| /** @file | |
| Network library. | |
| Copyright (c) 2005 - 2010, Intel Corporation. All rights reserved.<BR> | |
| This program and the accompanying materials | |
| are licensed and made available under the terms and conditions of the BSD License | |
| which accompanies this distribution. The full text of the license may be found at | |
| http://opensource.org/licenses/bsd-license.php | |
| THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
| WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
| **/ | |
| #include <Uefi.h> | |
| #include <Protocol/DriverBinding.h> | |
| #include <Protocol/ServiceBinding.h> | |
| #include <Protocol/SimpleNetwork.h> | |
| #include <Protocol/ManagedNetwork.h> | |
| #include <Protocol/HiiConfigRouting.h> | |
| #include <Protocol/ComponentName.h> | |
| #include <Protocol/ComponentName2.h> | |
| #include <Protocol/HiiConfigAccess.h> | |
| #include <Guid/NicIp4ConfigNvData.h> | |
| #include <Library/NetLib.h> | |
| #include <Library/BaseLib.h> | |
| #include <Library/DebugLib.h> | |
| #include <Library/BaseMemoryLib.h> | |
| #include <Library/UefiBootServicesTableLib.h> | |
| #include <Library/UefiRuntimeServicesTableLib.h> | |
| #include <Library/MemoryAllocationLib.h> | |
| #include <Library/DevicePathLib.h> | |
| #include <Library/HiiLib.h> | |
| #include <Library/PrintLib.h> | |
| #include <Library/UefiLib.h> | |
| #define NIC_ITEM_CONFIG_SIZE sizeof (NIC_IP4_CONFIG_INFO) + sizeof (EFI_IP4_ROUTE_TABLE) * MAX_IP4_CONFIG_IN_VARIABLE | |
| // | |
| // All the supported IP4 maskes in host byte order. | |
| // | |
| GLOBAL_REMOVE_IF_UNREFERENCED IP4_ADDR gIp4AllMasks[IP4_MASK_NUM] = { | |
| 0x00000000, | |
| 0x80000000, | |
| 0xC0000000, | |
| 0xE0000000, | |
| 0xF0000000, | |
| 0xF8000000, | |
| 0xFC000000, | |
| 0xFE000000, | |
| 0xFF000000, | |
| 0xFF800000, | |
| 0xFFC00000, | |
| 0xFFE00000, | |
| 0xFFF00000, | |
| 0xFFF80000, | |
| 0xFFFC0000, | |
| 0xFFFE0000, | |
| 0xFFFF0000, | |
| 0xFFFF8000, | |
| 0xFFFFC000, | |
| 0xFFFFE000, | |
| 0xFFFFF000, | |
| 0xFFFFF800, | |
| 0xFFFFFC00, | |
| 0xFFFFFE00, | |
| 0xFFFFFF00, | |
| 0xFFFFFF80, | |
| 0xFFFFFFC0, | |
| 0xFFFFFFE0, | |
| 0xFFFFFFF0, | |
| 0xFFFFFFF8, | |
| 0xFFFFFFFC, | |
| 0xFFFFFFFE, | |
| 0xFFFFFFFF, | |
| }; | |
| GLOBAL_REMOVE_IF_UNREFERENCED EFI_IPv4_ADDRESS mZeroIp4Addr = {{0, 0, 0, 0}}; | |
| // | |
| // Any error level digitally larger than mNetDebugLevelMax | |
| // will be silently discarded. | |
| // | |
| GLOBAL_REMOVE_IF_UNREFERENCED UINTN mNetDebugLevelMax = NETDEBUG_LEVEL_ERROR; | |
| GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mSyslogPacketSeq = 0xDEADBEEF; | |
| // | |
| // You can change mSyslogDstMac mSyslogDstIp and mSyslogSrcIp | |
| // here to direct the syslog packets to the syslog deamon. The | |
| // default is broadcast to both the ethernet and IP. | |
| // | |
| GLOBAL_REMOVE_IF_UNREFERENCED UINT8 mSyslogDstMac[NET_ETHER_ADDR_LEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; | |
| GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mSyslogDstIp = 0xffffffff; | |
| GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mSyslogSrcIp = 0; | |
| GLOBAL_REMOVE_IF_UNREFERENCED CHAR8 *mMonthName[] = { | |
| "Jan", | |
| "Feb", | |
| "Mar", | |
| "Apr", | |
| "May", | |
| "Jun", | |
| "Jul", | |
| "Aug", | |
| "Sep", | |
| "Oct", | |
| "Nov", | |
| "Dec" | |
| }; | |
| // | |
| // VLAN device path node template | |
| // | |
| GLOBAL_REMOVE_IF_UNREFERENCED VLAN_DEVICE_PATH mNetVlanDevicePathTemplate = { | |
| { | |
| MESSAGING_DEVICE_PATH, | |
| MSG_VLAN_DP, | |
| { | |
| (UINT8) (sizeof (VLAN_DEVICE_PATH)), | |
| (UINT8) ((sizeof (VLAN_DEVICE_PATH)) >> 8) | |
| } | |
| }, | |
| 0 | |
| }; | |
| /** | |
| Locate the handles that support SNP, then open one of them | |
| to send the syslog packets. The caller isn't required to close | |
| the SNP after use because the SNP is opened by HandleProtocol. | |
| @return The point to SNP if one is properly openned. Otherwise NULL | |
| **/ | |
| EFI_SIMPLE_NETWORK_PROTOCOL * | |
| SyslogLocateSnp ( | |
| VOID | |
| ) | |
| { | |
| EFI_SIMPLE_NETWORK_PROTOCOL *Snp; | |
| EFI_STATUS Status; | |
| EFI_HANDLE *Handles; | |
| UINTN HandleCount; | |
| UINTN Index; | |
| // | |
| // Locate the handles which has SNP installed. | |
| // | |
| Handles = NULL; | |
| Status = gBS->LocateHandleBuffer ( | |
| ByProtocol, | |
| &gEfiSimpleNetworkProtocolGuid, | |
| NULL, | |
| &HandleCount, | |
| &Handles | |
| ); | |
| if (EFI_ERROR (Status) || (HandleCount == 0)) { | |
| return NULL; | |
| } | |
| // | |
| // Try to open one of the ethernet SNP protocol to send packet | |
| // | |
| Snp = NULL; | |
| for (Index = 0; Index < HandleCount; Index++) { | |
| Status = gBS->HandleProtocol ( | |
| Handles[Index], | |
| &gEfiSimpleNetworkProtocolGuid, | |
| (VOID **) &Snp | |
| ); | |
| if ((Status == EFI_SUCCESS) && (Snp != NULL) && | |
| (Snp->Mode->IfType == NET_IFTYPE_ETHERNET) && | |
| (Snp->Mode->MaxPacketSize >= NET_SYSLOG_PACKET_LEN)) { | |
| break; | |
| } | |
| Snp = NULL; | |
| } | |
| FreePool (Handles); | |
| return Snp; | |
| } | |
| /** | |
| Transmit a syslog packet synchronously through SNP. The Packet | |
| already has the ethernet header prepended. This function should | |
| fill in the source MAC because it will try to locate a SNP each | |
| time it is called to avoid the problem if SNP is unloaded. | |
| This code snip is copied from MNP. | |
| @param[in] Packet The Syslog packet | |
| @param[in] Length The length of the packet | |
| @retval EFI_DEVICE_ERROR Failed to locate a usable SNP protocol | |
| @retval EFI_TIMEOUT Timeout happened to send the packet. | |
| @retval EFI_SUCCESS Packet is sent. | |
| **/ | |
| EFI_STATUS | |
| SyslogSendPacket ( | |
| IN CHAR8 *Packet, | |
| IN UINT32 Length | |
| ) | |
| { | |
| EFI_SIMPLE_NETWORK_PROTOCOL *Snp; | |
| ETHER_HEAD *Ether; | |
| EFI_STATUS Status; | |
| EFI_EVENT TimeoutEvent; | |
| UINT8 *TxBuf; | |
| Snp = SyslogLocateSnp (); | |
| if (Snp == NULL) { | |
| return EFI_DEVICE_ERROR; | |
| } | |
| Ether = (ETHER_HEAD *) Packet; | |
| CopyMem (Ether->SrcMac, Snp->Mode->CurrentAddress.Addr, NET_ETHER_ADDR_LEN); | |
| // | |
| // Start the timeout event. | |
| // | |
| Status = gBS->CreateEvent ( | |
| EVT_TIMER, | |
| TPL_NOTIFY, | |
| NULL, | |
| NULL, | |
| &TimeoutEvent | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| Status = gBS->SetTimer (TimeoutEvent, TimerRelative, NET_SYSLOG_TX_TIMEOUT); | |
| if (EFI_ERROR (Status)) { | |
| goto ON_EXIT; | |
| } | |
| for (;;) { | |
| // | |
| // Transmit the packet through SNP. | |
| // | |
| Status = Snp->Transmit (Snp, 0, Length, Packet, NULL, NULL, NULL); | |
| if ((Status != EFI_SUCCESS) && (Status != EFI_NOT_READY)) { | |
| Status = EFI_DEVICE_ERROR; | |
| break; | |
| } | |
| // | |
| // If Status is EFI_SUCCESS, the packet is put in the transmit queue. | |
| // if Status is EFI_NOT_READY, the transmit engine of the network | |
| // interface is busy. Both need to sync SNP. | |
| // | |
| TxBuf = NULL; | |
| do { | |
| // | |
| // Get the recycled transmit buffer status. | |
| // | |
| Snp->GetStatus (Snp, NULL, (VOID **) &TxBuf); | |
| if (!EFI_ERROR (gBS->CheckEvent (TimeoutEvent))) { | |
| Status = EFI_TIMEOUT; | |
| break; | |
| } | |
| } while (TxBuf == NULL); | |
| if ((Status == EFI_SUCCESS) || (Status == EFI_TIMEOUT)) { | |
| break; | |
| } | |
| // | |
| // Status is EFI_NOT_READY. Restart the timer event and | |
| // call Snp->Transmit again. | |
| // | |
| gBS->SetTimer (TimeoutEvent, TimerRelative, NET_SYSLOG_TX_TIMEOUT); | |
| } | |
| gBS->SetTimer (TimeoutEvent, TimerCancel, 0); | |
| ON_EXIT: | |
| gBS->CloseEvent (TimeoutEvent); | |
| return Status; | |
| } | |
| /** | |
| Build a syslog packet, including the Ethernet/Ip/Udp headers | |
| and user's message. | |
| @param[in] Level Syslog servity level | |
| @param[in] Module The module that generates the log | |
| @param[in] File The file that contains the current log | |
| @param[in] Line The line of code in the File that contains the current log | |
| @param[in] Message The log message | |
| @param[in] BufLen The lenght of the Buf | |
| @param[out] Buf The buffer to put the packet data | |
| @return The length of the syslog packet built. | |
| **/ | |
| UINT32 | |
| SyslogBuildPacket ( | |
| IN UINT32 Level, | |
| IN UINT8 *Module, | |
| IN UINT8 *File, | |
| IN UINT32 Line, | |
| IN UINT8 *Message, | |
| IN UINT32 BufLen, | |
| OUT CHAR8 *Buf | |
| ) | |
| { | |
| ETHER_HEAD *Ether; | |
| IP4_HEAD *Ip4; | |
| EFI_UDP_HEADER *Udp4; | |
| EFI_TIME Time; | |
| UINT32 Pri; | |
| UINT32 Len; | |
| // | |
| // Fill in the Ethernet header. Leave alone the source MAC. | |
| // SyslogSendPacket will fill in the address for us. | |
| // | |
| Ether = (ETHER_HEAD *) Buf; | |
| CopyMem (Ether->DstMac, mSyslogDstMac, NET_ETHER_ADDR_LEN); | |
| ZeroMem (Ether->SrcMac, NET_ETHER_ADDR_LEN); | |
| Ether->EtherType = HTONS (0x0800); // IPv4 protocol | |
| Buf += sizeof (ETHER_HEAD); | |
| BufLen -= sizeof (ETHER_HEAD); | |
| // | |
| // Fill in the IP header | |
| // | |
| Ip4 = (IP4_HEAD *) Buf; | |
| Ip4->HeadLen = 5; | |
| Ip4->Ver = 4; | |
| Ip4->Tos = 0; | |
| Ip4->TotalLen = 0; | |
| Ip4->Id = (UINT16) mSyslogPacketSeq; | |
| Ip4->Fragment = 0; | |
| Ip4->Ttl = 16; | |
| Ip4->Protocol = 0x11; | |
| Ip4->Checksum = 0; | |
| Ip4->Src = mSyslogSrcIp; | |
| Ip4->Dst = mSyslogDstIp; | |
| Buf += sizeof (IP4_HEAD); | |
| BufLen -= sizeof (IP4_HEAD); | |
| // | |
| // Fill in the UDP header, Udp checksum is optional. Leave it zero. | |
| // | |
| Udp4 = (EFI_UDP_HEADER *) Buf; | |
| Udp4->SrcPort = HTONS (514); | |
| Udp4->DstPort = HTONS (514); | |
| Udp4->Length = 0; | |
| Udp4->Checksum = 0; | |
| Buf += sizeof (EFI_UDP_HEADER); | |
| BufLen -= sizeof (EFI_UDP_HEADER); | |
| // | |
| // Build the syslog message body with <PRI> Timestamp machine module Message | |
| // | |
| Pri = ((NET_SYSLOG_FACILITY & 31) << 3) | (Level & 7); | |
| gRT->GetTime (&Time, NULL); | |
| ASSERT ((Time.Month <= 12) && (Time.Month >= 1)); | |
| // | |
| // Use %a to format the ASCII strings, %s to format UNICODE strings | |
| // | |
| Len = 0; | |
| Len += (UINT32) AsciiSPrint ( | |
| Buf, | |
