0))) { | |
| Status = EFI_INVALID_PARAMETER; | |
| goto Done; | |
| } | |
| } | |
| // | |
| // Function part - create a new variable and copy the data. | |
| // Both update a variable and create a variable will come here. | |
| // | |
| // Tricky part: Use scratch data area at the end of volatile variable store | |
| // as a temporary storage. | |
| // | |
| NextVariable = GetEndPointer ((VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)); | |
| ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize)); | |
| SetMem (NextVariable, ScratchSize, 0xff); | |
| NextVariable->StartId = VARIABLE_DATA; | |
| NextVariable->Attributes = Attributes; | |
| // | |
| // NextVariable->State = VAR_ADDED; | |
| // | |
| NextVariable->Reserved = 0; | |
| VarNameOffset = sizeof (VARIABLE_HEADER); | |
| VarNameSize = StrSize (VariableName); | |
| CopyMem ( | |
| (UINT8 *) ((UINTN) NextVariable + VarNameOffset), | |
| VariableName, | |
| VarNameSize | |
| ); | |
| VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize); | |
| CopyMem ( | |
| (UINT8 *) ((UINTN) NextVariable + VarDataOffset), | |
| Data, | |
| DataSize | |
| ); | |
| CopyMem (&NextVariable->VendorGuid, VendorGuid, sizeof (EFI_GUID)); | |
| // | |
| // There will be pad bytes after Data, the NextVariable->NameSize and | |
| // NextVariable->DataSize should not include pad size so that variable | |
| // service can get actual size in GetVariable. | |
| // | |
| NextVariable->NameSize = (UINT32)VarNameSize; | |
| NextVariable->DataSize = (UINT32)DataSize; | |
| // | |
| // The actual size of the variable that stores in storage should | |
| // include pad size. | |
| // | |
| VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize); | |
| if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) { | |
| // | |
| // Create a nonvolatile variable. | |
| // | |
| Volatile = FALSE; | |
| NonVolatileVarableStoreSize = ((VARIABLE_STORE_HEADER *)(UINTN)(mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase))->Size; | |
| if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) | |
| && ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > PcdGet32 (PcdHwErrStorageSize))) | |
| || (((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0) | |
| && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > NonVolatileVarableStoreSize - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize)))) { | |
| if (AtRuntime ()) { | |
| Status = EFI_OUT_OF_RESOURCES; | |
| goto Done; | |
| } | |
| // | |
| // Perform garbage collection & reclaim operation, and integrate the new variable at the same time. | |
| // | |
| Status = Reclaim (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase, | |
| &mVariableModuleGlobal->NonVolatileLastVariableOffset, FALSE, Variable, NextVariable, HEADER_ALIGN (VarSize)); | |
| if (!EFI_ERROR (Status)) { | |
| // | |
| // The new variable has been integrated successfully during reclaiming. | |
| // | |
| if (Variable->CurrPtr != NULL) { | |
| CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr)); | |
| CacheVariable->InDeletedTransitionPtr = NULL; | |
| } | |
| UpdateVariableInfo (VariableName, VendorGuid, FALSE, FALSE, TRUE, FALSE, FALSE); | |
| FlushHobVariableToFlash (VariableName, VendorGuid); | |
| } | |
| goto Done; | |
| } | |
| // | |
| // Four steps | |
| // 1. Write variable header | |
| // 2. Set variable state to header valid | |
| // 3. Write variable data | |
| // 4. Set variable state to valid | |
| // | |
| // | |
| // Step 1: | |
| // | |
| CacheOffset = mVariableModuleGlobal->NonVolatileLastVariableOffset; | |
| Status = UpdateVariableStore ( | |
| &mVariableModuleGlobal->VariableGlobal, | |
| FALSE, | |
| TRUE, | |
| Fvb, | |
| mVariableModuleGlobal->NonVolatileLastVariableOffset, | |
| sizeof (VARIABLE_HEADER), | |
| (UINT8 *) NextVariable | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| goto Done; | |
| } | |
| // | |
| // Step 2: | |
| // | |
| NextVariable->State = VAR_HEADER_VALID_ONLY; | |
| Status = UpdateVariableStore ( | |
| &mVariableModuleGlobal->VariableGlobal, | |
| FALSE, | |
| TRUE, | |
| Fvb, | |
| mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State), | |
| sizeof (UINT8), | |
| &NextVariable->State | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| goto Done; | |
| } | |
| // | |
| // Step 3: | |
| // | |
| Status = UpdateVariableStore ( | |
| &mVariableModuleGlobal->VariableGlobal, | |
| FALSE, | |
| TRUE, | |
| Fvb, | |
| mVariableModuleGlobal->NonVolatileLastVariableOffset + sizeof (VARIABLE_HEADER), | |
| (UINT32) VarSize - sizeof (VARIABLE_HEADER), | |
| (UINT8 *) NextVariable + sizeof (VARIABLE_HEADER) | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| goto Done; | |
| } | |
| // | |
| // Step 4: | |
| // | |
| NextVariable->State = VAR_ADDED; | |
| Status = UpdateVariableStore ( | |
| &mVariableModuleGlobal->VariableGlobal, | |
| FALSE, | |
| TRUE, | |
| Fvb, | |
| mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State), | |
| sizeof (UINT8), | |
| &NextVariable->State | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| goto Done; | |
| } | |
| mVariableModuleGlobal->NonVolatileLastVariableOffset += HEADER_ALIGN (VarSize); | |
| if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) { | |
| mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VarSize); | |
| } else { | |
| mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VarSize); | |
| } | |
| // | |
| // update the memory copy of Flash region. | |
| // | |
| CopyMem ((UINT8 *)mNvVariableCache + CacheOffset, (UINT8 *)NextVariable, VarSize); | |
| } else { | |
| // | |
| // Create a volatile variable. | |
| // | |
| Volatile = TRUE; | |
| if ((UINT32) (VarSize + mVariableModuleGlobal->VolatileLastVariableOffset) > | |
| ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size) { | |
| // | |
| // Perform garbage collection & reclaim operation, and integrate the new variable at the same time. | |
| // | |
| Status = Reclaim (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase, | |
| &mVariableModuleGlobal->VolatileLastVariableOffset, TRUE, Variable, NextVariable, HEADER_ALIGN (VarSize)); | |
| if (!EFI_ERROR (Status)) { | |
| // | |
| // The new variable has been integrated successfully during reclaiming. | |
| // | |
| if (Variable->CurrPtr != NULL) { | |
| CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr)); | |
| CacheVariable->InDeletedTransitionPtr = NULL; | |
| } | |
| UpdateVariableInfo (VariableName, VendorGuid, TRUE, FALSE, TRUE, FALSE, FALSE); | |
| } | |
| goto Done; | |
| } | |
| NextVariable->State = VAR_ADDED; | |
| Status = UpdateVariableStore ( | |
| &mVariableModuleGlobal->VariableGlobal, | |
| TRUE, | |
| TRUE, | |
| Fvb, | |
| mVariableModuleGlobal->VolatileLastVariableOffset, | |
| (UINT32) VarSize, | |
| (UINT8 *) NextVariable | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| goto Done; | |
| } | |
| mVariableModuleGlobal->VolatileLastVariableOffset += HEADER_ALIGN (VarSize); | |
| } | |
| // | |
| // Mark the old variable as deleted. | |
| // | |
| if (!EFI_ERROR (Status) && Variable->CurrPtr != NULL) { | |
| if (Variable->InDeletedTransitionPtr != NULL) { | |
| // | |
| // Both ADDED and IN_DELETED_TRANSITION old variable are present, | |
| // set IN_DELETED_TRANSITION one to DELETED state first. | |
| // | |
| State = Variable->InDeletedTransitionPtr->State; | |
| State &= VAR_DELETED; | |
| Status = UpdateVariableStore ( | |
| &mVariableModuleGlobal->VariableGlobal, | |
| Variable->Volatile, | |
| FALSE, | |
| Fvb, | |
| (UINTN) &Variable->InDeletedTransitionPtr->State, | |
| sizeof (UINT8), | |
| &State | |
| ); | |
| if (!EFI_ERROR (Status)) { | |
| if (!Variable->Volatile) { | |
| ASSERT (CacheVariable->InDeletedTransitionPtr != NULL); | |
| CacheVariable->InDeletedTransitionPtr->State = State; | |
| } | |
| } else { | |
| goto Done; | |
| } | |
| } | |
| State = Variable->CurrPtr->State; | |
| State &= VAR_DELETED; | |
| Status = UpdateVariableStore ( | |
| &mVariableModuleGlobal->VariableGlobal, | |
| Variable->Volatile, | |
| FALSE, | |
| Fvb, | |
| (UINTN) &Variable->CurrPtr->State, | |
| sizeof (UINT8), | |
| &State | |
| ); | |
| if (!EFI_ERROR (Status) && !Variable->Volatile) { | |
| CacheVariable->CurrPtr->State = State; | |
| } | |
| } | |
| if (!EFI_ERROR (Status)) { | |
| UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE); | |
| if (!Volatile) { | |
| FlushHobVariableToFlash (VariableName, VendorGuid); | |
| } | |
| } | |
| Done: | |
| return Status; | |
| } | |
| /** | |
| Check if a Unicode character is a hexadecimal character. | |
| This function checks if a Unicode character is a | |
| hexadecimal character. The valid hexadecimal character is | |
| L'0' to L'9', L'a' to L'f', or L'A' to L'F'. | |
| @param Char The character to check against. | |
| @retval TRUE If the Char is a hexadecmial character. | |
| @retval FALSE If the Char is not a hexadecmial character. | |
| **/ | |
| BOOLEAN | |
| EFIAPI | |
| IsHexaDecimalDigitCharacter ( | |
| IN CHAR16 Char | |
| ) | |
| { | |
| return (BOOLEAN) ((Char >= L'0' && Char <= L'9') || (Char >= L'A' && Char <= L'F') || (Char >= L'a' && Char <= L'f')); | |
| } | |
| /** | |
| This code checks if variable is hardware error record variable or not. | |
| According to UEFI spec, hardware error record variable should use the EFI_HARDWARE_ERROR_VARIABLE VendorGuid | |
| and have the L"HwErrRec####" name convention, #### is a printed hex value and no 0x or h is included in the hex value. | |
| @param VariableName Pointer to variable name. | |
| @param VendorGuid Variable Vendor Guid. | |
| @retval TRUE Variable is hardware error record variable. | |
| @retval FALSE Variable is not hardware error record variable. | |
| **/ | |
| BOOLEAN | |
| EFIAPI | |
| IsHwErrRecVariable ( | |
| IN CHAR16 *VariableName, | |
| IN EFI_GUID *VendorGuid | |
| ) | |
| { | |
| if (!CompareGuid (VendorGuid, &gEfiHardwareErrorVariableGuid) || | |
| (StrLen (VariableName) != StrLen (L"HwErrRec####")) || | |
| (StrnCmp(VariableName, L"HwErrRec", StrLen (L"HwErrRec")) != 0) || | |
| !IsHexaDecimalDigitCharacter (VariableName[0x8]) || | |
| !IsHexaDecimalDigitCharacter (VariableName[0x9]) || | |
| !IsHexaDecimalDigitCharacter (VariableName[0xA]) || | |
| !IsHexaDecimalDigitCharacter (VariableName[0xB])) { | |
| return FALSE; | |
| } | |
| return TRUE; | |
| } | |
| /** | |
| This code checks if variable guid is global variable guid first. | |
| If yes, further check if variable name is in mGlobalVariableList or mGlobalVariableList2 and attributes matched. | |
| @param[in] VariableName Pointer to variable name. | |
| @param[in] VendorGuid Variable Vendor Guid. | |
| @param[in] Attributes Attributes of the variable. | |
| @retval EFI_SUCCESS Variable is not global variable, or Variable is global variable, variable name is in the lists and attributes matched. | |
| @retval EFI_INVALID_PARAMETER Variable is global variable, but variable name is not in the lists or attributes unmatched. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| CheckEfiGlobalVariable ( | |
| IN CHAR16 *VariableName, | |
| IN EFI_GUID *VendorGuid, | |
| IN UINT32 Attributes | |
| ) | |
| { | |
| UINTN Index; | |
| UINTN NameLength; | |
| if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid)){ | |
| // | |
| // Try list 1, exactly match. | |
| // | |
| for (Index = 0; Index < sizeof (mGlobalVariableList)/sizeof (mGlobalVariableList[0]); Index++) { | |
| if ((StrCmp (mGlobalVariableList[Index].Name, VariableName) == 0) && | |
| (Attributes == 0 || Attributes == mGlobalVariableList[Index].Attributes)) { | |
| return EFI_SUCCESS; | |
| } | |
| } | |
| // | |
| // Try list 2. | |
| // | |
| NameLength = StrLen (VariableName) - 4; | |
| for (Index = 0; Index < sizeof (mGlobalVariableList2)/sizeof (mGlobalVariableList2[0]); Index++) { | |
| if ((StrLen (VariableName) == StrLen (mGlobalVariableList2[Index].Name)) && | |
| (StrnCmp (mGlobalVariableList2[Index].Name, VariableName, NameLength) == 0) && | |
| IsHexaDecimalDigitCharacter (VariableName[NameLength]) && | |
| IsHexaDecimalDigitCharacter (VariableName[NameLength + 1]) && | |
| IsHexaDecimalDigitCharacter (VariableName[NameLength + 2]) && | |
| IsHexaDecimalDigitCharacter (VariableName[NameLength + 3]) && | |
| (Attributes == 0 || Attributes == mGlobalVariableList2[Index].Attributes)) { | |
| return EFI_SUCCESS; | |
| } | |
| } | |
| DEBUG ((EFI_D_INFO, "[Variable]: set global variable with invalid variable name or attributes - %g:%s:%x\n", VendorGuid, VariableName, Attributes)); | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Mark a variable that will become read-only after leaving the DXE phase of execution. | |
| @param[in] This The VARIABLE_LOCK_PROTOCOL instance. | |
| @param[in] VariableName A pointer to the variable name that will be made read-only subsequently. | |
| @param[in] VendorGuid A pointer to the vendor GUID that will be made read-only subsequently. | |
| @retval EFI_SUCCESS The variable specified by the VariableName and the VendorGuid was marked | |