| BufLen, | |
| "<%d> %a %d %d:%d:%d ", | |
| Pri, | |
| mMonthName [Time.Month-1], | |
| Time.Day, | |
| Time.Hour, | |
| Time.Minute, | |
| Time.Second | |
| ); | |
| Len--; | |
| Len += (UINT32) AsciiSPrint ( | |
| Buf + Len, | |
| BufLen - Len, | |
| "Tiano %a: %a (Line: %d File: %a)", | |
| Module, | |
| Message, | |
| Line, | |
| File | |
| ); | |
| Len--; | |
| // | |
| // OK, patch the IP length/checksum and UDP length fields. | |
| // | |
| Len += sizeof (EFI_UDP_HEADER); | |
| Udp4->Length = HTONS ((UINT16) Len); | |
| Len += sizeof (IP4_HEAD); | |
| Ip4->TotalLen = HTONS ((UINT16) Len); | |
| Ip4->Checksum = (UINT16) (~NetblockChecksum ((UINT8 *) Ip4, sizeof (IP4_HEAD))); | |
| return Len + sizeof (ETHER_HEAD); | |
| } | |
| /** | |
| Allocate a buffer, then format the message to it. This is a | |
| help function for the NET_DEBUG_XXX macros. The PrintArg of | |
| these macros treats the variable length print parameters as a | |
| single parameter, and pass it to the NetDebugASPrint. For | |
| example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name)) | |
| if extracted to: | |
| NetDebugOutput ( | |
| NETDEBUG_LEVEL_TRACE, | |
| "Tcp", | |
| __FILE__, | |
| __LINE__, | |
| NetDebugASPrint ("State transit to %a\n", Name) | |
| ) | |
| @param Format The ASCII format string. | |
| @param ... The variable length parameter whose format is determined | |
| by the Format string. | |
| @return The buffer containing the formatted message, | |
| or NULL if failed to allocate memory. | |
| **/ | |
| CHAR8 * | |
| EFIAPI | |
| NetDebugASPrint ( | |
| IN CHAR8 *Format, | |
| ... | |
| ) | |
| { | |
| VA_LIST Marker; | |
| CHAR8 *Buf; | |
| Buf = (CHAR8 *) AllocatePool (NET_DEBUG_MSG_LEN); | |
| if (Buf == NULL) { | |
| return NULL; | |
| } | |
| VA_START (Marker, Format); | |
| AsciiVSPrint (Buf, NET_DEBUG_MSG_LEN, Format, Marker); | |
| VA_END (Marker); | |
| return Buf; | |
| } | |
| /** | |
| Builds an UDP4 syslog packet and send it using SNP. | |
| This function will locate a instance of SNP then send the message through it. | |
| Because it isn't open the SNP BY_DRIVER, apply caution when using it. | |
| @param Level The servity level of the message. | |
| @param Module The Moudle that generates the log. | |
| @param File The file that contains the log. | |
| @param Line The exact line that contains the log. | |
| @param Message The user message to log. | |
| @retval EFI_INVALID_PARAMETER Any input parameter is invalid. | |
| @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet | |
| @retval EFI_SUCCESS The log is discard because that it is more verbose | |
| than the mNetDebugLevelMax. Or, it has been sent out. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| NetDebugOutput ( | |
| IN UINT32 Level, | |
| IN UINT8 *Module, | |
| IN UINT8 *File, | |
| IN UINT32 Line, | |
| IN UINT8 *Message | |
| ) | |
| { | |
| CHAR8 *Packet; | |
| UINT32 Len; | |
| EFI_STATUS Status; | |
| // | |
| // Check whether the message should be sent out | |
| // | |
| if (Message == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if (Level > mNetDebugLevelMax) { | |
| Status = EFI_SUCCESS; | |
| goto ON_EXIT; | |
| } | |
| // | |
| // Allocate a maxium of 1024 bytes, the caller should ensure | |
| // that the message plus the ethernet/ip/udp header is shorter | |
| // than this | |
| // | |
| Packet = (CHAR8 *) AllocatePool (NET_SYSLOG_PACKET_LEN); | |
| if (Packet == NULL) { | |
| Status = EFI_OUT_OF_RESOURCES; | |
| goto ON_EXIT; | |
| } | |
| // | |
| // Build the message: Ethernet header + IP header + Udp Header + user data | |
| // | |
| Len = SyslogBuildPacket ( | |
| Level, | |
| Module, | |
| File, | |
| Line, | |
| Message, | |
| NET_SYSLOG_PACKET_LEN, | |
| Packet | |
| ); | |
| mSyslogPacketSeq++; | |
| Status = SyslogSendPacket (Packet, Len); | |
| FreePool (Packet); | |
| ON_EXIT: | |
| FreePool (Message); | |
| return Status; | |
| } | |
| /** | |
| Return the length of the mask. | |
| Return the length of the mask, the correct value is from 0 to 32. | |
| If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM. | |
| NetMask is in the host byte order. | |
| @param[in] NetMask The netmask to get the length from. | |
| @return The length of the netmask, IP4_MASK_NUM if the mask is invalid. | |
| **/ | |
| INTN | |
| EFIAPI | |
| NetGetMaskLength ( | |
| IN IP4_ADDR NetMask | |
| ) | |
| { | |
| INTN Index; | |
| for (Index = 0; Index < IP4_MASK_NUM; Index++) { | |
| if (NetMask == gIp4AllMasks[Index]) { | |
| break; | |
| } | |
| } | |
| return Index; | |
| } | |
| /** | |
| Return the class of the IP address, such as class A, B, C. | |
| Addr is in host byte order. | |
| The address of class A starts with 0. | |
| If the address belong to class A, return IP4_ADDR_CLASSA. | |
| The address of class B starts with 10. | |
| If the address belong to class B, return IP4_ADDR_CLASSB. | |
| The address of class C starts with 110. | |
| If the address belong to class C, return IP4_ADDR_CLASSC. | |
| The address of class D starts with 1110. | |
| If the address belong to class D, return IP4_ADDR_CLASSD. | |
| The address of class E starts with 1111. | |
| If the address belong to class E, return IP4_ADDR_CLASSE. | |
| @param[in] Addr The address to get the class from. | |
| @return IP address class, such as IP4_ADDR_CLASSA. | |
| **/ | |
| INTN | |
| EFIAPI | |
| NetGetIpClass ( | |
| IN IP4_ADDR Addr | |
| ) | |
| { | |
| UINT8 ByteOne; | |
| ByteOne = (UINT8) (Addr >> 24); | |
| if ((ByteOne & 0x80) == 0) { | |
| return IP4_ADDR_CLASSA; | |
| } else if ((ByteOne & 0xC0) == 0x80) { | |
| return IP4_ADDR_CLASSB; | |
| } else if ((ByteOne & 0xE0) == 0xC0) { | |
| return IP4_ADDR_CLASSC; | |
| } else if ((ByteOne & 0xF0) == 0xE0) { | |
| return IP4_ADDR_CLASSD; | |
| } else { | |
| return IP4_ADDR_CLASSE; | |
| } | |
| } | |
| /** | |
| Check whether the IP is a valid unicast address according to | |
| the netmask. If NetMask is zero, use the IP address's class to get the default mask. | |
| If Ip is 0, IP is not a valid unicast address. | |
| Class D address is used for multicasting and class E address is reserved for future. If Ip | |
| belongs to class D or class E, IP is not a valid unicast address. | |
| If all bits of the host address of IP are 0 or 1, IP is also not a valid unicast address. | |
| @param[in] Ip The IP to check against. | |
| @param[in] NetMask The mask of the IP. | |
| @return TRUE if IP is a valid unicast address on the network, otherwise FALSE. | |
| **/ | |
| BOOLEAN | |
| EFIAPI | |
| NetIp4IsUnicast ( | |
| IN IP4_ADDR Ip, | |
| IN IP4_ADDR NetMask | |
| ) | |
| { | |
| INTN Class; | |
| Class = NetGetIpClass (Ip); | |
| if ((Ip == 0) || (Class >= IP4_ADDR_CLASSD)) { | |
| return FALSE; | |
| } | |
| if (NetMask == 0) { | |
| NetMask = gIp4AllMasks[Class << 3]; | |
| } | |
| if (((Ip &~NetMask) == ~NetMask) || ((Ip &~NetMask) == 0)) { | |
| return FALSE; | |
| } | |
| return TRUE; | |
| } | |
| /** | |
| Check whether the incoming IPv6 address is a valid unicast address. | |
| If the address is a multicast address has binary 0xFF at the start, it is not | |
| a valid unicast address. If the address is unspecified ::, it is not a valid | |
| unicast address to be assigned to any node. If the address is loopback address | |
| ::1, it is also not a valid unicast address to be assigned to any physical | |
| interface. | |
| @param[in] Ip6 The IPv6 address to check against. | |
| @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE. | |
| **/ | |
| BOOLEAN | |
| EFIAPI | |
| NetIp6IsValidUnicast ( | |
| IN EFI_IPv6_ADDRESS *Ip6 | |
| ) | |
| { | |
| UINT8 Byte; | |
| UINT8 Index; | |
| if (Ip6->Addr[0] == 0xFF) { | |
| return FALSE; | |
| } | |
| for (Index = 0; Index < 15; Index++) { | |
| if (Ip6->Addr[Index] != 0) { | |
| return TRUE; | |
| } | |
| } | |
| Byte = Ip6->Addr[Index]; | |
| if (Byte == 0x0 || Byte == 0x1) { | |
| return FALSE; | |
| } | |
| return TRUE; | |
| } | |
| /** | |
| Check whether the incoming Ipv6 address is the unspecified address or not. | |
| @param[in] Ip6 - Ip6 address, in network order. | |
| @retval TRUE - Yes, unspecified | |
| @retval FALSE - No | |
| **/ | |
| BOOLEAN | |
| EFIAPI | |
| NetIp6IsUnspecifiedAddr ( | |
| IN EFI_IPv6_ADDRESS *Ip6 | |
| ) | |
| { | |
| UINT8 Index; | |
| for (Index = 0; Index < 16; Index++) { | |
| if (Ip6->Addr[Index] != 0) { | |
| return FALSE; | |
| } | |
| } | |
| return TRUE; | |
| } | |
| /** | |
| Check whether the incoming Ipv6 address is a link-local address. | |
| @param[in] Ip6 - Ip6 address, in network order. | |
| @retval TRUE - Yes, link-local address | |
| @retval FALSE - No | |
| **/ | |
| BOOLEAN | |
| EFIAPI | |
| NetIp6IsLinkLocalAddr ( | |
| IN EFI_IPv6_ADDRESS *Ip6 | |
| ) | |
| { | |
| UINT8 Index; | |
| ASSERT (Ip6 != NULL); | |
| if (Ip6->Addr[0] != 0xFE) { | |
| return FALSE; | |
| } | |
| if (Ip6->Addr[1] != 0x80) { | |
| return FALSE; | |
| } | |
| for (Index = 2; Index < 8; Index++) { | |
| if (Ip6->Addr[Index] != 0) { | |
| return FALSE; | |
| } | |
| } | |
| return TRUE; | |
| } | |
| /** | |
| Check whether the Ipv6 address1 and address2 are on the connected network. | |
| @param[in] Ip1 - Ip6 address1, in network order. | |
| @param[in] Ip2 - Ip6 address2, in network order. | |
| @param[in] PrefixLength - The prefix length of the checking net. | |
| @retval TRUE - Yes, connected. | |
| @retval FALSE - No. | |
| **/ | |
| BOOLEAN | |
| EFIAPI | |
| NetIp6IsNetEqual ( | |
| EFI_IPv6_ADDRESS *Ip1, | |
| EFI_IPv6_ADDRESS *Ip2, | |
| UINT8 PrefixLength | |
| ) | |
| { | |
| UINT8 Byte; | |
| UINT8 Bit; | |
| UINT8 Mask; | |
| ASSERT ((Ip1 != NULL) && (Ip2 != NULL) && (PrefixLength < IP6_PREFIX_NUM)); | |
| if (PrefixLength == 0) { | |
| return TRUE; | |
| } | |
| Byte = (UINT8) (PrefixLength / 8); | |
| Bit = (UINT8) (PrefixLength % 8); | |
| if (CompareMem (Ip1, Ip2, Byte) != 0) { | |
| return FALSE; | |
| } | |
| if (Bit > 0) { | |
| Mask = (UINT8) (0xFF << (8 - Bit)); | |
| ASSERT (Byte < 16); | |
| if ((Ip1->Addr[Byte] & Mask) != (Ip2->Addr[Byte] & Mask)) { | |
| return FALSE; | |
| } | |
| } | |
| return TRUE; | |
| } | |
| /** | |
| Switches the endianess of an IPv6 address | |