| as pending to be read-only. | |
| @retval EFI_INVALID_PARAMETER VariableName or VendorGuid is NULL. | |
| Or VariableName is an empty string. | |
| @retval EFI_ACCESS_DENIED EFI_END_OF_DXE_EVENT_GROUP_GUID or EFI_EVENT_GROUP_READY_TO_BOOT has | |
| already been signaled. | |
| @retval EFI_OUT_OF_RESOURCES There is not enough resource to hold the lock request. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| VariableLockRequestToLock ( | |
| IN CONST EDKII_VARIABLE_LOCK_PROTOCOL *This, | |
| IN CHAR16 *VariableName, | |
| IN EFI_GUID *VendorGuid | |
| ) | |
| { | |
| VARIABLE_ENTRY *Entry; | |
| if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if (mEndOfDxe) { | |
| return EFI_ACCESS_DENIED; | |
| } | |
| Entry = AllocateRuntimePool (sizeof (*Entry) + StrSize (VariableName)); | |
| if (Entry == NULL) { | |
| return EFI_OUT_OF_RESOURCES; | |
| } | |
| DEBUG ((EFI_D_INFO, "[Variable] Lock: %g:%s\n", VendorGuid, VariableName)); | |
| AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); | |
| Entry->Name = (CHAR16 *) (Entry + 1); | |
| StrCpy (Entry->Name, VariableName); | |
| CopyGuid (&Entry->Guid, VendorGuid); | |
| InsertTailList (&mLockedVariableList, &Entry->Link); | |
| ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| This code finds variable in storage blocks (Volatile or Non-Volatile). | |
| @param VariableName Name of Variable to be found. | |
| @param VendorGuid Variable vendor GUID. | |
| @param Attributes Attribute value of the variable found. | |
| @param DataSize Size of Data found. If size is less than the | |
| data, this value contains the required size. | |
| @param Data Data pointer. | |
| @return EFI_INVALID_PARAMETER Invalid parameter. | |
| @return EFI_SUCCESS Find the specified variable. | |
| @return EFI_NOT_FOUND Not found. | |
| @return EFI_BUFFER_TO_SMALL DataSize is too small for the result. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| VariableServiceGetVariable ( | |
| IN CHAR16 *VariableName, | |
| IN EFI_GUID *VendorGuid, | |
| OUT UINT32 *Attributes OPTIONAL, | |
| IN OUT UINTN *DataSize, | |
| OUT VOID *Data | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| VARIABLE_POINTER_TRACK Variable; | |
| UINTN VarDataSize; | |
| if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); | |
| Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); | |
| if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) { | |
| goto Done; | |
| } | |
| // | |
| // Get data size | |
| // | |
| VarDataSize = DataSizeOfVariable (Variable.CurrPtr); | |
| ASSERT (VarDataSize != 0); | |
| if (*DataSize >= VarDataSize) { | |
| if (Data == NULL) { | |
| Status = EFI_INVALID_PARAMETER; | |
| goto Done; | |
| } | |
| CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize); | |
| if (Attributes != NULL) { | |
| *Attributes = Variable.CurrPtr->Attributes; | |
| } | |
| *DataSize = VarDataSize; | |
| UpdateVariableInfo (VariableName, VendorGuid, Variable.Volatile, TRUE, FALSE, FALSE, FALSE); | |
| Status = EFI_SUCCESS; | |
| goto Done; | |
| } else { | |
| *DataSize = VarDataSize; | |
| Status = EFI_BUFFER_TOO_SMALL; | |
| goto Done; | |
| } | |
| Done: | |
| ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); | |
| return Status; | |
| } | |
| /** | |
| This code Finds the Next available variable. | |
| @param VariableNameSize Size of the variable name. | |
| @param VariableName Pointer to variable name. | |
| @param VendorGuid Variable Vendor Guid. | |
| @return EFI_INVALID_PARAMETER Invalid parameter. | |
| @return EFI_SUCCESS Find the specified variable. | |
| @return EFI_NOT_FOUND Not found. | |
| @return EFI_BUFFER_TO_SMALL DataSize is too small for the result. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| VariableServiceGetNextVariableName ( | |
| IN OUT UINTN *VariableNameSize, | |
| IN OUT CHAR16 *VariableName, | |
| IN OUT EFI_GUID *VendorGuid | |
| ) | |
| { | |
| VARIABLE_STORE_TYPE Type; | |
| VARIABLE_POINTER_TRACK Variable; | |
| VARIABLE_POINTER_TRACK VariableInHob; | |
| VARIABLE_POINTER_TRACK VariablePtrTrack; | |
| UINTN VarNameSize; | |
| EFI_STATUS Status; | |
| VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax]; | |
| if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); | |
| Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); | |
| if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) { | |
| goto Done; | |
| } | |
| if (VariableName[0] != 0) { | |
| // | |
| // If variable name is not NULL, get next variable. | |
| // | |
| Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr); | |
| } | |
| // | |
| // 0: Volatile, 1: HOB, 2: Non-Volatile. | |
| // The index and attributes mapping must be kept in this order as FindVariable | |
| // makes use of this mapping to implement search algorithm. | |
| // | |
| VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase; | |
| VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase; | |
| VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache; | |
| while (TRUE) { | |
| // | |
| // Switch from Volatile to HOB, to Non-Volatile. | |
| // | |
| while ((Variable.CurrPtr >= Variable.EndPtr) || | |
| (Variable.CurrPtr == NULL) || | |
| !IsValidVariableHeader (Variable.CurrPtr) | |
| ) { | |
| // | |
| // Find current storage index | |
| // | |
| for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) { | |
| if ((VariableStoreHeader[Type] != NULL) && (Variable.StartPtr == GetStartPointer (VariableStoreHeader[Type]))) { | |
| break; | |
| } | |
| } | |
| ASSERT (Type < VariableStoreTypeMax); | |
| // | |
| // Switch to next storage | |
| // | |
| for (Type++; Type < VariableStoreTypeMax; Type++) { | |
| if (VariableStoreHeader[Type] != NULL) { | |
| break; | |
| } | |
| } | |
| // | |
| // Capture the case that | |
| // 1. current storage is the last one, or | |
| // 2. no further storage | |
| // | |
| if (Type == VariableStoreTypeMax) { | |
| Status = EFI_NOT_FOUND; | |
| goto Done; | |
| } | |
| Variable.StartPtr = GetStartPointer (VariableStoreHeader[Type]); | |
| Variable.EndPtr = GetEndPointer (VariableStoreHeader[Type]); | |
| Variable.CurrPtr = Variable.StartPtr; | |
| } | |
| // | |
| // Variable is found | |
| // | |
| if (Variable.CurrPtr->State == VAR_ADDED || Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { | |
| if (!AtRuntime () || ((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) { | |
| if (Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { | |
| // | |
| // If it is a IN_DELETED_TRANSITION variable, | |
| // and there is also a same ADDED one at the same time, | |
| // don't return it. | |
| // | |
| VariablePtrTrack.StartPtr = Variable.StartPtr; | |
| VariablePtrTrack.EndPtr = Variable.EndPtr; | |
| Status = FindVariableEx ( | |
| GetVariableNamePtr (Variable.CurrPtr), | |
| &Variable.CurrPtr->VendorGuid, | |
| FALSE, | |
| &VariablePtrTrack | |
| ); | |
| if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State == VAR_ADDED) { | |
| Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr); | |
| continue; | |
| } | |
| } | |
| // | |
| // Don't return NV variable when HOB overrides it | |
| // | |
| if ((VariableStoreHeader[VariableStoreTypeHob] != NULL) && (VariableStoreHeader[VariableStoreTypeNv] != NULL) && | |
| (Variable.StartPtr == GetStartPointer (VariableStoreHeader[VariableStoreTypeNv])) | |
| ) { | |
| VariableInHob.StartPtr = GetStartPointer (VariableStoreHeader[VariableStoreTypeHob]); | |
| VariableInHob.EndPtr = GetEndPointer (VariableStoreHeader[VariableStoreTypeHob]); | |
| Status = FindVariableEx ( | |
| GetVariableNamePtr (Variable.CurrPtr), | |
| &Variable.CurrPtr->VendorGuid, | |
| FALSE, | |
| &VariableInHob | |
| ); | |
| if (!EFI_ERROR (Status)) { | |
| Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr); | |
| continue; | |
| } | |
| } | |
| VarNameSize = NameSizeOfVariable (Variable.CurrPtr); | |
| ASSERT (VarNameSize != 0); | |
| if (VarNameSize <= *VariableNameSize) { | |
| CopyMem (VariableName, GetVariableNamePtr (Variable.CurrPtr), VarNameSize); | |
| CopyMem (VendorGuid, &Variable.CurrPtr->VendorGuid, sizeof (EFI_GUID)); | |
| Status = EFI_SUCCESS; | |
| } else { | |
| Status = EFI_BUFFER_TOO_SMALL; | |
| } | |
| *VariableNameSize = VarNameSize; | |
| goto Done; | |
| } | |
| } | |
| Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr); | |
| } | |
| Done: | |
| ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); | |
| return Status; | |
| } | |
| /** | |
| This code sets variable in storage blocks (Volatile or Non-Volatile). | |
| @param VariableName Name of Variable to be found. | |
| @param VendorGuid Variable vendor GUID. | |
| @param Attributes Attribute value of the variable found | |
| @param DataSize Size of Data found. If size is less than the | |
| data, this value contains the required size. | |
| @param Data Data pointer. | |
| @return EFI_INVALID_PARAMETER Invalid parameter. | |
| @return EFI_SUCCESS Set successfully. | |
| @return EFI_OUT_OF_RESOURCES Resource not enough to set variable. | |
| @return EFI_NOT_FOUND Not found. | |
| @return EFI_WRITE_PROTECTED Variable is read-only. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| VariableServiceSetVariable ( | |
| IN CHAR16 *VariableName, | |
| IN EFI_GUID *VendorGuid, | |
| IN UINT32 Attributes, | |
| IN UINTN DataSize, | |
| IN VOID *Data | |
| ) | |
| { | |
| VARIABLE_POINTER_TRACK Variable; | |
| EFI_STATUS Status; | |
| VARIABLE_HEADER *NextVariable; | |
| EFI_PHYSICAL_ADDRESS Point; | |
| LIST_ENTRY *Link; | |
| VARIABLE_ENTRY *Entry; | |
| // | |
| // Check input parameters. | |
| // | |
| if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if (DataSize != 0 && Data == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Not support authenticated or append variable write yet. | |
| // | |
| if ((Attributes & (EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS | EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS | EFI_VARIABLE_APPEND_WRITE)) != 0) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Make sure if runtime bit is set, boot service bit is set also. | |
| // | |
| if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if ((UINTN)(~0) - DataSize < StrSize(VariableName)){ | |
| // | |
| // Prevent whole variable size overflow | |
| // | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // The size of the VariableName, including the Unicode Null in bytes plus | |
| // the DataSize is limited to maximum size of PcdGet32 (PcdMaxHardwareErrorVariableSize) | |
| // bytes for HwErrRec, and PcdGet32 (PcdMaxVariableSize) bytes for the others. | |
| // | |
| if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { | |
| if ( StrSize (VariableName) + DataSize > PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if (!IsHwErrRecVariable(VariableName, VendorGuid)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| } else { | |
| // | |
| // The size of the VariableName, including the Unicode Null in bytes plus | |
| // the DataSize is limited to maximum size of PcdGet32 (PcdMaxVariableSize) bytes. | |
| // | |
| if (StrSize (VariableName) + DataSize > PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| } | |
| Status = CheckEfiGlobalVariable (VariableName, VendorGuid, Attributes); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); | |
| // | |
| // Consider reentrant in MCA/INIT/NMI. It needs be reupdated. | |
| // | |
| if (1 < InterlockedIncrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState)) { | |
| Point = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase; | |
| // | |
| // Parse non-volatile variable data and get last variable offset. | |
| // | |
| NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point); | |
| while ((NextVariable < GetEndPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point)) | |
| && IsValidVariableHeader (NextVariable)) { | |
| NextVariable = GetNextVariablePtr (NextVariable); | |
| } | |
| mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) Point; | |
| } | |
| if (mEndOfDxe && mEnableLocking) { | |
| // | |
| // Treat the variables listed in the forbidden variable list as read-only after leaving DXE phase. | |
| // | |
| for ( Link = GetFirstNode (&mLockedVariableList) | |
| ; !IsNull (&mLockedVariableList, Link) | |
| ; Link = GetNextNode (&mLockedVariableList, Link) | |
| ) { | |
| Entry = BASE_CR (Link, VARIABLE_ENTRY, Link); | |
| if (CompareGuid (&Entry->Guid, VendorGuid) && (StrCmp (Entry->Name, VariableName) == 0)) { | |
| Status = EFI_WRITE_PROTECTED; | |
| DEBUG ((EFI_D_INFO, "[Variable]: Changing readonly variable after leaving DXE phase - %g:%s\n", VendorGuid, VariableName)); | |
| goto Done; | |
| } | |
| } | |
| } | |
| // | |
| // Check whether the input variable is already existed. | |
| // | |
| Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, TRUE); | |
| if (!EFI_ERROR (Status)) { | |
| if (((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) && AtRuntime ()) { | |
| Status = EFI_WRITE_PROTECTED; | |
| goto Done; | |
| } | |
| if (Attributes != 0 && Attributes != Variable.CurrPtr->Attributes) { | |