| This function swaps the bytes in a 128-bit IPv6 address to switch the value | |
| from little endian to big endian or vice versa. The byte swapped value is | |
| returned. | |
| @param Ip6 Points to an IPv6 address | |
| @return The byte swapped IPv6 address. | |
| **/ | |
| EFI_IPv6_ADDRESS * | |
| EFIAPI | |
| Ip6Swap128 ( | |
| EFI_IPv6_ADDRESS *Ip6 | |
| ) | |
| { | |
| UINT64 High; | |
| UINT64 Low; | |
| CopyMem (&High, Ip6, sizeof (UINT64)); | |
| CopyMem (&Low, &Ip6->Addr[8], sizeof (UINT64)); | |
| High = SwapBytes64 (High); | |
| Low = SwapBytes64 (Low); | |
| CopyMem (Ip6, &Low, sizeof (UINT64)); | |
| CopyMem (&Ip6->Addr[8], &High, sizeof (UINT64)); | |
| return Ip6; | |
| } | |
| /** | |
| Initialize a random seed using current time. | |
| Get current time first. Then initialize a random seed based on some basic | |
| mathematics operation on the hour, day, minute, second, nanosecond and year | |
| of the current time. | |
| @return The random seed initialized with current time. | |
| **/ | |
| UINT32 | |
| EFIAPI | |
| NetRandomInitSeed ( | |
| VOID | |
| ) | |
| { | |
| EFI_TIME Time; | |
| UINT32 Seed; | |
| gRT->GetTime (&Time, NULL); | |
| Seed = (~Time.Hour << 24 | Time.Day << 16 | Time.Minute << 8 | Time.Second); | |
| Seed ^= Time.Nanosecond; | |
| Seed ^= Time.Year << 7; | |
| return Seed; | |
| } | |
| /** | |
| Extract a UINT32 from a byte stream. | |
| Copy a UINT32 from a byte stream, then converts it from Network | |
| byte order to host byte order. Use this function to avoid alignment error. | |
| @param[in] Buf The buffer to extract the UINT32. | |
| @return The UINT32 extracted. | |
| **/ | |
| UINT32 | |
| EFIAPI | |
| NetGetUint32 ( | |
| IN UINT8 *Buf | |
| ) | |
| { | |
| UINT32 Value; | |
| CopyMem (&Value, Buf, sizeof (UINT32)); | |
| return NTOHL (Value); | |
| } | |
| /** | |
| Put a UINT32 to the byte stream in network byte order. | |
| Converts a UINT32 from host byte order to network byte order. Then copy it to the | |
| byte stream. | |
| @param[in, out] Buf The buffer to put the UINT32. | |
| @param[in] Data The data to be converted and put into the byte stream. | |
| **/ | |
| VOID | |
| EFIAPI | |
| NetPutUint32 ( | |
| IN OUT UINT8 *Buf, | |
| IN UINT32 Data | |
| ) | |
| { | |
| Data = HTONL (Data); | |
| CopyMem (Buf, &Data, sizeof (UINT32)); | |
| } | |
| /** | |
| Remove the first node entry on the list, and return the removed node entry. | |
| Removes the first node Entry from a doubly linked list. It is up to the caller of | |
| this function to release the memory used by the first node if that is required. On | |
| exit, the removed node is returned. | |
| If Head is NULL, then ASSERT(). | |
| If Head was not initialized, then ASSERT(). | |
| If PcdMaximumLinkedListLength is not zero, and the number of nodes in the | |
| linked list including the head node is greater than or equal to PcdMaximumLinkedListLength, | |
| then ASSERT(). | |
| @param[in, out] Head The list header. | |
| @return The first node entry that is removed from the list, NULL if the list is empty. | |
| **/ | |
| LIST_ENTRY * | |
| EFIAPI | |
| NetListRemoveHead ( | |
| IN OUT LIST_ENTRY *Head | |
| ) | |
| { | |
| LIST_ENTRY *First; | |
| ASSERT (Head != NULL); | |
| if (IsListEmpty (Head)) { | |
| return NULL; | |
| } | |
| First = Head->ForwardLink; | |
| Head->ForwardLink = First->ForwardLink; | |
| First->ForwardLink->BackLink = Head; | |
| DEBUG_CODE ( | |
| First->ForwardLink = (LIST_ENTRY *) NULL; | |
| First->BackLink = (LIST_ENTRY *) NULL; | |
| ); | |
| return First; | |
| } | |
| /** | |
| Remove the last node entry on the list and and return the removed node entry. | |
| Removes the last node entry from a doubly linked list. It is up to the caller of | |
| this function to release the memory used by the first node if that is required. On | |
| exit, the removed node is returned. | |
| If Head is NULL, then ASSERT(). | |
| If Head was not initialized, then ASSERT(). | |
| If PcdMaximumLinkedListLength is not zero, and the number of nodes in the | |
| linked list including the head node is greater than or equal to PcdMaximumLinkedListLength, | |
| then ASSERT(). | |
| @param[in, out] Head The list head. | |
| @return The last node entry that is removed from the list, NULL if the list is empty. | |
| **/ | |
| LIST_ENTRY * | |
| EFIAPI | |
| NetListRemoveTail ( | |
| IN OUT LIST_ENTRY *Head | |
| ) | |
| { | |
| LIST_ENTRY *Last; | |
| ASSERT (Head != NULL); | |
| if (IsListEmpty (Head)) { | |
| return NULL; | |
| } | |
| Last = Head->BackLink; | |
| Head->BackLink = Last->BackLink; | |
| Last->BackLink->ForwardLink = Head; | |
| DEBUG_CODE ( | |
| Last->ForwardLink = (LIST_ENTRY *) NULL; | |
| Last->BackLink = (LIST_ENTRY *) NULL; | |
| ); | |
| return Last; | |
| } | |
| /** | |
| Insert a new node entry after a designated node entry of a doubly linked list. | |
| Inserts a new node entry donated by NewEntry after the node entry donated by PrevEntry | |
| of the doubly linked list. | |
| @param[in, out] PrevEntry The previous entry to insert after. | |
| @param[in, out] NewEntry The new entry to insert. | |
| **/ | |
| VOID | |
| EFIAPI | |
| NetListInsertAfter ( | |
| IN OUT LIST_ENTRY *PrevEntry, | |
| IN OUT LIST_ENTRY *NewEntry | |
| ) | |
| { | |
| NewEntry->BackLink = PrevEntry; | |
| NewEntry->ForwardLink = PrevEntry->ForwardLink; | |
| PrevEntry->ForwardLink->BackLink = NewEntry; | |
| PrevEntry->ForwardLink = NewEntry; | |
| } | |
| /** | |
| Insert a new node entry before a designated node entry of a doubly linked list. | |
| Inserts a new node entry donated by NewEntry after the node entry donated by PostEntry | |
| of the doubly linked list. | |
| @param[in, out] PostEntry The entry to insert before. | |
| @param[in, out] NewEntry The new entry to insert. | |
| **/ | |
| VOID | |
| EFIAPI | |
| NetListInsertBefore ( | |
| IN OUT LIST_ENTRY *PostEntry, | |
| IN OUT LIST_ENTRY *NewEntry | |
| ) | |
| { | |
| NewEntry->ForwardLink = PostEntry; | |
| NewEntry->BackLink = PostEntry->BackLink; | |
| PostEntry->BackLink->ForwardLink = NewEntry; | |
| PostEntry->BackLink = NewEntry; | |
| } | |
| /** | |
| Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs. | |
| Initialize the forward and backward links of two head nodes donated by Map->Used | |
| and Map->Recycled of two doubly linked lists. | |
| Initializes the count of the <Key, Value> pairs in the netmap to zero. | |
| If Map is NULL, then ASSERT(). | |
| If the address of Map->Used is NULL, then ASSERT(). | |
| If the address of Map->Recycled is NULl, then ASSERT(). | |
| @param[in, out] Map The netmap to initialize. | |
| **/ | |
| VOID | |
| EFIAPI | |
| NetMapInit ( | |
| IN OUT NET_MAP *Map | |
| ) | |
| { | |
| ASSERT (Map != NULL); | |
| InitializeListHead (&Map->Used); | |
| InitializeListHead (&Map->Recycled); | |
| Map->Count = 0; | |
| } | |
| /** | |
| To clean up the netmap, that is, release allocated memories. | |
| Removes all nodes of the Used doubly linked list and free memory of all related netmap items. | |
| Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items. | |
| The number of the <Key, Value> pairs in the netmap is set to be zero. | |
| If Map is NULL, then ASSERT(). | |
| @param[in, out] Map The netmap to clean up. | |
| **/ | |
| VOID | |
| EFIAPI | |
| NetMapClean ( | |
| IN OUT NET_MAP *Map | |
| ) | |
| { | |
| NET_MAP_ITEM *Item; | |
| LIST_ENTRY *Entry; | |
| LIST_ENTRY *Next; | |
| ASSERT (Map != NULL); | |
| NET_LIST_FOR_EACH_SAFE (Entry, Next, &Map->Used) { | |
| Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link); | |
| RemoveEntryList (&Item->Link); | |
| Map->Count--; | |
| gBS->FreePool (Item); | |
| } | |
| ASSERT ((Map->Count == 0) && IsListEmpty (&Map->Used)); | |
| NET_LIST_FOR_EACH_SAFE (Entry, Next, &Map->Recycled) { | |
| Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link); | |
| RemoveEntryList (&Item->Link); | |
| gBS->FreePool (Item); | |
| } | |
| ASSERT (IsListEmpty (&Map->Recycled)); | |
| } | |
| /** | |
| Test whether the netmap is empty and return true if it is. | |
| If the number of the <Key, Value> pairs in the netmap is zero, return TRUE. | |
| If Map is NULL, then ASSERT(). | |
| @param[in] Map The net map to test. | |
| @return TRUE if the netmap is empty, otherwise FALSE. | |
| **/ | |
| BOOLEAN | |
| EFIAPI | |
| NetMapIsEmpty ( | |
| IN NET_MAP *Map | |
| ) | |
| { | |
| ASSERT (Map != NULL); | |
| return (BOOLEAN) (Map->Count == 0); | |
| } | |
| /** | |
| Return the number of the <Key, Value> pairs in the netmap. | |
| @param[in] Map The netmap to get the entry number. | |
| @return The entry number in the netmap. | |
| **/ | |
| UINTN | |
| EFIAPI | |
| NetMapGetCount ( | |
| IN NET_MAP *Map | |
| ) | |
| { | |
| return Map->Count; | |
| } | |
| /** | |
| Return one allocated item. | |
| If the Recycled doubly linked list of the netmap is empty, it will try to allocate | |
| a batch of items if there are enough resources and add corresponding nodes to the begining | |
| of the Recycled doubly linked list of the netmap. Otherwise, it will directly remove | |
| the fist node entry of the Recycled doubly linked list and return the corresponding item. | |
| If Map is NULL, then ASSERT(). | |
| @param[in, out] Map The netmap to allocate item for. | |
| @return The allocated item. If NULL, the | |
| allocation failed due to resource limit. | |
| **/ | |
| NET_MAP_ITEM * | |
| NetMapAllocItem ( | |
| IN OUT NET_MAP *Map | |
| ) | |
| { | |
| NET_MAP_ITEM *Item; | |
| LIST_ENTRY *Head; | |
| UINTN Index; | |
| ASSERT (Map != NULL); | |
| Head = &Map->Recycled; | |
| if (IsListEmpty (Head)) { | |
| for (Index = 0; Index < NET_MAP_INCREAMENT; Index++) { | |
| Item = AllocatePool (sizeof (NET_MAP_ITEM)); | |
| if (Item == NULL) { | |
| if (Index == 0) { | |
| return NULL; | |
| } | |
| break; | |
| } | |
| InsertHeadList (Head, &Item->Link); | |
| } | |
| } | |
| Item = NET_LIST_HEAD (Head, NET_MAP_ITEM, Link); | |
| NetListRemoveHead (Head); | |
| return Item; | |
| } | |
| /** | |
| Allocate an item to save the <Key, Value> pair to the head of the netmap. | |
| Allocate an item to save the <Key, Value> pair and add corresponding node entry | |