| // | |
| // If a preexisting variable is rewritten with different attributes, SetVariable() shall not | |
| // modify the variable and shall return EFI_INVALID_PARAMETER. Two exceptions to this rule: | |
| // 1. No access attributes specified | |
| // 2. The only attribute differing is EFI_VARIABLE_APPEND_WRITE | |
| // | |
| Status = EFI_INVALID_PARAMETER; | |
| goto Done; | |
| } | |
| } | |
| if (!FeaturePcdGet (PcdUefiVariableDefaultLangDeprecate)) { | |
| // | |
| // Hook the operation of setting PlatformLangCodes/PlatformLang and LangCodes/Lang. | |
| // | |
| Status = AutoUpdateLangVariable (VariableName, Data, DataSize); | |
| if (EFI_ERROR (Status)) { | |
| // | |
| // The auto update operation failed, directly return to avoid inconsistency between PlatformLang and Lang. | |
| // | |
| goto Done; | |
| } | |
| } | |
| Status = UpdateVariable (VariableName, VendorGuid, Data, DataSize, Attributes, &Variable); | |
| Done: | |
| InterlockedDecrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState); | |
| ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); | |
| return Status; | |
| } | |
| /** | |
| This code returns information about the EFI variables. | |
| @param Attributes Attributes bitmask to specify the type of variables | |
| on which to return information. | |
| @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available | |
| for the EFI variables associated with the attributes specified. | |
| @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available | |
| for EFI variables associated with the attributes specified. | |
| @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables | |
| associated with the attributes specified. | |
| @return EFI_SUCCESS Query successfully. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| VariableServiceQueryVariableInfoInternal ( | |
| IN UINT32 Attributes, | |
| OUT UINT64 *MaximumVariableStorageSize, | |
| OUT UINT64 *RemainingVariableStorageSize, | |
| OUT UINT64 *MaximumVariableSize | |
| ) | |
| { | |
| VARIABLE_HEADER *Variable; | |
| VARIABLE_HEADER *NextVariable; | |
| UINT64 VariableSize; | |
| VARIABLE_STORE_HEADER *VariableStoreHeader; | |
| UINT64 CommonVariableTotalSize; | |
| UINT64 HwErrVariableTotalSize; | |
| EFI_STATUS Status; | |
| VARIABLE_POINTER_TRACK VariablePtrTrack; | |
| CommonVariableTotalSize = 0; | |
| HwErrVariableTotalSize = 0; | |
| if((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) { | |
| // | |
| // Query is Volatile related. | |
| // | |
| VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase); | |
| } else { | |
| // | |
| // Query is Non-Volatile related. | |
| // | |
| VariableStoreHeader = mNvVariableCache; | |
| } | |
| // | |
| // Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize | |
| // with the storage size (excluding the storage header size). | |
| // | |
| *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER); | |
| // | |
| // Harware error record variable needs larger size. | |
| // | |
| if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { | |
| *MaximumVariableStorageSize = PcdGet32 (PcdHwErrStorageSize); | |
| *MaximumVariableSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER); | |
| } else { | |
| if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) { | |
| ASSERT (PcdGet32 (PcdHwErrStorageSize) < VariableStoreHeader->Size); | |
| *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize); | |
| } | |
| // | |
| // Let *MaximumVariableSize be PcdGet32 (PcdMaxVariableSize) with the exception of the variable header size. | |
| // | |
| *MaximumVariableSize = PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER); | |
| } | |
| // | |
| // Point to the starting address of the variables. | |
| // | |
| Variable = GetStartPointer (VariableStoreHeader); | |
| // | |
| // Now walk through the related variable store. | |
| // | |
| while ((Variable < GetEndPointer (VariableStoreHeader)) && IsValidVariableHeader (Variable)) { | |
| NextVariable = GetNextVariablePtr (Variable); | |
| VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable; | |
| if (AtRuntime ()) { | |
| // | |
| // We don't take the state of the variables in mind | |
| // when calculating RemainingVariableStorageSize, | |
| // since the space occupied by variables not marked with | |
| // VAR_ADDED is not allowed to be reclaimed in Runtime. | |
| // | |
| if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { | |
| HwErrVariableTotalSize += VariableSize; | |
| } else { | |
| CommonVariableTotalSize += VariableSize; | |
| } | |
| } else { | |
| // | |
| // Only care about Variables with State VAR_ADDED, because | |
| // the space not marked as VAR_ADDED is reclaimable now. | |
| // | |
| if (Variable->State == VAR_ADDED) { | |
| if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { | |
| HwErrVariableTotalSize += VariableSize; | |
| } else { | |
| CommonVariableTotalSize += VariableSize; | |
| } | |
| } else if (Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { | |
| // | |
| // If it is a IN_DELETED_TRANSITION variable, | |
| // and there is not also a same ADDED one at the same time, | |
| // this IN_DELETED_TRANSITION variable is valid. | |
| // | |
| VariablePtrTrack.StartPtr = GetStartPointer (VariableStoreHeader); | |
| VariablePtrTrack.EndPtr = GetEndPointer (VariableStoreHeader); | |
| Status = FindVariableEx ( | |
| GetVariableNamePtr (Variable), | |
| &Variable->VendorGuid, | |
| FALSE, | |
| &VariablePtrTrack | |
| ); | |
| if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State != VAR_ADDED) { | |
| if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { | |
| HwErrVariableTotalSize += VariableSize; | |
| } else { | |
| CommonVariableTotalSize += VariableSize; | |
| } | |
| } | |
| } | |
| } | |
| // | |
| // Go to the next one. | |
| // | |
| Variable = NextVariable; | |
| } | |
| if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){ | |
| *RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize; | |
| }else { | |
| *RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize; | |
| } | |
| if (*RemainingVariableStorageSize < sizeof (VARIABLE_HEADER)) { | |
| *MaximumVariableSize = 0; | |
| } else if ((*RemainingVariableStorageSize - sizeof (VARIABLE_HEADER)) < *MaximumVariableSize) { | |
| *MaximumVariableSize = *RemainingVariableStorageSize - sizeof (VARIABLE_HEADER); | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| This code returns information about the EFI variables. | |
| @param Attributes Attributes bitmask to specify the type of variables | |
| on which to return information. | |
| @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available | |
| for the EFI variables associated with the attributes specified. | |
| @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available | |
| for EFI variables associated with the attributes specified. | |
| @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables | |
| associated with the attributes specified. | |
| @return EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied. | |
| @return EFI_SUCCESS Query successfully. | |
| @return EFI_UNSUPPORTED The attribute is not supported on this platform. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| VariableServiceQueryVariableInfo ( | |
| IN UINT32 Attributes, | |
| OUT UINT64 *MaximumVariableStorageSize, | |
| OUT UINT64 *RemainingVariableStorageSize, | |
| OUT UINT64 *MaximumVariableSize | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == 0) { | |
| // | |
| // Make sure the Attributes combination is supported by the platform. | |
| // | |
| return EFI_UNSUPPORTED; | |
| } else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) { | |
| // | |
| // Make sure if runtime bit is set, boot service bit is set also. | |
| // | |
| return EFI_INVALID_PARAMETER; | |
| } else if (AtRuntime () && ((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) { | |
| // | |
| // Make sure RT Attribute is set if we are in Runtime phase. | |
| // | |
| return EFI_INVALID_PARAMETER; | |
| } else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { | |
| // | |
| // Make sure Hw Attribute is set with NV. | |
| // | |
| return EFI_INVALID_PARAMETER; | |
| } else if ((Attributes & (EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS | EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS | EFI_VARIABLE_APPEND_WRITE)) != 0) { | |
| // | |
| // Not support authenticated or append variable write yet. | |
| // | |
| return EFI_UNSUPPORTED; | |
| } | |
| AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); | |
| Status = VariableServiceQueryVariableInfoInternal ( | |
| Attributes, | |
| MaximumVariableStorageSize, | |
| RemainingVariableStorageSize, | |
| MaximumVariableSize | |
| ); | |
| ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); | |
| return Status; | |
| } | |
| /** | |
| This function reclaims variable storage if free size is below the threshold. | |
| **/ | |
| VOID | |
| ReclaimForOS( | |
| VOID | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| UINTN CommonVariableSpace; | |
| UINTN RemainingCommonVariableSpace; | |
| UINTN RemainingHwErrVariableSpace; | |
| Status = EFI_SUCCESS; | |
| CommonVariableSpace = ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase)))->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32(PcdHwErrStorageSize); //Allowable max size of common variable storage space | |
| RemainingCommonVariableSpace = CommonVariableSpace - mVariableModuleGlobal->CommonVariableTotalSize; | |
| RemainingHwErrVariableSpace = PcdGet32 (PcdHwErrStorageSize) - mVariableModuleGlobal->HwErrVariableTotalSize; | |
| // | |
| // Check if the free area is blow a threshold. | |
| // | |
| if ((RemainingCommonVariableSpace < PcdGet32 (PcdMaxVariableSize)) | |
| || ((PcdGet32 (PcdHwErrStorageSize) != 0) && | |
| (RemainingHwErrVariableSpace < PcdGet32 (PcdMaxHardwareErrorVariableSize)))){ | |
| Status = Reclaim ( | |
| mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase, | |
| &mVariableModuleGlobal->NonVolatileLastVariableOffset, | |
| FALSE, | |
| NULL, | |
| NULL, | |
| 0 | |
| ); | |
| ASSERT_EFI_ERROR (Status); | |
| } | |
| } | |
| /** | |
| Init non-volatile variable store. | |
| @retval EFI_SUCCESS Function successfully executed. | |
| @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource. | |
| @retval EFI_VOLUME_CORRUPTED Variable Store or Firmware Volume for Variable Store is corrupted. | |
| **/ | |
| EFI_STATUS | |
| InitNonVolatileVariableStore ( | |
| VOID | |
| ) | |
| { | |
| EFI_FIRMWARE_VOLUME_HEADER *FvHeader; | |
| VARIABLE_HEADER *NextVariable; | |
| EFI_PHYSICAL_ADDRESS VariableStoreBase; | |
| UINT64 VariableStoreLength; | |
| UINTN VariableSize; | |
| EFI_HOB_GUID_TYPE *GuidHob; | |
| EFI_PHYSICAL_ADDRESS NvStorageBase; | |
| UINT8 *NvStorageData; | |
| UINT32 NvStorageSize; | |
| FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *FtwLastWriteData; | |
| UINT32 BackUpOffset; | |
| UINT32 BackUpSize; | |
| mVariableModuleGlobal->FvbInstance = NULL; | |
| // | |
| // Note that in EdkII variable driver implementation, Hardware Error Record type variable | |
| // is stored with common variable in the same NV region. So the platform integrator should | |
| // ensure that the value of PcdHwErrStorageSize is less than or equal to the value of | |
| // PcdFlashNvStorageVariableSize. | |
| // | |
| ASSERT (PcdGet32 (PcdHwErrStorageSize) <= PcdGet32 (PcdFlashNvStorageVariableSize)); | |
| // | |
| // Allocate runtime memory used for a memory copy of the FLASH region. | |
| // Keep the memory and the FLASH in sync as updates occur. | |
| // | |
| NvStorageSize = PcdGet32 (PcdFlashNvStorageVariableSize); | |
| NvStorageData = AllocateRuntimeZeroPool (NvStorageSize); | |
| if (NvStorageData == NULL) { | |
| return EFI_OUT_OF_RESOURCES; | |
| } | |
| NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64); | |
| if (NvStorageBase == 0) { | |
| NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase); | |
| } | |
| // | |
| // Copy NV storage data to the memory buffer. | |
| // | |
| CopyMem (NvStorageData, (UINT8 *) (UINTN) NvStorageBase, NvStorageSize); | |
| // | |
| // Check the FTW last write data hob. | |
| // | |
| GuidHob = GetFirstGuidHob (&gEdkiiFaultTolerantWriteGuid); | |
| if (GuidHob != NULL) { | |
| FtwLastWriteData = (FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *) GET_GUID_HOB_DATA (GuidHob); | |
| if (FtwLastWriteData->TargetAddress == NvStorageBase) { | |
| DEBUG ((EFI_D_INFO, "Variable: NV storage is backed up in spare block: 0x%x\n", (UINTN) FtwLastWriteData->SpareAddress)); | |
| // | |
| // Copy the backed up NV storage data to the memory buffer from spare block. | |
| // | |
| CopyMem (NvStorageData, (UINT8 *) (UINTN) (FtwLastWriteData->SpareAddress), NvStorageSize); | |
| } else if ((FtwLastWriteData->TargetAddress > NvStorageBase) && | |
| (FtwLastWriteData->TargetAddress < (NvStorageBase + NvStorageSize))) { | |
| // | |
| // Flash NV storage from the offset is backed up in spare block. | |