| to the beginning of the Used doubly linked list. The number of the <Key, Value> | |
| pairs in the netmap increase by 1. | |
| If Map is NULL, then ASSERT(). | |
| @param[in, out] Map The netmap to insert into. | |
| @param[in] Key The user's key. | |
| @param[in] Value The user's value for the key. | |
| @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item. | |
| @retval EFI_SUCCESS The item is inserted to the head. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| NetMapInsertHead ( | |
| IN OUT NET_MAP *Map, | |
| IN VOID *Key, | |
| IN VOID *Value OPTIONAL | |
| ) | |
| { | |
| NET_MAP_ITEM *Item; | |
| ASSERT (Map != NULL); | |
| Item = NetMapAllocItem (Map); | |
| if (Item == NULL) { | |
| return EFI_OUT_OF_RESOURCES; | |
| } | |
| Item->Key = Key; | |
| Item->Value = Value; | |
| InsertHeadList (&Map->Used, &Item->Link); | |
| Map->Count++; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Allocate an item to save the <Key, Value> pair to the tail of the netmap. | |
| Allocate an item to save the <Key, Value> pair and add corresponding node entry | |
| to the tail of the Used doubly linked list. The number of the <Key, Value> | |
| pairs in the netmap increase by 1. | |
| If Map is NULL, then ASSERT(). | |
| @param[in, out] Map The netmap to insert into. | |
| @param[in] Key The user's key. | |
| @param[in] Value The user's value for the key. | |
| @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item. | |
| @retval EFI_SUCCESS The item is inserted to the tail. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| NetMapInsertTail ( | |
| IN OUT NET_MAP *Map, | |
| IN VOID *Key, | |
| IN VOID *Value OPTIONAL | |
| ) | |
| { | |
| NET_MAP_ITEM *Item; | |
| ASSERT (Map != NULL); | |
| Item = NetMapAllocItem (Map); | |
| if (Item == NULL) { | |
| return EFI_OUT_OF_RESOURCES; | |
| } | |
| Item->Key = Key; | |
| Item->Value = Value; | |
| InsertTailList (&Map->Used, &Item->Link); | |
| Map->Count++; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Check whether the item is in the Map and return TRUE if it is. | |
| @param[in] Map The netmap to search within. | |
| @param[in] Item The item to search. | |
| @return TRUE if the item is in the netmap, otherwise FALSE. | |
| **/ | |
| BOOLEAN | |
| NetItemInMap ( | |
| IN NET_MAP *Map, | |
| IN NET_MAP_ITEM *Item | |
| ) | |
| { | |
| LIST_ENTRY *ListEntry; | |
| NET_LIST_FOR_EACH (ListEntry, &Map->Used) { | |
| if (ListEntry == &Item->Link) { | |
| return TRUE; | |
| } | |
| } | |
| return FALSE; | |
| } | |
| /** | |
| Find the key in the netmap and returns the point to the item contains the Key. | |
| Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every | |
| item with the key to search. It returns the point to the item contains the Key if found. | |
| If Map is NULL, then ASSERT(). | |
| @param[in] Map The netmap to search within. | |
| @param[in] Key The key to search. | |
| @return The point to the item contains the Key, or NULL if Key isn't in the map. | |
| **/ | |
| NET_MAP_ITEM * | |
| EFIAPI | |
| NetMapFindKey ( | |
| IN NET_MAP *Map, | |
| IN VOID *Key | |
| ) | |
| { | |
| LIST_ENTRY *Entry; | |
| NET_MAP_ITEM *Item; | |
| ASSERT (Map != NULL); | |
| NET_LIST_FOR_EACH (Entry, &Map->Used) { | |
| Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link); | |
| if (Item->Key == Key) { | |
| return Item; | |
| } | |
| } | |
| return NULL; | |
| } | |
| /** | |
| Remove the node entry of the item from the netmap and return the key of the removed item. | |
| Remove the node entry of the item from the Used doubly linked list of the netmap. | |
| The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node | |
| entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL, | |
| Value will point to the value of the item. It returns the key of the removed item. | |
| If Map is NULL, then ASSERT(). | |
| If Item is NULL, then ASSERT(). | |
| if item in not in the netmap, then ASSERT(). | |
| @param[in, out] Map The netmap to remove the item from. | |
| @param[in, out] Item The item to remove. | |
| @param[out] Value The variable to receive the value if not NULL. | |
| @return The key of the removed item. | |
| **/ | |
| VOID * | |
| EFIAPI | |
| NetMapRemoveItem ( | |
| IN OUT NET_MAP *Map, | |
| IN OUT NET_MAP_ITEM *Item, | |
| OUT VOID **Value OPTIONAL | |
| ) | |
| { | |
| ASSERT ((Map != NULL) && (Item != NULL)); | |
| ASSERT (NetItemInMap (Map, Item)); | |
| RemoveEntryList (&Item->Link); | |
| Map->Count--; | |
| InsertHeadList (&Map->Recycled, &Item->Link); | |
| if (Value != NULL) { | |
| *Value = Item->Value; | |
| } | |
| return Item->Key; | |
| } | |
| /** | |
| Remove the first node entry on the netmap and return the key of the removed item. | |
| Remove the first node entry from the Used doubly linked list of the netmap. | |
| The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node | |
| entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL, | |
| parameter Value will point to the value of the item. It returns the key of the removed item. | |
| If Map is NULL, then ASSERT(). | |
| If the Used doubly linked list is empty, then ASSERT(). | |
| @param[in, out] Map The netmap to remove the head from. | |
| @param[out] Value The variable to receive the value if not NULL. | |
| @return The key of the item removed. | |
| **/ | |
| VOID * | |
| EFIAPI | |
| NetMapRemoveHead ( | |
| IN OUT NET_MAP *Map, | |
| OUT VOID **Value OPTIONAL | |
| ) | |
| { | |
| NET_MAP_ITEM *Item; | |
| // | |
| // Often, it indicates a programming error to remove | |
| // the first entry in an empty list | |
| // | |
| ASSERT (Map && !IsListEmpty (&Map->Used)); | |
| Item = NET_LIST_HEAD (&Map->Used, NET_MAP_ITEM, Link); | |
| RemoveEntryList (&Item->Link); | |
| Map->Count--; | |
| InsertHeadList (&Map->Recycled, &Item->Link); | |
| if (Value != NULL) { | |
| *Value = Item->Value; | |
| } | |
| return Item->Key; | |
| } | |
| /** | |
| Remove the last node entry on the netmap and return the key of the removed item. | |
| Remove the last node entry from the Used doubly linked list of the netmap. | |
| The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node | |
| entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL, | |
| parameter Value will point to the value of the item. It returns the key of the removed item. | |
| If Map is NULL, then ASSERT(). | |
| If the Used doubly linked list is empty, then ASSERT(). | |
| @param[in, out] Map The netmap to remove the tail from. | |
| @param[out] Value The variable to receive the value if not NULL. | |
| @return The key of the item removed. | |
| **/ | |
| VOID * | |
| EFIAPI | |
| NetMapRemoveTail ( | |
| IN OUT NET_MAP *Map, | |
| OUT VOID **Value OPTIONAL | |
| ) | |
| { | |
| NET_MAP_ITEM *Item; | |
| // | |
| // Often, it indicates a programming error to remove | |
| // the last entry in an empty list | |
| // | |
| ASSERT (Map && !IsListEmpty (&Map->Used)); | |
| Item = NET_LIST_TAIL (&Map->Used, NET_MAP_ITEM, Link); | |
| RemoveEntryList (&Item->Link); | |
| Map->Count--; | |
| InsertHeadList (&Map->Recycled, &Item->Link); | |
| if (Value != NULL) { | |
| *Value = Item->Value; | |
| } | |
| return Item->Key; | |
| } | |
| /** | |
| Iterate through the netmap and call CallBack for each item. | |
| It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break | |
| from the loop. It returns the CallBack's last return value. This function is | |
| delete safe for the current item. | |
| If Map is NULL, then ASSERT(). | |
| If CallBack is NULL, then ASSERT(). | |
| @param[in] Map The Map to iterate through. | |
| @param[in] CallBack The callback function to call for each item. | |
| @param[in] Arg The opaque parameter to the callback. | |
| @retval EFI_SUCCESS There is no item in the netmap or CallBack for each item | |
| return EFI_SUCCESS. | |
| @retval Others It returns the CallBack's last return value. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| NetMapIterate ( | |
| IN NET_MAP *Map, | |
| IN NET_MAP_CALLBACK CallBack, | |
| IN VOID *Arg OPTIONAL | |
| ) | |
| { | |
| LIST_ENTRY *Entry; | |
| LIST_ENTRY *Next; | |
| LIST_ENTRY *Head; | |
| NET_MAP_ITEM *Item; | |
| EFI_STATUS Result; | |
| ASSERT ((Map != NULL) && (CallBack != NULL)); | |
| Head = &Map->Used; | |
| if (IsListEmpty (Head)) { | |
| return EFI_SUCCESS; | |
| } | |
| NET_LIST_FOR_EACH_SAFE (Entry, Next, Head) { | |
| Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link); | |
| Result = CallBack (Map, Item, Arg); | |
| if (EFI_ERROR (Result)) { | |
| return Result; | |
| } | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Internal function to get the child handle of the NIC handle. | |
| @param[in] Controller NIC controller handle. | |
| @param[out] ChildHandle Returned child handle. | |
| @retval EFI_SUCCESS Successfully to get child handle. | |
| @retval Others Failed to get child handle. | |
| **/ | |
| EFI_STATUS | |
| NetGetChildHandle ( | |
| IN EFI_HANDLE Controller, | |
| OUT EFI_HANDLE *ChildHandle | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_HANDLE *Handles; | |
| UINTN HandleCount; | |
| UINTN Index; | |
| EFI_DEVICE_PATH_PROTOCOL *ChildDeviceDevicePath; | |
| VENDOR_DEVICE_PATH *VendorDeviceNode; | |
| // | |
| // Locate all EFI Hii Config Access protocols | |
| // | |
| Status = gBS->LocateHandleBuffer ( | |
| ByProtocol, | |
| &gEfiHiiConfigAccessProtocolGuid, | |
| NULL, | |
| &HandleCount, | |
| &Handles | |
| ); | |
| if (EFI_ERROR (Status) || (HandleCount == 0)) { | |
| return Status; | |
| } | |
| Status = EFI_NOT_FOUND; | |
| for (Index = 0; Index < HandleCount; Index++) { | |
| Status = EfiTestChildHandle (Controller, Handles[Index], &gEfiManagedNetworkServiceBindingProtocolGuid); | |
| if (!EFI_ERROR (Status)) { | |
| // | |
| // Get device path on the child handle | |
| // | |
| Status = gBS->HandleProtocol ( | |
| Handles[Index], | |
| &gEfiDevicePathProtocolGuid, | |
| (VOID **) &ChildDeviceDevicePath | |
| ); | |
| if (!EFI_ERROR (Status)) { | |
| while (!IsDevicePathEnd (ChildDeviceDevicePath)) { | |
| ChildDeviceDevicePath = NextDevicePathNode (ChildDeviceDevicePath); | |
| // | |
| // Parse one instance | |
| // | |
| if (ChildDeviceDevicePath->Type == HARDWARE_DEVICE_PATH && | |