| // | |
| BackUpOffset = (UINT32) (FtwLastWriteData->TargetAddress - NvStorageBase); | |
| BackUpSize = NvStorageSize - BackUpOffset; | |
| DEBUG ((EFI_D_INFO, "Variable: High partial NV storage from offset: %x is backed up in spare block: 0x%x\n", BackUpOffset, (UINTN) FtwLastWriteData->SpareAddress)); | |
| // | |
| // Copy the partial backed up NV storage data to the memory buffer from spare block. | |
| // | |
| CopyMem (NvStorageData + BackUpOffset, (UINT8 *) (UINTN) FtwLastWriteData->SpareAddress, BackUpSize); | |
| } | |
| } | |
| FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) NvStorageData; | |
| // | |
| // Check if the Firmware Volume is not corrupted | |
| // | |
| if ((FvHeader->Signature != EFI_FVH_SIGNATURE) || (!CompareGuid (&gEfiSystemNvDataFvGuid, &FvHeader->FileSystemGuid))) { | |
| FreePool (NvStorageData); | |
| DEBUG ((EFI_D_ERROR, "Firmware Volume for Variable Store is corrupted\n")); | |
| return EFI_VOLUME_CORRUPTED; | |
| } | |
| VariableStoreBase = (EFI_PHYSICAL_ADDRESS) ((UINTN) FvHeader + FvHeader->HeaderLength); | |
| VariableStoreLength = (UINT64) (NvStorageSize - FvHeader->HeaderLength); | |
| mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase; | |
| mNvVariableCache = (VARIABLE_STORE_HEADER *) (UINTN) VariableStoreBase; | |
| if (GetVariableStoreStatus (mNvVariableCache) != EfiValid) { | |
| FreePool (NvStorageData); | |
| DEBUG((EFI_D_ERROR, "Variable Store header is corrupted\n")); | |
| return EFI_VOLUME_CORRUPTED; | |
| } | |
| ASSERT(mNvVariableCache->Size == VariableStoreLength); | |
| // | |
| // The max variable or hardware error variable size should be < variable store size. | |
| // | |
| ASSERT(MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize)) < VariableStoreLength); | |
| // | |
| // Parse non-volatile variable data and get last variable offset. | |
| // | |
| NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase); | |
| while (IsValidVariableHeader (NextVariable)) { | |
| VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER); | |
| if ((NextVariable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { | |
| mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize); | |
| } else { | |
| mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize); | |
| } | |
| NextVariable = GetNextVariablePtr (NextVariable); | |
| } | |
| mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) VariableStoreBase; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Flush the HOB variable to flash. | |
| @param[in] VariableName Name of variable has been updated or deleted. | |
| @param[in] VendorGuid Guid of variable has been updated or deleted. | |
| **/ | |
| VOID | |
| FlushHobVariableToFlash ( | |
| IN CHAR16 *VariableName, | |
| IN EFI_GUID *VendorGuid | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| VARIABLE_STORE_HEADER *VariableStoreHeader; | |
| VARIABLE_HEADER *Variable; | |
| VOID *VariableData; | |
| BOOLEAN ErrorFlag; | |
| ErrorFlag = FALSE; | |
| // | |
| // Flush the HOB variable to flash. | |
| // | |
| if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) { | |
| VariableStoreHeader = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase; | |
| // | |
| // Set HobVariableBase to 0, it can avoid SetVariable to call back. | |
| // | |
| mVariableModuleGlobal->VariableGlobal.HobVariableBase = 0; | |
| for ( Variable = GetStartPointer (VariableStoreHeader) | |
| ; (Variable < GetEndPointer (VariableStoreHeader) && IsValidVariableHeader (Variable)) | |
| ; Variable = GetNextVariablePtr (Variable) | |
| ) { | |
| if (Variable->State != VAR_ADDED) { | |
| // | |
| // The HOB variable has been set to DELETED state in local. | |
| // | |
| continue; | |
| } | |
| ASSERT ((Variable->Attributes & EFI_VARIABLE_NON_VOLATILE) != 0); | |
| if (VendorGuid == NULL || VariableName == NULL || | |
| !CompareGuid (VendorGuid, &Variable->VendorGuid) || | |
| StrCmp (VariableName, GetVariableNamePtr (Variable)) != 0) { | |
| VariableData = GetVariableDataPtr (Variable); | |
| Status = VariableServiceSetVariable ( | |
| GetVariableNamePtr (Variable), | |
| &Variable->VendorGuid, | |
| Variable->Attributes, | |
| Variable->DataSize, | |
| VariableData | |
| ); | |
| DEBUG ((EFI_D_INFO, "Variable driver flush the HOB variable to flash: %g %s %r\n", &Variable->VendorGuid, GetVariableNamePtr (Variable), Status)); | |
| } else { | |
| // | |
| // The updated or deleted variable is matched with the HOB variable. | |
| // Don't break here because we will try to set other HOB variables | |
| // since this variable could be set successfully. | |
| // | |
| Status = EFI_SUCCESS; | |
| } | |
| if (!EFI_ERROR (Status)) { | |
| // | |
| // If set variable successful, or the updated or deleted variable is matched with the HOB variable, | |
| // set the HOB variable to DELETED state in local. | |
| // | |
| DEBUG ((EFI_D_INFO, "Variable driver set the HOB variable to DELETED state in local: %g %s\n", &Variable->VendorGuid, GetVariableNamePtr (Variable))); | |
| Variable->State &= VAR_DELETED; | |
| } else { | |
| ErrorFlag = TRUE; | |
| } | |
| } | |
| if (ErrorFlag) { | |
| // | |
| // We still have HOB variable(s) not flushed in flash. | |
| // | |
| mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VariableStoreHeader; | |
| } else { | |
| // | |
| // All HOB variables have been flushed in flash. | |
| // | |
| DEBUG ((EFI_D_INFO, "Variable driver: all HOB variables have been flushed in flash.\n")); | |
| if (!AtRuntime ()) { | |
| FreePool ((VOID *) VariableStoreHeader); | |
| } | |
| } | |
| } | |
| } | |
| /** | |
| Initializes variable write service after FTW was ready. | |
| @retval EFI_SUCCESS Function successfully executed. | |
| @retval Others Fail to initialize the variable service. | |
| **/ | |
| EFI_STATUS | |
| VariableWriteServiceInitialize ( | |
| VOID | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| VARIABLE_STORE_HEADER *VariableStoreHeader; | |
| UINTN Index; | |
| UINT8 Data; | |
| EFI_PHYSICAL_ADDRESS VariableStoreBase; | |
| EFI_PHYSICAL_ADDRESS NvStorageBase; | |
| NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64); | |
| if (NvStorageBase == 0) { | |
| NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase); | |
| } | |
| VariableStoreBase = NvStorageBase + (((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(NvStorageBase))->HeaderLength); | |
| // | |
| // Let NonVolatileVariableBase point to flash variable store base directly after FTW ready. | |
| // | |
| mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase; | |
| VariableStoreHeader = (VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase; | |
| // | |
| // Check if the free area is really free. | |
| // | |
| for (Index = mVariableModuleGlobal->NonVolatileLastVariableOffset; Index < VariableStoreHeader->Size; Index++) { | |
| Data = ((UINT8 *) mNvVariableCache)[Index]; | |
| if (Data != 0xff) { | |
| // | |
| // There must be something wrong in variable store, do reclaim operation. | |
| // | |
| Status = Reclaim ( | |
| mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase, | |
| &mVariableModuleGlobal->NonVolatileLastVariableOffset, | |
| FALSE, | |
| NULL, | |
| NULL, | |
| 0 | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| break; | |
| } | |
| } | |
| FlushHobVariableToFlash (NULL, NULL); | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Initializes variable store area for non-volatile and volatile variable. | |
| @retval EFI_SUCCESS Function successfully executed. | |
| @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource. | |
| **/ | |
| EFI_STATUS | |
| VariableCommonInitialize ( | |
| VOID | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| VARIABLE_STORE_HEADER *VolatileVariableStore; | |
| VARIABLE_STORE_HEADER *VariableStoreHeader; | |
| UINT64 VariableStoreLength; | |
| UINTN ScratchSize; | |
| EFI_HOB_GUID_TYPE *GuidHob; | |
| // | |
| // Allocate runtime memory for variable driver global structure. | |
| // | |
| mVariableModuleGlobal = AllocateRuntimeZeroPool (sizeof (VARIABLE_MODULE_GLOBAL)); | |
| if (mVariableModuleGlobal == NULL) { | |
| return EFI_OUT_OF_RESOURCES; | |
| } | |
| InitializeLock (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock, TPL_NOTIFY); | |
| // | |
| // Get HOB variable store. | |
| // | |
| GuidHob = GetFirstGuidHob (&gEfiVariableGuid); | |
| if (GuidHob != NULL) { | |
| VariableStoreHeader = GET_GUID_HOB_DATA (GuidHob); | |
| VariableStoreLength = (UINT64) (GuidHob->Header.HobLength - sizeof (EFI_HOB_GUID_TYPE)); | |
| if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) { | |
| mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) AllocateRuntimeCopyPool ((UINTN) VariableStoreLength, (VOID *) VariableStoreHeader); | |
| if (mVariableModuleGlobal->VariableGlobal.HobVariableBase == 0) { | |
| FreePool (mVariableModuleGlobal); | |
| return EFI_OUT_OF_RESOURCES; | |
| } | |
| } else { | |
| DEBUG ((EFI_D_ERROR, "HOB Variable Store header is corrupted!\n")); | |
| } | |
| } | |
| // | |
| // Allocate memory for volatile variable store, note that there is a scratch space to store scratch data. | |
| // | |
| ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize)); | |
| VolatileVariableStore = AllocateRuntimePool (PcdGet32 (PcdVariableStoreSize) + ScratchSize); | |
| if (VolatileVariableStore == NULL) { | |
| if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) { | |
| FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase); | |
| } | |
| FreePool (mVariableModuleGlobal); | |
| return EFI_OUT_OF_RESOURCES; | |
| } | |
| SetMem (VolatileVariableStore, PcdGet32 (PcdVariableStoreSize) + ScratchSize, 0xff); | |
| // | |
| // Initialize Variable Specific Data. | |
| // | |
| mVariableModuleGlobal->VariableGlobal.VolatileVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VolatileVariableStore; | |
| mVariableModuleGlobal->VolatileLastVariableOffset = (UINTN) GetStartPointer (VolatileVariableStore) - (UINTN) VolatileVariableStore; | |
| CopyGuid (&VolatileVariableStore->Signature, &gEfiVariableGuid); | |
| VolatileVariableStore->Size = PcdGet32 (PcdVariableStoreSize); | |
| VolatileVariableStore->Format = VARIABLE_STORE_FORMATTED; | |
| VolatileVariableStore->State = VARIABLE_STORE_HEALTHY; | |
| VolatileVariableStore->Reserved = 0; | |
| VolatileVariableStore->Reserved1 = 0; | |
| // | |
| // Init non-volatile variable store. | |
| // | |
| Status = InitNonVolatileVariableStore (); | |
| if (EFI_ERROR (Status)) { | |
| if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) { | |
| FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase); | |
| } | |
| FreePool (mVariableModuleGlobal); | |
| FreePool (VolatileVariableStore); | |
| } | |
| return Status; | |
| } | |
| /** | |
| Get the proper fvb handle and/or fvb protocol by the given Flash address. | |
| @param[in] Address The Flash address. | |
| @param[out] FvbHandle In output, if it is not NULL, it points to the proper FVB handle. | |
| @param[out] FvbProtocol In output, if it is not NULL, it points to the proper FVB protocol. | |
| **/ | |
| EFI_STATUS | |
| GetFvbInfoByAddress ( | |
| IN EFI_PHYSICAL_ADDRESS Address, | |
| OUT EFI_HANDLE *FvbHandle OPTIONAL, | |
| OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvbProtocol OPTIONAL | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_HANDLE *HandleBuffer; | |
| UINTN HandleCount; | |
| UINTN Index; | |
| EFI_PHYSICAL_ADDRESS FvbBaseAddress; | |
| EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb; | |
| EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; | |
| EFI_FVB_ATTRIBUTES_2 Attributes; | |
| // | |
| // Get all FVB handles. | |
| // | |
| Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer); | |
| if (EFI_ERROR (Status)) { | |
| return EFI_NOT_FOUND; | |
| } | |
| // | |
| // Get the FVB to access variable store. | |
| // | |
| Fvb = NULL; | |
| for (Index = 0; Index < HandleCount; Index += 1, Status = EFI_NOT_FOUND, Fvb = NULL) { | |
| Status = GetFvbByHandle (HandleBuffer[Index], &Fvb); | |
| if (EFI_ERROR (Status)) { | |
| Status = EFI_NOT_FOUND; | |
| break; | |
| } | |
| // | |
| // Ensure this FVB protocol supported Write operation. | |
| // | |
| Status = Fvb->GetAttributes (Fvb, &Attributes); | |
| if (EFI_ERROR (Status) || ((Attributes & EFI_FVB2_WRITE_STATUS) == 0)) { | |
| continue; | |
| } | |
| // | |
| // Compare the address and select the right one. | |
| // | |
| Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress); | |
| if (EFI_ERROR (Status)) { | |
| continue; | |
| } | |
| FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvbBaseAddress); | |
| if ((Address >= FvbBaseAddress) && (Address < (FvbBaseAddress + FwVolHeader->FvLength))) { | |
| if (FvbHandle != NULL) { | |
| *FvbHandle = HandleBuffer[Index]; | |
| } | |
| if (FvbProtocol != NULL) { | |
| *FvbProtocol = Fvb; | |
| } | |
| Status = EFI_SUCCESS; | |
| break; | |
| } | |
| } | |
| FreePool (HandleBuffer); | |
| if (Fvb == NULL) { | |
| Status = EFI_NOT_FOUND; | |
| } | |
| return Status; | |
| } | |