| ChildDeviceDevicePath->SubType == HW_VENDOR_DP) { | |
| VendorDeviceNode = (VENDOR_DEVICE_PATH *) ChildDeviceDevicePath; | |
| if (CompareMem (&VendorDeviceNode->Guid, &gEfiNicIp4ConfigVariableGuid, sizeof (EFI_GUID)) == 0) { | |
| // | |
| // Found item matched gEfiNicIp4ConfigVariableGuid | |
| // | |
| *ChildHandle = Handles[Index]; | |
| FreePool (Handles); | |
| return EFI_SUCCESS; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| } | |
| FreePool (Handles); | |
| return Status; | |
| } | |
| /** | |
| This is the default unload handle for all the network drivers. | |
| Disconnect the driver specified by ImageHandle from all the devices in the handle database. | |
| Uninstall all the protocols installed in the driver entry point. | |
| @param[in] ImageHandle The drivers' driver image. | |
| @retval EFI_SUCCESS The image is unloaded. | |
| @retval Others Failed to unload the image. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| NetLibDefaultUnload ( | |
| IN EFI_HANDLE ImageHandle | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_HANDLE *DeviceHandleBuffer; | |
| UINTN DeviceHandleCount; | |
| UINTN Index; | |
| EFI_DRIVER_BINDING_PROTOCOL *DriverBinding; | |
| EFI_COMPONENT_NAME_PROTOCOL *ComponentName; | |
| EFI_COMPONENT_NAME2_PROTOCOL *ComponentName2; | |
| // | |
| // Get the list of all the handles in the handle database. | |
| // If there is an error getting the list, then the unload | |
| // operation fails. | |
| // | |
| Status = gBS->LocateHandleBuffer ( | |
| AllHandles, | |
| NULL, | |
| NULL, | |
| &DeviceHandleCount, | |
| &DeviceHandleBuffer | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| // | |
| // Disconnect the driver specified by ImageHandle from all | |
| // the devices in the handle database. | |
| // | |
| for (Index = 0; Index < DeviceHandleCount; Index++) { | |
| Status = gBS->DisconnectController ( | |
| DeviceHandleBuffer[Index], | |
| ImageHandle, | |
| NULL | |
| ); | |
| } | |
| // | |
| // Uninstall all the protocols installed in the driver entry point | |
| // | |
| for (Index = 0; Index < DeviceHandleCount; Index++) { | |
| Status = gBS->HandleProtocol ( | |
| DeviceHandleBuffer[Index], | |
| &gEfiDriverBindingProtocolGuid, | |
| (VOID **) &DriverBinding | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| continue; | |
| } | |
| if (DriverBinding->ImageHandle != ImageHandle) { | |
| continue; | |
| } | |
| gBS->UninstallProtocolInterface ( | |
| ImageHandle, | |
| &gEfiDriverBindingProtocolGuid, | |
| DriverBinding | |
| ); | |
| Status = gBS->HandleProtocol ( | |
| DeviceHandleBuffer[Index], | |
| &gEfiComponentNameProtocolGuid, | |
| (VOID **) &ComponentName | |
| ); | |
| if (!EFI_ERROR (Status)) { | |
| gBS->UninstallProtocolInterface ( | |
| ImageHandle, | |
| &gEfiComponentNameProtocolGuid, | |
| ComponentName | |
| ); | |
| } | |
| Status = gBS->HandleProtocol ( | |
| DeviceHandleBuffer[Index], | |
| &gEfiComponentName2ProtocolGuid, | |
| (VOID **) &ComponentName2 | |
| ); | |
| if (!EFI_ERROR (Status)) { | |
| gBS->UninstallProtocolInterface ( | |
| ImageHandle, | |
| &gEfiComponentName2ProtocolGuid, | |
| ComponentName2 | |
| ); | |
| } | |
| } | |
| // | |
| // Free the buffer containing the list of handles from the handle database | |
| // | |
| if (DeviceHandleBuffer != NULL) { | |
| gBS->FreePool (DeviceHandleBuffer); | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Create a child of the service that is identified by ServiceBindingGuid. | |
| Get the ServiceBinding Protocol first, then use it to create a child. | |
| If ServiceBindingGuid is NULL, then ASSERT(). | |
| If ChildHandle is NULL, then ASSERT(). | |
| @param[in] Controller The controller which has the service installed. | |
| @param[in] Image The image handle used to open service. | |
| @param[in] ServiceBindingGuid The service's Guid. | |
| @param[in, out] ChildHandle The handle to receive the create child. | |
| @retval EFI_SUCCESS The child is successfully created. | |
| @retval Others Failed to create the child. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| NetLibCreateServiceChild ( | |
| IN EFI_HANDLE Controller, | |
| IN EFI_HANDLE Image, | |
| IN EFI_GUID *ServiceBindingGuid, | |
| IN OUT EFI_HANDLE *ChildHandle | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_SERVICE_BINDING_PROTOCOL *Service; | |
| ASSERT ((ServiceBindingGuid != NULL) && (ChildHandle != NULL)); | |
| // | |
| // Get the ServiceBinding Protocol | |
| // | |
| Status = gBS->OpenProtocol ( | |
| Controller, | |
| ServiceBindingGuid, | |
| (VOID **) &Service, | |
| Image, | |
| Controller, | |
| EFI_OPEN_PROTOCOL_GET_PROTOCOL | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| // | |
| // Create a child | |
| // | |
| Status = Service->CreateChild (Service, ChildHandle); | |
| return Status; | |
| } | |
| /** | |
| Destory a child of the service that is identified by ServiceBindingGuid. | |
| Get the ServiceBinding Protocol first, then use it to destroy a child. | |
| If ServiceBindingGuid is NULL, then ASSERT(). | |
| @param[in] Controller The controller which has the service installed. | |
| @param[in] Image The image handle used to open service. | |
| @param[in] ServiceBindingGuid The service's Guid. | |
| @param[in] ChildHandle The child to destory. | |
| @retval EFI_SUCCESS The child is successfully destoried. | |
| @retval Others Failed to destory the child. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| NetLibDestroyServiceChild ( | |
| IN EFI_HANDLE Controller, | |
| IN EFI_HANDLE Image, | |
| IN EFI_GUID *ServiceBindingGuid, | |
| IN EFI_HANDLE ChildHandle | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_SERVICE_BINDING_PROTOCOL *Service; | |
| ASSERT (ServiceBindingGuid != NULL); | |
| // | |
| // Get the ServiceBinding Protocol | |
| // | |
| Status = gBS->OpenProtocol ( | |
| Controller, | |
| ServiceBindingGuid, | |
| (VOID **) &Service, | |
| Image, | |
| Controller, | |
| EFI_OPEN_PROTOCOL_GET_PROTOCOL | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| // | |
| // destory the child | |
| // | |
| Status = Service->DestroyChild (Service, ChildHandle); | |
| return Status; | |
| } | |
| /** | |
| Get handle with Simple Network Protocol installed on it. | |
| There should be MNP Service Binding Protocol installed on the input ServiceHandle. | |
| If Simple Network Protocol is already installed on the ServiceHandle, the | |
| ServiceHandle will be returned. If SNP is not installed on the ServiceHandle, | |
| try to find its parent handle with SNP installed. | |
| @param[in] ServiceHandle The handle where network service binding protocols are | |
| installed on. | |
| @param[out] Snp The pointer to store the address of the SNP instance. | |
| This is an optional parameter that may be NULL. | |
| @return The SNP handle, or NULL if not found. | |
| **/ | |
| EFI_HANDLE | |
| EFIAPI | |
| NetLibGetSnpHandle ( | |
| IN EFI_HANDLE ServiceHandle, | |
| OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_SIMPLE_NETWORK_PROTOCOL *SnpInstance; | |
| EFI_DEVICE_PATH_PROTOCOL *DevicePath; | |
| EFI_HANDLE SnpHandle; | |
| // | |
| // Try to open SNP from ServiceHandle | |
| // | |
| SnpInstance = NULL; | |
| Status = gBS->HandleProtocol (ServiceHandle, &gEfiSimpleNetworkProtocolGuid, (VOID **) &SnpInstance); | |
| if (!EFI_ERROR (Status)) { | |
| if (Snp != NULL) { | |
| *Snp = SnpInstance; | |
| } | |
| return ServiceHandle; | |
| } | |
| // | |
| // Failed to open SNP, try to get SNP handle by LocateDevicePath() | |
| // | |
| DevicePath = DevicePathFromHandle (ServiceHandle); | |
| if (DevicePath == NULL) { | |
| return NULL; | |
| } | |
| SnpHandle = NULL; | |
| Status = gBS->LocateDevicePath (&gEfiSimpleNetworkProtocolGuid, &DevicePath, &SnpHandle); | |
| if (EFI_ERROR (Status)) { | |
| // | |
| // Failed to find SNP handle | |
| // | |
| return NULL; | |
| } | |
| Status = gBS->HandleProtocol (SnpHandle, &gEfiSimpleNetworkProtocolGuid, (VOID **) &SnpInstance); | |
| if (!EFI_ERROR (Status)) { | |
| if (Snp != NULL) { | |
| *Snp = SnpInstance; | |
| } | |
| return SnpHandle; | |
| } | |
| return NULL; | |
| } | |
| /** | |
| Retrieve VLAN ID of a VLAN device handle. | |
| Search VLAN device path node in Device Path of specified ServiceHandle and | |
| return its VLAN ID. If no VLAN device path node found, then this ServiceHandle | |
| is not a VLAN device handle, and 0 will be returned. | |
| @param[in] ServiceHandle The handle where network service binding protocols are | |
| installed on. | |
| @return VLAN ID of the device handle, or 0 if not a VLAN device. | |
| **/ | |
| UINT16 | |
| EFIAPI | |
| NetLibGetVlanId ( | |
| IN EFI_HANDLE ServiceHandle | |
| ) | |
| { | |
| EFI_DEVICE_PATH_PROTOCOL *DevicePath; | |
| EFI_DEVICE_PATH_PROTOCOL *Node; | |
| DevicePath = DevicePathFromHandle (ServiceHandle); | |
| if (DevicePath == NULL) { | |
| return 0; | |
| } | |
| Node = DevicePath; | |
| while (!IsDevicePathEnd (Node)) { | |
| if (Node->Type == MESSAGING_DEVICE_PATH && Node->SubType == MSG_VLAN_DP) { | |
| return ((VLAN_DEVICE_PATH *) Node)->VlanId; | |
| } | |
| Node = NextDevicePathNode (Node); | |
| } | |
| return 0; | |
| } | |
| /** | |
| Find VLAN device handle with specified VLAN ID. | |
| The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle. | |
| This function will append VLAN device path node to the parent device path, | |
| and then use LocateDevicePath() to find the correct VLAN device handle. | |
| @param[in] ControllerHandle The handle where network service binding protocols are | |
| installed on. | |
| @param[in] VlanId The configured VLAN ID for the VLAN device. | |
| @return The VLAN device handle, or NULL if not found. | |
| **/ | |
| EFI_HANDLE | |
| EFIAPI | |
| NetLibGetVlanHandle ( | |
| IN EFI_HANDLE ControllerHandle, | |
| IN UINT16 VlanId | |
| ) | |
| { | |
| EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath; | |
| EFI_DEVICE_PATH_PROTOCOL *VlanDevicePath; | |
| EFI_DEVICE_PATH_PROTOCOL *DevicePath; | |
| VLAN_DEVICE_PATH VlanNode; | |
| EFI_HANDLE Handle; | |
| ParentDevicePath = DevicePathFromHandle (ControllerHandle); | |
| if (ParentDevicePath == NULL) { | |
| return NULL; | |
| } | |
| // | |
| // Construct VLAN device path | |
| // | |
| CopyMem (&VlanNode, &mNetVlanDevicePathTemplate, sizeof (VLAN_DEVICE_PATH)); | |
| VlanNode.VlanId = VlanId; | |
| VlanDevicePath = AppendDevicePathNode ( | |
| ParentDevicePath, | |
| (EFI_DEVICE_PATH_PROTOCOL *) &VlanNode | |
| ); | |
| if (VlanDevicePath == NULL) { | |
| return NULL; | |
| } | |
| // | |
| // Find VLAN device handle | |
| // | |
| Handle = NULL; | |
| DevicePath = VlanDevicePath; | |
| gBS->LocateDevicePath ( | |
| &gEfiDevicePathProtocolGuid, | |
| &DevicePath, | |
| &Handle | |
| ); | |
| if (!IsDevicePathEnd (DevicePath)) { | |
| // | |
| // Device path is not exactly match | |
| // | |
| Handle = NULL; | |
| } | |
| FreePool (VlanDevicePath); | |
| return Handle; | |
| } | |
| /** | |
| Get MAC address associated with the network service handle. | |
| There should be MNP Service Binding Protocol installed on the input ServiceHandle. | |
| If SNP is installed on the ServiceHandle or its parent handle, MAC address will | |
| be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP. | |
| @param[in] ServiceHandle The handle where network service binding protocols are | |
| installed on. | |
| @param[out] MacAddress The pointer to store the returned MAC address. | |
| @param[out] AddressSize The length of returned MAC address. | |
| @retval EFI_SUCCESS MAC address is returned successfully. | |
| @retval Others Failed to get SNP mode data. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| NetLibGetMacAddress ( | |
| IN EFI_HANDLE ServiceHandle, | |
| OUT EFI_MAC_ADDRESS *MacAddress, | |
| OUT UINTN *AddressSize | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_SIMPLE_NETWORK_PROTOCOL *Snp; | |
| EFI_SIMPLE_NETWORK_MODE *SnpMode; | |
| EFI_SIMPLE_NETWORK_MODE SnpModeData; | |
| EFI_MANAGED_NETWORK_PROTOCOL *Mnp; | |
| EFI_SERVICE_BINDING_PROTOCOL *MnpSb; | |
| EFI_HANDLE *SnpHandle; | |
| EFI_HANDLE MnpChildHandle; | |
| ASSERT (MacAddress != NULL); | |
| ASSERT (AddressSize != NULL); | |
| // | |
| // Try to get SNP handle | |
| // | |
| Snp = NULL; | |
| SnpHandle = NetLibGetSnpHandle (ServiceHandle, &Snp); | |
| if (SnpHandle != NULL) { | |
| // | |
| // SNP found, use it directly | |
| // | |
| SnpMode = Snp->Mode; | |
| } else { | |
| // | |
| // Failed to get SNP handle, try to get MAC address from MNP | |
| // | |
| MnpChildHandle = NULL; | |
| Status = gBS->HandleProtocol ( | |
| ServiceHandle, | |
| &gEfiManagedNetworkServiceBindingProtocolGuid, | |
| (VOID **) &MnpSb | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| // | |
| // Create a MNP child | |
| // | |
| Status = MnpSb->CreateChild (MnpSb, &MnpChildHandle); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| // | |
| // Open MNP protocol | |
| // | |
| Status = gBS->HandleProtocol ( | |
| MnpChildHandle, | |
| &gEfiManagedNetworkProtocolGuid, | |
| (VOID **) &Mnp | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| // | |
| // Try to get SNP mode from MNP | |
| // | |
| Status = Mnp->GetModeData (Mnp, NULL, &SnpModeData); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| SnpMode = &SnpModeData; | |
| // | |
| // Destroy the MNP child | |
| // | |
| MnpSb->DestroyChild (MnpSb, MnpChildHandle); | |
| } | |
| *AddressSize = SnpMode->HwAddressSize; | |
| CopyMem (MacAddress->Addr, SnpMode->CurrentAddress.Addr, SnpMode->HwAddressSize); | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Convert MAC address of the NIC associated with specified Service Binding Handle | |
| to a unicode string. Callers are responsible for freeing the string storage. | |
| Locate simple network protocol associated with the Service Binding Handle and | |
| get the mac address from SNP. Then convert the mac address into a unicode | |
| string. It takes 2 unicode characters to represent a 1 byte binary buffer. | |
| Plus one unicode character for the null-terminator. | |
| @param[in] ServiceHandle The handle where network service binding protocol is | |
| installed on. | |
| @param[in] ImageHandle The image handle used to act as the agent handle to | |
| get the simple network protocol. | |
| @param[out] MacString The pointer to store the address of the string | |
| representation of the mac address. | |
| @retval EFI_SUCCESS Convert the mac address a unicode string successfully. | |
| @retval EFI_OUT_OF_RESOURCES There are not enough memory resource. | |
| @retval Others Failed to open the simple network protocol. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| NetLibGetMacString ( | |
| IN EFI_HANDLE ServiceHandle, | |
| IN EFI_HANDLE ImageHandle, | |
| OUT CHAR16 **MacString | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_MAC_ADDRESS MacAddress; | |
| UINT8 *HwAddress; | |
| UINTN HwAddressSize; | |
| UINT16 VlanId; | |
| CHAR16 *String; | |
| UINTN Index; | |
| ASSERT (MacString != NULL); | |
| // | |
| // Get MAC address of the network device | |
| // | |
| Status = NetLibGetMacAddress (ServiceHandle, &MacAddress, &HwAddressSize); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| // | |
| // It takes 2 unicode characters to represent a 1 byte binary buffer. | |
| // If VLAN is configured, it will need extra 5 characters like "\0005". | |
| // Plus one unicode character for the null-terminator. | |
| // | |
| String = AllocateZeroPool ((2 * HwAddressSize + 5 + 1) * sizeof (CHAR16)); | |
| if (String == NULL) { | |
| return EFI_OUT_OF_RESOURCES; | |
| } | |
| *MacString = String; | |
| // | |
| // Convert the MAC address into a unicode string. | |
| // | |
| HwAddress = &MacAddress.Addr[0]; | |
| for (Index = 0; Index < HwAddressSize; Index++) { | |
| String += UnicodeValueToString (String, PREFIX_ZERO | RADIX_HEX, *(HwAddress++), 2); | |
| } | |
| // | |
| // Append VLAN ID if any | |
| // | |
| VlanId = NetLibGetVlanId (ServiceHandle); | |
| if (VlanId != 0) { | |
| *String++ = L'\\'; | |
| String += UnicodeValueToString (String, PREFIX_ZERO | RADIX_HEX, VlanId, 4); | |
| } | |
| // | |
| // Null terminate the Unicode string | |
| // | |
| *String = L'\0'; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Detect media status for specified network device. | |
| The underlying UNDI driver may or may not support reporting media status from | |
| GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine | |
| will try to invoke Snp->GetStatus() to get the media status: if media already | |
| present, it return directly; if media not present, it will stop SNP and then | |
| restart SNP to get the latest media status, this give chance to get the correct | |
| media status for old UNDI driver which doesn't support reporting media status | |
| from GET_STATUS command. | |
| Note: there will be two limitations for current algorithm: | |
| 1) for UNDI with this capability, in case of cable is not attached, there will | |
| be an redundant Stop/Start() process; | |
| 2) for UNDI without this capability, in case that network cable is attached when | |
| Snp->Initialize() is invoked while network cable is unattached later, | |
| NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer | |
| apps to wait for timeout time. | |
| @param[in] ServiceHandle The handle where network service binding protocols are | |
| installed on. | |
| @param[out] MediaPresent The pointer to store the media status. | |
| @retval EFI_SUCCESS Media detection success. | |
| @retval EFI_INVALID_PARAMETER ServiceHandle is not valid network device handle. | |
| @retval EFI_UNSUPPORTED Network device does not support media detection. | |
| @retval EFI_DEVICE_ERROR SNP is in unknown state. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| NetLibDetectMedia ( | |
| IN EFI_HANDLE ServiceHandle, | |
| OUT BOOLEAN *MediaPresent | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_HANDLE SnpHandle; | |
| EFI_SIMPLE_NETWORK_PROTOCOL *Snp; | |
| UINT32 InterruptStatus; | |
| UINT32 OldState; | |
| EFI_MAC_ADDRESS *MCastFilter; | |
| UINT32 MCastFilterCount; | |
| UINT32 EnableFilterBits; | |
| UINT32 DisableFilterBits; | |
| BOOLEAN ResetMCastFilters; | |
| ASSERT (MediaPresent != NULL); | |
| // | |
| // Get SNP handle | |
| // | |
| Snp = NULL; | |
| SnpHandle = NetLibGetSnpHandle (ServiceHandle, &Snp); | |
| if (SnpHandle == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Check whether SNP support media detection | |
| // | |
| if (!Snp->Mode->MediaPresentSupported) { | |
| return EFI_UNSUPPORTED; | |
| } | |
| // | |
| // Invoke Snp->GetStatus() to refresh MediaPresent field in SNP mode data | |
| // | |
| Status = Snp->GetStatus (Snp, &InterruptStatus, NULL); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| if (Snp->Mode->MediaPresent) { | |
| // | |
| // Media is present, return directly | |
| // | |
| *MediaPresent = TRUE; | |
| return EFI_SUCCESS; | |
| } | |
| // | |
| // Till now, GetStatus() report no media; while, in case UNDI not support | |
| // reporting media status from GetStatus(), this media status may be incorrect. | |
| // So, we will stop SNP and then restart it to get the correct media status. | |
| // | |
| OldState = Snp->Mode->State; | |
| if (OldState >= EfiSimpleNetworkMaxState) { | |
| return EFI_DEVICE_ERROR; | |
| } | |
| MCastFilter = NULL; | |
| if (OldState == EfiSimpleNetworkInitialized) { | |
| // | |
| // SNP is already in use, need Shutdown/Stop and then Start/Initialize | |
| // | |
| // | |
| // Backup current SNP receive filter settings | |
| // | |
| EnableFilterBits = Snp->Mode->ReceiveFilterSetting; | |
| DisableFilterBits = Snp->Mode->ReceiveFilterMask ^ EnableFilterBits; | |
| ResetMCastFilters = TRUE; | |
| MCastFilterCount = Snp->Mode->MCastFilterCount; | |
| if (MCastFilterCount != 0) { | |
| MCastFilter = AllocateCopyPool ( | |
| MCastFilterCount * sizeof (EFI_MAC_ADDRESS), | |
| Snp->Mode->MCastFilter | |
| ); | |
| ASSERT (MCastFilter != NULL); | |
| ResetMCastFilters = FALSE; | |
| } | |
| // | |
| // Shutdown/Stop the simple network | |
| // | |
| Status = Snp->Shutdown (Snp); | |
| if (!EFI_ERROR (Status)) { | |
| Status = Snp->Stop (Snp); | |
| } | |
| if (EFI_ERROR (Status)) { | |
| goto Exit; | |
| } | |
| // | |
| // Start/Initialize the simple network | |
| // | |
| Status = Snp->Start (Snp); | |
| if (!EFI_ERROR (Status)) { | |
| Status = Snp->Initialize (Snp, 0, 0); | |
| } | |
| if (EFI_ERROR (Status)) { | |
| goto Exit; | |
| } | |
| // | |
| // Here we get the correct media status | |
| // | |
| *MediaPresent = Snp->Mode->MediaPresent; | |
| // | |
| // Restore SNP receive filter settings | |
| // | |
| Status = Snp->ReceiveFilters ( | |
| Snp, | |
| EnableFilterBits, | |
| DisableFilterBits, | |
| ResetMCastFilters, | |
| MCastFilterCount, | |
| MCastFilter | |
| ); | |
| if (MCastFilter != NULL) { | |
| FreePool (MCastFilter); | |
| } | |
| return Status; | |
| } | |
| // | |
| // SNP is not in use, it's in state of EfiSimpleNetworkStopped or EfiSimpleNetworkStarted | |
| // | |
| if (OldState == EfiSimpleNetworkStopped) { | |
| // | |
| // SNP not start yet, start it | |
| // | |
| Status = Snp->Start (Snp); | |
| if (EFI_ERROR (Status)) { | |
| goto Exit; | |
| } | |
| } | |
| // | |
| // Initialize the simple network | |
| // | |
| Status = Snp->Initialize (Snp, 0, 0); | |
| if (EFI_ERROR (Status)) { | |
| Status = EFI_DEVICE_ERROR; | |
| goto Exit; | |
| } | |
| // | |
| // Here we get the correct media status | |
| // | |
| *MediaPresent = Snp->Mode->MediaPresent; | |
| // | |
| // Shut down the simple network | |
| // | |
| Snp->Shutdown (Snp); | |
| Exit: | |
| if (OldState == EfiSimpleNetworkStopped) { | |
| // | |
| // Original SNP sate is Stopped, restore to original state | |
| // | |
| Snp->Stop (Snp); | |
| } | |
| if (MCastFilter != NULL) { | |
| FreePool (MCastFilter); | |
| } | |
| return Status; | |
| } | |
| /** | |
| Check the default address used by the IPv4 driver is static or dynamic (acquired | |
| from DHCP). | |
| If the controller handle does not have the NIC Ip4 Config Protocol installed, the | |
| default address is static. If the EFI variable to save the configuration is not found, | |
| the default address is static. Otherwise, get the result from the EFI variable which | |
| saving the configuration. | |
| @param[in] Controller The controller handle which has the NIC Ip4 Config Protocol | |
| relative with the default address to judge. | |
| @retval TRUE If the default address is static. | |
| @retval FALSE If the default address is acquired from DHCP. | |
| **/ | |
| BOOLEAN | |
| NetLibDefaultAddressIsStatic ( | |
| IN EFI_HANDLE Controller | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_HII_CONFIG_ROUTING_PROTOCOL *HiiConfigRouting; | |
| UINTN Len; | |
| NIC_IP4_CONFIG_INFO *ConfigInfo; | |
| BOOLEAN IsStatic; | |
| EFI_STRING ConfigHdr; | |
| EFI_STRING ConfigResp; | |
| EFI_STRING AccessProgress; | |
| EFI_STRING AccessResults; | |
| EFI_STRING String; | |
| EFI_HANDLE ChildHandle; | |
| ConfigInfo = NULL; | |
| ConfigHdr = NULL; | |
| ConfigResp = NULL; | |
| AccessProgress = NULL; | |
| AccessResults = NULL; | |
| IsStatic = TRUE; | |
| Status = gBS->LocateProtocol ( | |
| &gEfiHiiConfigRoutingProtocolGuid, | |
| NULL, | |
| (VOID **) &HiiConfigRouting | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| return TRUE; | |
| } | |
| Status = NetGetChildHandle (Controller, &ChildHandle); | |
| if (EFI_ERROR (Status)) { | |
| return TRUE; | |
| } | |
| // | |
| // Construct config request string header | |
| // | |
| ConfigHdr = HiiConstructConfigHdr (&gEfiNicIp4ConfigVariableGuid, EFI_NIC_IP4_CONFIG_VARIABLE, ChildHandle); | |
| if (ConfigHdr == NULL) { | |
| return TRUE; | |
| } | |
| Len = StrLen (ConfigHdr); | |
| ConfigResp = AllocateZeroPool ((Len + NIC_ITEM_CONFIG_SIZE * 2 + 100) * sizeof (CHAR16)); | |
| if (ConfigResp == NULL) { | |
| goto ON_EXIT; | |
| } | |
| StrCpy (ConfigResp, ConfigHdr); | |
| String = ConfigResp + Len; | |
| UnicodeSPrint ( | |
| String, | |
| (8 + 4 + 7 + 4 + 1) * sizeof (CHAR16), | |
| L"&OFFSET=%04X&WIDTH=%04X", | |
| OFFSET_OF (NIC_IP4_CONFIG_INFO, Source), | |
| sizeof (UINT32) | |
| ); | |
| Status = HiiConfigRouting->ExtractConfig ( | |
| HiiConfigRouting, | |
| ConfigResp, | |
| &AccessProgress, | |
| &AccessResults | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| goto ON_EXIT; | |
| } | |
| ConfigInfo = AllocateZeroPool (NIC_ITEM_CONFIG_SIZE); | |
| if (ConfigInfo == NULL) { | |
| goto ON_EXIT; | |
| } | |
| ConfigInfo->Source = IP4_CONFIG_SOURCE_STATIC; | |
| Len = NIC_ITEM_CONFIG_SIZE; | |
| Status = HiiConfigRouting->ConfigToBlock ( | |
| HiiConfigRouting, | |
| AccessResults, | |
| (UINT8 *) ConfigInfo, | |
| &Len, | |
| &AccessProgress | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| goto ON_EXIT; | |
| } | |
| IsStatic = (BOOLEAN) (ConfigInfo->Source == IP4_CONFIG_SOURCE_STATIC); | |
| ON_EXIT: | |
| if (AccessResults != NULL) { | |
| FreePool (AccessResults); | |
| } | |
| if (ConfigInfo != NULL) { | |
| FreePool (ConfigInfo); | |
| } | |
| if (ConfigResp != NULL) { | |
| FreePool (ConfigResp); | |
| } | |
| if (ConfigHdr != NULL) { | |
| FreePool (ConfigHdr); | |
| } | |
| return IsStatic; | |
| } | |
| /** | |
| Create an IPv4 device path node. | |
| The header type of IPv4 device path node is MESSAGING_DEVICE_PATH. | |
| The header subtype of IPv4 device path node is MSG_IPv4_DP. | |
| The length of the IPv4 device path node in bytes is 19. | |
| Get other info from parameters to make up the whole IPv4 device path node. | |
| @param[in, out] Node Pointer to the IPv4 device path node. | |
| @param[in] Controller The controller handle. | |
| @param[in] LocalIp The local IPv4 address. | |
| @param[in] LocalPort The local port. | |
| @param[in] RemoteIp The remote IPv4 address. | |
| @param[in] RemotePort The remote port. | |
| @param[in] Protocol The protocol type in the IP header. | |
| @param[in] UseDefaultAddress Whether this instance is using default address or not. | |
| **/ | |
| VOID | |
| EFIAPI | |
| NetLibCreateIPv4DPathNode ( | |
| IN OUT IPv4_DEVICE_PATH *Node, | |
| IN EFI_HANDLE Controller, | |
| IN IP4_ADDR LocalIp, | |
| IN UINT16 LocalPort, | |
| IN IP4_ADDR RemoteIp, | |
| IN UINT16 RemotePort, | |
| IN UINT16 Protocol, | |
| IN BOOLEAN UseDefaultAddress | |
| ) | |
| { | |
| Node->Header.Type = MESSAGING_DEVICE_PATH; | |
| Node->Header.SubType = MSG_IPv4_DP; | |
| SetDevicePathNodeLength (&Node->Header, 19); | |
| CopyMem (&Node->LocalIpAddress, &LocalIp, sizeof (EFI_IPv4_ADDRESS)); | |
| CopyMem (&Node->RemoteIpAddress, &RemoteIp, sizeof (EFI_IPv4_ADDRESS)); | |
| Node->LocalPort = LocalPort; | |
| Node->RemotePort = RemotePort; | |
| Node->Protocol = Protocol; | |
| if (!UseDefaultAddress) { | |
| Node->StaticIpAddress = TRUE; | |
| } else { | |
| Node->StaticIpAddress = NetLibDefaultAddressIsStatic (Controller); | |
| } | |
| } | |
| /** | |
| Create an IPv6 device path node. | |
| The header type of IPv6 device path node is MESSAGING_DEVICE_PATH. | |
| The header subtype of IPv6 device path node is MSG_IPv6_DP. | |
| Get other info from parameters to make up the whole IPv6 device path node. | |
| @param[in, out] Node Pointer to the IPv6 device path node. | |
| @param[in] Controller The controller handle. | |
| @param[in] LocalIp The local IPv6 address. | |
| @param[in] LocalPort The local port. | |
| @param[in] RemoteIp The remote IPv6 address. | |
| @param[in] RemotePort The remote port. | |
| @param[in] Protocol The protocol type in the IP header. | |
| **/ | |
| VOID | |
| EFIAPI | |
| NetLibCreateIPv6DPathNode ( | |
| IN OUT IPv6_DEVICE_PATH *Node, | |
| IN EFI_HANDLE Controller, | |
| IN EFI_IPv6_ADDRESS *LocalIp, | |
| IN UINT16 LocalPort, | |
| IN EFI_IPv6_ADDRESS *RemoteIp, | |
| IN UINT16 RemotePort, | |
| IN UINT16 Protocol | |
| ) | |
| { | |
| Node->Header.Type = MESSAGING_DEVICE_PATH; | |
| Node->Header.SubType = MSG_IPv6_DP; | |
| SetDevicePathNodeLength (&Node->Header, sizeof (IPv6_DEVICE_PATH)); | |
| CopyMem (&Node->LocalIpAddress, LocalIp, sizeof (EFI_IPv6_ADDRESS)); | |
| CopyMem (&Node->RemoteIpAddress, RemoteIp, sizeof (EFI_IPv6_ADDRESS)); | |
| Node->LocalPort = LocalPort; | |
| Node->RemotePort = RemotePort; | |
| Node->Protocol = Protocol; | |
| Node->StaticIpAddress = FALSE; | |
| } | |
| /** | |
| Find the UNDI/SNP handle from controller and protocol GUID. | |
| For example, IP will open a MNP child to transmit/receive | |
| packets, when MNP is stopped, IP should also be stopped. IP | |
| needs to find its own private data which is related the IP's | |
| service binding instance that is install on UNDI/SNP handle. | |
| Now, the controller is either a MNP or ARP child handle. But | |
| IP opens these handle BY_DRIVER, use that info, we can get the | |
| UNDI/SNP handle. | |
| @param[in] Controller Then protocol handle to check. | |
| @param[in] ProtocolGuid The protocol that is related with the handle. | |
| @return The UNDI/SNP handle or NULL for errors. | |
| **/ | |
| EFI_HANDLE | |
| EFIAPI | |
| NetLibGetNicHandle ( | |
| IN EFI_HANDLE Controller, | |
| IN EFI_GUID *ProtocolGuid | |
| ) | |
| { | |
| EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenBuffer; | |
| EFI_HANDLE Handle; | |
| EFI_STATUS Status; | |
| UINTN OpenCount; | |
| UINTN Index; | |
| Status = gBS->OpenProtocolInformation ( | |
| Controller, | |
| ProtocolGuid, | |
| &OpenBuffer, | |
| &OpenCount | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| return NULL; | |
| } | |
| Handle = NULL; | |
| for (Index = 0; Index < OpenCount; Index++) { | |
| if ((OpenBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_DRIVER) != 0) { | |
| Handle = OpenBuffer[Index].ControllerHandle; | |
| break; | |
| } | |
| } | |
| gBS->FreePool (OpenBuffer); | |
| return Handle; | |
| } | |
| /** | |
| Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS. | |
| @param[in] String The pointer to the Ascii string. | |
| @param[out] Ip4Address The pointer to the converted IPv4 address. | |
| @retval EFI_SUCCESS Convert to IPv4 address successfully. | |
| @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| NetLibAsciiStrToIp4 ( | |
| IN CONST CHAR8 *String, | |
| OUT EFI_IPv4_ADDRESS *Ip4Address | |
| ) | |
| { | |
| UINT8 Index; | |
| CHAR8 *Ip4Str; | |
| CHAR8 *TempStr; | |
| UINTN NodeVal; | |
| if ((String == NULL) || (Ip4Address == NULL)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| Ip4Str = (CHAR8 *) String; | |
| for (Index = 0; Index < 4; Index++) { | |
| TempStr = Ip4Str; | |
| while ((*Ip4Str != '\0') && (*Ip4Str != '.')) { | |
| Ip4Str++; | |
| } | |
| // | |
| // The IPv4 address is X.X.X.X | |
| // | |
| if (*Ip4Str == '.') { | |
| if (Index == 3) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| } else { | |
| if (Index != 3) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| } | |
| // | |
| // Convert the string to IPv4 address. AsciiStrDecimalToUintn stops at the | |
| // first character that is not a valid decimal character, '.' or '\0' here. | |
| // | |
| NodeVal = AsciiStrDecimalToUintn (TempStr); | |
| if (NodeVal > 0xFF) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| Ip4Address->Addr[Index] = (UINT8) NodeVal; | |
| Ip4Str++; | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the | |
| string is defined in RFC 4291 - Text Pepresentation of Addresses. | |
| @param[in] String The pointer to the Ascii string. | |
| @param[out] Ip6Address The pointer to the converted IPv6 address. | |
| @retval EFI_SUCCESS Convert to IPv6 address successfully. | |
| @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip6Address is NULL. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| NetLibAsciiStrToIp6 ( | |
| IN CONST CHAR8 *String, | |
| OUT EFI_IPv6_ADDRESS *Ip6Address | |
| ) | |
| { | |
| UINT8 Index; | |
| CHAR8 *Ip6Str; | |
| CHAR8 *TempStr; | |
| CHAR8 *TempStr2; | |
| UINT8 NodeCnt; | |
| UINT8 TailNodeCnt; | |
| UINT8 AllowedCnt; | |
| UINTN NodeVal; | |
| BOOLEAN Short; | |
| BOOLEAN Update; | |
| BOOLEAN LeadZero; | |
| UINT8 LeadZeroCnt; | |
| UINT8 Cnt; | |
| if ((String == NULL) || (Ip6Address == NULL)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| Ip6Str = (CHAR8 *) String; | |
| AllowedCnt = 6; | |
| LeadZeroCnt = 0; | |
| // | |
| // An IPv6 address leading with : looks strange. | |
| // | |
| if (*Ip6Str == ':') { | |
| if (*(Ip6Str + 1) != ':') { | |
| return EFI_INVALID_PARAMETER; | |
| } else { | |
| AllowedCnt = 7; | |
| } | |
| } | |
| ZeroMem (Ip6Address, sizeof (EFI_IPv6_ADDRESS)); | |
| NodeCnt = 0; | |
| TailNodeCnt = 0; | |
| Short = FALSE; | |
| Update = FALSE; | |
| LeadZero = FALSE; | |
| for (Index = 0; Index < 15; Index = (UINT8) (Index + 2)) { | |
| TempStr = Ip6Str; | |
| while ((*Ip6Str != '\0') && (*Ip6Str != ':')) { | |
| Ip6Str++; | |
| } | |
| if ((*Ip6Str == '\0') && (Index != 14)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if (*Ip6Str == ':') { | |
| if (*(Ip6Str + 1) == ':') { | |
| if ((NodeCnt > 6) || | |
| ((*(Ip6Str + 2) != '\0') && (AsciiStrHexToUintn (Ip6Str + 2) == 0))) { | |
| // | |
| // ::0 looks strange. report error to user. | |
| // | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if ((NodeCnt == 6) && (*(Ip6Str + 2) != '\0') && | |
| (AsciiStrHexToUintn (Ip6Str + 2) != 0)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Skip the abbreviation part of IPv6 address. | |
| // | |
| TempStr2 = Ip6Str + 2; | |
| while ((*TempStr2 != '\0')) { | |
| if (*TempStr2 == ':') { | |
| if (*(TempStr2 + 1) == ':') { | |
| // | |
| // :: can only appear once in IPv6 address. | |
| // | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| TailNodeCnt++; | |
| if (TailNodeCnt >= (AllowedCnt - NodeCnt)) { | |
| // | |
| // :: indicates one or more groups of 16 bits of zeros. | |
| // | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| } | |
| TempStr2++; | |
| } | |
| Short = TRUE; | |
| Update = TRUE; | |
| Ip6Str = Ip6Str + 2; | |
| } else { | |
| if (*(Ip6Str + 1) == '\0') { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| Ip6Str++; | |
| NodeCnt++; | |
| if ((Short && (NodeCnt > 6)) || (!Short && (NodeCnt > 7))) { | |
| // | |
| // There are more than 8 groups of 16 bits of zeros. | |
| // | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| } | |
| } | |
| // | |
| // Convert the string to IPv6 address. AsciiStrHexToUintn stops at the first | |
| // character that is not a valid hexadecimal character, ':' or '\0' here. | |
| // | |
| NodeVal = AsciiStrHexToUintn (TempStr); | |
| if ((NodeVal > 0xFFFF) || (Index > 14)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if (NodeVal != 0) { | |
| if ((*TempStr == '0') && | |
| ((*(TempStr + 2) == ':') || (*(TempStr + 3) == ':') || | |
| (*(TempStr + 2) == '\0') || (*(TempStr + 3) == '\0'))) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if ((*TempStr == '0') && (*(TempStr + 4) != '\0') && | |
| (*(TempStr + 4) != ':')) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| } else { | |
| if (((*TempStr == '0') && (*(TempStr + 1) == '0') && | |
| ((*(TempStr + 2) == ':') || (*(TempStr + 2) == '\0'))) || | |
| ((*TempStr == '0') && (*(TempStr + 1) == '0') && (*(TempStr + 2) == '0') && | |
| ((*(TempStr + 3) == ':') || (*(TempStr + 3) == '\0')))) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| } | |
| Cnt = 0; | |
| while ((TempStr[Cnt] != ':') && (TempStr[Cnt] != '\0')) { | |
| Cnt++; | |
| } | |
| if (LeadZeroCnt == 0) { | |
| if ((Cnt == 4) && (*TempStr == '0')) { | |
| LeadZero = TRUE; | |
| LeadZeroCnt++; | |
| } | |
| if ((Cnt != 0) && (Cnt < 4)) { | |
| LeadZero = FALSE; | |
| LeadZeroCnt++; | |
| } | |
| } else { | |
| if ((Cnt == 4) && (*TempStr == '0') && !LeadZero) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if ((Cnt != 0) && (Cnt < 4) && LeadZero) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| } | |
| Ip6Address->Addr[Index] = (UINT8) (NodeVal >> 8); | |
| Ip6Address->Addr[Index + 1] = (UINT8) (NodeVal & 0xFF); | |
| // | |
| // Skip the groups of zeros by :: | |
| // | |
| if (Short && Update) { | |
| Index = (UINT8) (16 - (TailNodeCnt + 2) * 2); | |
| Update = FALSE; | |
| } | |
| } | |
| if ((!Short && Index != 16) || (*Ip6Str != '\0')) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS. | |
| @param[in] String The pointer to the Ascii string. | |
| @param[out] Ip4Address The pointer to the converted IPv4 address. | |
| @retval EFI_SUCCESS Convert to IPv4 address successfully. | |
| @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL. | |
| @retval EFI_OUT_OF_RESOURCES Fail to perform the operation due to lack of resource. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| NetLibStrToIp4 ( | |
| IN CONST CHAR16 *String, | |
| OUT EFI_IPv4_ADDRESS *Ip4Address | |
| ) | |
| { | |
| CHAR8 *Ip4Str; | |
| EFI_STATUS Status; | |
| if ((String == NULL) || (Ip4Address == NULL)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| Ip4Str = (CHAR8 *) AllocatePool ((StrLen (String) + 1) * sizeof (CHAR8)); | |
| if (Ip4Str == NULL) { | |
| return EFI_OUT_OF_RESOURCES; | |
| } | |
| UnicodeStrToAsciiStr (String, Ip4Str); | |
| Status = NetLibAsciiStrToIp4 (Ip4Str, Ip4Address); | |
| FreePool (Ip4Str); | |
| return Status; | |
| } | |
| /** | |
| Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of | |
| the string is defined in RFC 4291 - Text Pepresentation of Addresses. | |
| @param[in] String The pointer to the Ascii string. | |
| @param[out] Ip6Address The pointer to the converted IPv6 address. | |
| @retval EFI_SUCCESS Convert to IPv6 address successfully. | |
| @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip6Address is NULL. | |
| @retval EFI_OUT_OF_RESOURCES Fail to perform the operation due to lack of resource. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| NetLibStrToIp6 ( | |
| IN CONST CHAR16 *String, | |
| OUT EFI_IPv6_ADDRESS *Ip6Address | |
| ) | |
| { | |
| CHAR8 *Ip6Str; | |
| EFI_STATUS Status; | |
| if ((String == NULL) || (Ip6Address == NULL)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| Ip6Str = (CHAR8 *) AllocatePool ((StrLen (String) + 1) * sizeof (CHAR8)); | |
| if (Ip6Str == NULL) { | |
| return EFI_OUT_OF_RESOURCES; | |
| } | |
| UnicodeStrToAsciiStr (String, Ip6Str); | |
| Status = NetLibAsciiStrToIp6 (Ip6Str, Ip6Address); | |
| FreePool (Ip6Str); | |
| return Status; | |
| } | |
| /** | |
| Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length. | |
| The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses | |
| Prefixes: ipv6-address/prefix-length. | |
| @param[in] String The pointer to the Ascii string. | |
| @param[out] Ip6Address The pointer to the converted IPv6 address. | |
| @param[out] PrefixLength The pointer to the converted prefix length. | |
| @retval EFI_SUCCESS Convert to IPv6 address successfully. | |
| @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip6Address is NULL. | |
| @retval EFI_OUT_OF_RESOURCES Fail to perform the operation due to lack of resource. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| NetLibStrToIp6andPrefix ( | |
| IN CONST CHAR16 *String, | |
| OUT EFI_IPv6_ADDRESS *Ip6Address, | |
| OUT UINT8 *PrefixLength | |
| ) | |
| { | |
| CHAR8 *Ip6Str; | |
| CHAR8 *PrefixStr; | |
| CHAR8 *TempStr; | |
| EFI_STATUS Status; | |
| UINT8 Length; | |
| if ((String == NULL) || (Ip6Address == NULL) || (PrefixLength == NULL)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| Ip6Str = (CHAR8 *) AllocatePool ((StrLen (String) + 1) * sizeof (CHAR8)); | |
| if (Ip6Str == NULL) { | |
| return EFI_OUT_OF_RESOURCES; | |
| } | |
| UnicodeStrToAsciiStr (String, Ip6Str); | |
| // | |
| // Get the sub string describing prefix length. | |
| // | |
| TempStr = Ip6Str; | |
| while (*TempStr != '\0' && (*TempStr != '/')) { | |
| TempStr++; | |
| } | |
| if (*TempStr == '/') { | |
| PrefixStr = TempStr + 1; | |
| } else { | |
| PrefixStr = NULL; | |
| } | |
| // | |
| // Get the sub string describing IPv6 address and convert it. | |
| // | |
| *TempStr = '\0'; | |
| Status = NetLibAsciiStrToIp6 (Ip6Str, Ip6Address); | |
| if (EFI_ERROR (Status)) { | |
| goto Exit; | |
| } | |
| // | |
| // If input string doesn't indicate the prefix length, return 0xff. | |
| // | |
| Length = 0xFF; | |
| // | |
| // Convert the string to prefix length | |
| // | |
| if (PrefixStr != NULL) { | |
| Status = EFI_INVALID_PARAMETER; | |
| Length = 0; | |
| while (*PrefixStr != '\0') { | |
| if (NET_IS_DIGIT (*PrefixStr)) { | |
| Length = (UINT8) (Length * 10 + (*PrefixStr - '0')); | |
| if (Length >= IP6_PREFIX_NUM) { | |
| goto Exit; | |
| } | |
| } else { | |
| goto Exit; | |
| } | |
| PrefixStr++; | |
| } | |
| } | |
| *PrefixLength = Length; | |
| Status = EFI_SUCCESS; | |
| Exit: | |
| FreePool (Ip6Str); | |
| return Status; | |
| } | |